1
|
Peng S, Hou X, Liu J, Huang F. Advances in polymer nanomaterials targeting cGAS-STING pathway for enhanced cancer immunotherapy. J Control Release 2025; 381:113560. [PMID: 40023225 DOI: 10.1016/j.jconrel.2025.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway has been recognized as a promising target for cancer immunotherapy. Although various STING agonists have been developed, their clinical applications are still severely impeded by various issues, such as non-specific accumulation, adverse effects, rapid clearance, etc. In recent years, the emergence of nanomaterials has profoundly revolutionized STING agonists delivery, which promote tumor-targeted delivery, boost the immunotherapeutic effects and reduce systemic toxicity of STING agonists. In particular, polymer nanomaterials possess inherent advantages including controllable structure, tunable function and degradability. These properties afford them the capacity to serve as delivery vehicles for small-molecule STING agonists. Furthermore, the superior characteristics of polymer nanomaterials can enable their utilization as a novel STING agonist to stimulate anti-tumor immunity. In this review, the molecular mechanisms of cGAS-STING pathway activation are discussed. The recent development of small-molecules STING agonists is described. Then polymer nanomaterials are discussed as carriers for STING agonists in cancer immunotherapy, including polymersomes, polymer micelles, polymer capsules, and polymer nanogels. Additionally, polymer nanomaterials are identified as a novel class of STING agonists for efficient cancer immunotherapy, encompassing both polymer materials and polymer-STING agonists conjugates. The review also presents the combination of polymer-based cGAS-STING immunotherapy with chemotherapy, radiotherapy, phototherapy (both photodynamic and photothermal), chemodynamic therapy, and other therapeutic strategies. Furthermore, the discussion highlights recent advancements targeting the cGAS-STING pathway in clinically approved polymer nanomaterials and corresponding potent innovations. Finally, the potential challenges and perspectives of polymer nanomaterials for activating cGAS-STING pathway are outlined, emphasizing the critical scientific issue and hoping to offer guidance for their clinical translation.
Collapse
Affiliation(s)
- Shiyu Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Fan Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
2
|
Wang L, Wang H, Dang H, Niu B, Yan H, Guo R, Wang H, Zhou P. An adhesive, antibacterial hydrogel wound dressing fabricated by dopamine-grafted oxidized sodium alginate and methacrylated carboxymethyl chitosan incorporated with Cu(II) complex. BIOMATERIALS ADVANCES 2025; 170:214217. [PMID: 39929017 DOI: 10.1016/j.bioadv.2025.214217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/12/2025]
Abstract
Effective wound dressings play an important role in preventing infections and promoting wound healing. Most polysaccharide-based hydrogel dressings have the drawbacks of weak tissue adhesion and poor antibacterial properties. Herein, a multifunctional dopamine-grafted oxidized sodium alginate-methacrylated carboxymethyl chitosan/gallic acid‑copper(II) complex (OD-CM/GA-CuIIUV) hydrogel was fabricated through Schiff base bonds and photo-crosslinked polymerization between dopamine-grafted oxidized sodium alginate (OSA-DA) and methacrylated carboxymethyl chitosan (CMC-MA), with the integration of gallic acid‑copper(II) complexes (GA-CuII). The double cross-linked network and mussel-inspired adhesion mechanism endowed the hydrogel with attractive physicochemical properties, including excellent self-healing properties, pH-responsive biodegradability, robust toughness, and a maximum adhesion strength of 15.06 kPa. Moreover, the composite hydrogel exhibited an antibacterial ratio of > 99 % against Escherichia coli and Staphylococcus aureus, as well as good antioxidant activity. The MTT assay showed that the cell viability of the composite hydrogel reached > 85 %. The in vivo full-thickness skin defect healing assays in rats demonstrated that the composite hydrogel remarkably accelerated wound repair by attenuating the inflammatory response and promoting epithelial tissue remodeling. Therefore, this novel multifunctional hydrogel has potential applications in biomedical wound dressing.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Huainian Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Haoming Dang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baolong Niu
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hong Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ruijie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Pucha Zhou
- Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, PR China.
| |
Collapse
|
3
|
Diaz-Ramirez J, Basasoro S, Torresi S, Eceiza A, Retegi A, Gabilondo N. Bacterial cellulose/thiolated chitosan nanoparticles hybrid antimicrobial dressing for curcumin delivery. Int J Biol Macromol 2025; 289:138836. [PMID: 39694349 DOI: 10.1016/j.ijbiomac.2024.138836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Thiolated chitosan (Cs-SH) nanoparticles were synthesized and incorporated into bacterial cellulose (BC) membranes through vacuum-assisted confinement. Thiolation significantly enhanced the intrinsic adhesion capacity of chitosan (Cs) as well as its solubility in neutral aqueous solutions. Subsequently, Cs-SH nanoparticles were successfully loaded with curcumin (Cur-Cs-SH), with nanoparticle sizes of 121 ± 2 nm for Cs-SH and 152 ± 6 nm for Cur-Cs-SH. Stability assessments revealed improved pH tolerance and colloidal stability due to the introduction of thiol groups and curcumin encapsulation. Notably, the retention yield of nanoparticles in BC was calculated to be 99 % (w/v) within 45 min. Nanoparticle and curcumin in vitro release studies demonstrated pH-dependent profiles, indicating controlled release kinetics influenced by initial loading and environmental acidity. Moreover, the enhanced adhesive properties of the developed BC membranes, verified by mucin disks and porcine skin adhesion tests, suggested their potential for targeted drug delivery to human tissue. Additionally, antimicrobial assays suggested a synergistic effect between Cs-SH and encapsulated curcumin, exhibiting antibacterial activity against S. aureus and E. coli. In this research, the bioavailability of curcumin was increased by encapsulating it in Cur-Cs-SH nanoparticles, which enhanced its antimicrobial properties and improved the adhesion of BC membranes, thereby expanding their applications in biomedicine.
Collapse
Affiliation(s)
- Julen Diaz-Ramirez
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Senda Basasoro
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain
| | - Stefano Torresi
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Arantxa Eceiza
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Aloña Retegi
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Nagore Gabilondo
- 'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| |
Collapse
|
4
|
Zhang H, Yuan S, Zheng B, Wu P, He X, Zhao Y, Zhong Z, Zhang X, Guan J, Wang H, Yang L, Zheng X. Lubricating and Dual-Responsive Injectable Hydrogels Formulated From ZIF-8 Facilitate Osteoarthritis Treatment by Remodeling the Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407885. [PMID: 39604796 DOI: 10.1002/smll.202407885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Osteoarthritis (OA) is a progressively developing condition primarily characterized by the deterioration of articular cartilage and the proliferation of bone, along with ongoing inflammation. Although the precise pathogenesis remains somewhat elusive, restoring the homeostatic balance of the intra-articular microenvironment is crucial for the management of OA. Intra-articular injection of medication is one of the most direct and effective treatment methods; however, most injectable drugs used for osteoarthritis treatment, due to their rapid breakdown, quick release, poor biological activity, and frequent injections, leading to increased risk of infection and suboptimal therapeutic outcomes. In this study, a lubricating and dual-responsive injectable hydrogel based on zeolitic imidazolate frameworks-8 (ZIF-8) impregnated with Quercetin (Que) is designed, which can facilitate OA treatment by remodeling the microenvironment. The prepared injectable nanocomposite hydrogel (MH/CCM@ZIF-8@Que) exhibits pH and reactive oxygen species (ROS) responsiveness, alongside a controllable release of bioactive substances to modulate the microenvironment of bone tissue, thereby mitigating synovitis and the degeneration of cartilage matrix, while simultaneously facilitating cartilage repair. This developed thermosensitive injectable hydrogel, which effectively balances lubrication with the controlled release of bioactive substances, represents a highly promising therapeutic approach for osteoarthritis.
Collapse
Affiliation(s)
- Hongtao Zhang
- Department of Orthopedics, Zhongshan Torch Development Zone People's Hospital, Zhongshan, 528437, P. R. China
| | - Shiguo Yuan
- Department of Orthopaedic, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570203, P. R. China
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, 570203, P. R. China
| | - Boyuan Zheng
- Department of Sports Medicine, The First Affiliated Hospital, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou, 510630, P. R. China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Xiuming He
- Department of Orthopedics, Zhongshan Torch Development Zone People's Hospital, Zhongshan, 528437, P. R. China
| | - Yi Zhao
- Department of Orthopedics, the Third Hospital of Shijiazhuang, Shijiazhuang, 050011, P. R. China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, P. R. China
| | - Xiaofang Zhang
- Department of Pharmacy, the First Affiliated Hospital, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Science and Technology Planning Project of Guangzhou, Jinan University, Guangzhou, 510630, P. R. China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, P. R. China
| | - Jian Guan
- Department of Orthopedics, the Third Hospital of Shijiazhuang, Shijiazhuang, 050011, P. R. China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou, 510630, P. R. China
| | - Lei Yang
- Department of Orthopedics, Key Laboratory of Hepatosplenic Surgery of Ministry of Education, NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 163711, P. R. China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou, 510630, P. R. China
| |
Collapse
|
5
|
Hui Y, Zheng X, Zheng Z, Wu C, Hao Y, Zhou B. Progress in the Application of Multifunctional Composite Hydrogels in Promoting Tissue Repair. ACS OMEGA 2024; 9:47964-47975. [PMID: 39676986 PMCID: PMC11635483 DOI: 10.1021/acsomega.4c08103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Tissue repair is an extremely complex process, and effectively promoting tissue regeneration remains a significant clinical challenge. Hydrogel materials, which exhibit physical properties closely resembling those of living tissues, including high water content, oxygen permeability, and softness, have the potential to revolutionize the field of tissue repair. However, the presence of various complex conditions, such as infection, ischemia, and hypoxia in tissue defects, means that hydrogels with simple structures and functions are often insufficient to meet the diverse needs of tissue repair. Researchers have focused on integrating multiple drugs, nanomaterials, bioactive substances, and stem cells into hydrogel matrices to develop novel multifunctional composite hydrogels for addressing these challenges, which have superior antibacterial properties, hemostatic abilities, self-healing capacities, and excellent mechanical properties. These composite hydrogels are designed to enhance tissue repair and have become an important direction in the current research. This review provides a comprehensive review of the recent advances in the application of multifunctional composite hydrogels in promoting tissue repair, including drug-loaded hydrogels, nanomaterial composite hydrogels, bioactive substance composite hydrogels, and stem cell composite hydrogels.
Collapse
Affiliation(s)
- Yuan Hui
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, P. R. China
| | - Xuexuan Zheng
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, P. R. China
| | - Ziling Zheng
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, P. R. China
| | - Chuling Wu
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, P. R. China
| | - Yan Hao
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, P. R. China
| | - Bin Zhou
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, P. R. China
| |
Collapse
|
6
|
Mao L, Li G, Zhang B, Wen K, Wang C, Cai Q, Zhao X, Guo Z, Zhang S. Functional Hydrogels for Aqueous Zinc-Based Batteries: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416345. [PMID: 39659112 DOI: 10.1002/adma.202416345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Aqueous zinc batteries (AZBs) hold great potential for green grid-scale energy storage due to their affordability, resource abundance, safety, and environmental friendliness. However, their practical deployment is hindered by challenges related to the electrode, electrolyte, and interface. Functional hydrogels offer a promising solution to address such challenges owing to their broad electrochemical window, tunable structures, and pressure-responsive mechanical properties. In this review, the key properties that functional hydrogels must possess for advancing AZBs, including mechanical strength, ionic conductivity, swelling behavior, and degradability, from a perspective of the full life cycle of hydrogels in AZBs are summarized. Current modification strategies aimed at enhancing these properties and improving AZB performance are also explored. The challenges and design considerations for integrating functional hydrogels with electrodes and interface are discussed. In the end, the limitations and future directions for hydrogels to bridge the gap between academia and industries for the successful deployment of AZBs are discussed.
Collapse
Affiliation(s)
- Lei Mao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Guanjie Li
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Binwei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaihua Wen
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Wang
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Qinqin Cai
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xun Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shilin Zhang
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
7
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Wang X, Yang X, Liu Z, Shen Z, Li M, Cheng R, Zhao L, Xi Y, Wang J, Sang S. 3D bioprinting of an in vitro hepatoma microenvironment model: Establishment, evaluation, and anticancer drug testing. Acta Biomater 2024; 185:173-189. [PMID: 39025391 DOI: 10.1016/j.actbio.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Tumor behavior, including its response to treatments, is influenced by interactions between mesenchymal and malignant cells, as well as their spatial arrangement. To study tumor biology and evaluate anticancer drugs, accurate 3D tumor models are essential. Here, we developed an in vitro biomimetic hepatoma microenvironment model by combining an extracellular matrix (3DM-7721). Initially, the internal grid structure, composed of 10/6 % GelMA/gelatin loaded with SMMC-7721 cells, was printed using 3D bioprinting. The external component consisted of fibroblasts and human umbilical vein endothelial cells loaded with 10/3 % GelMA/gelatin. A control model (3DP-7721) lacked external cell loading. GelMA/gelatin hydrogels provided robust structural support and biocompatibility. The SMMC-7721 cells in the 3DM-7721 model exhibit superior tumor-associated gene expression and proliferation characteristics when compared to the 3DP-7721 model. Furthermore, the 3DM-7721 type exhibited increased resistance to anticancer agents. SMMC-7721 cells in the 3DM-7721 model exhibit significant tumorigenicity in nude mice. The 3DM-7721 model group showed pathological characteristics of malignant tumors, with a high degree of deterioration, and a significant positive correlation between malignant tumor-related gene pathways. This high-fidelity 3DM-7721 tumor microenvironment model is invaluable for studying tumor progression, devising effective treatment strategies, and discovering drugs. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoning Yang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanfeng Xi
- Department of Pathology, Cancer Hospital of Chinese Academy of Medical Sciences Shanxi Hospital, Taiyuan 030024, China
| | | | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China.
| |
Collapse
|
9
|
Mišković V, Greco I, Minetti C, Cialdai F, Monici M, Gazzi A, Marcellino J, Samad YA, Delogu LG, Ferrari AC, Iorio CS. Hydrogel mechanical properties in altered gravity. NPJ Microgravity 2024; 10:83. [PMID: 39117674 PMCID: PMC11310329 DOI: 10.1038/s41526-024-00388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/21/2024] [Indexed: 08/10/2024] Open
Abstract
Exposure to altered gravity influences cellular behaviour in cell cultures. Hydrogels are amongst the most common materials used to produce tissue-engineering scaffolds, and their mechanical properties play a crucial role in cell-matrix interaction. However, little is known about the influence of altered gravity on hydrogel properties. Here we study the mechanical properties of Poly (ethylene glycol) diacrylate (PEGDA) and PEGDA incorporated with graphene oxide (GO) by performing tensile tests in micro and hypergravity during a Parabolic flight campaign, and by comparing them to the same tests performed in Earth gravity. We show that gravity levels do not result in a statistically significant difference in Young's modulus.
Collapse
Affiliation(s)
- Vanja Mišković
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Immacolata Greco
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Christophe Minetti
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences « Mario Serio », University of Florence, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences « Mario Serio », University of Florence, Florence, Italy
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Yarjan Abdul Samad
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Aerospace Engineering, Khalifa university of Science and Technology, Abu Dhabi, 127788, UAE
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Biological Science, Khalifa university of Science and Technology, Abu Dhabi, UAE
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Carlo Saverio Iorio
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
10
|
Aye KC, Rojanarata T, Ngawhirunpat T, Opanasopit P, Pornpitchanarong C, Patrojanasophon P. Development and characterization of curcumin nanosuspension-embedded genipin-crosslinked chitosan/polyvinylpyrrolidone hydrogel patch for effective wound healing. Int J Biol Macromol 2024; 274:133519. [PMID: 38960235 DOI: 10.1016/j.ijbiomac.2024.133519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) to promote wound healing in an excisional wound model. Cur-NSs were prepared, and a simplex centroid mixture design was employed to optimize hydrogel properties for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was tested in Wistar rats. The optimized hydrogel consisted of a 70:30 ratio of CS:PVP, crosslinked with a 2 % w/w genipin solution. It exhibited high swelling capability (486 %) while maintaining solidity, robustness, and durability. Incorporating 5 % w/w Cur-NSs resulted in a more compact structure, although with a reduction in swelling properties. The release kinetics of Cur from the hydrogel followed the Korsmeyer-Peppas Fickian diffusion model. In vitro biocompatibility studies demonstrated that the hydrogel was non-toxic to skin fibroblast cells. The in vivo experiment revealed a desirable wound healing rate with over 80 % recovery by day 7. Cur-NSs likely aided wound healing by reducing the inflammatory response and stimulating fibroblast proliferation. Additionally, the CS-based hydrogel provided a moist wound environment with hydration and gas transfer, further accelerating wound closure. These findings suggest that the Cur-NS-embedded hydrogel shows promise as a wound dressing material.
Collapse
Affiliation(s)
- Khin Cho Aye
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
11
|
Yuan Y, Zhao H, Yin X, Wang D, Mei X, Zhang P. Alloy nanozyme-reinforced hyaluronic acid-based hydrogel with wound environment-responsive properties for synergistically accelerating infectious wound healing. Int J Biol Macromol 2024; 269:131896. [PMID: 38677681 DOI: 10.1016/j.ijbiomac.2024.131896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The recovery of infectious wound tissues presents a significant global health challenge due to the impediments posed by the harsh healing microenvironment, which includes ongoing bacterial invasion, high oxidative stress, inflammatory response, and impaired angiogenesis. To overcome the above issues, we propose a composite hydrogel based on the multiple-crosslinked mechanism involving the covalent network of CC bonds within catechol and maleic-modified HA (CMHA), the self-assembly network of glycyrrhizic acid (GA), and the metal-polyphenol coordination induced by ZHMCe for accelerating infectious wound healing. The resulting CMHA/GA/ZHMCe hydrogels demonstrate enhanced mechanical, adhesive, antioxidative, and antibacterial properties. Importantly, the hydrogel system possesses wound environment-responsive properties that allow it to adapt to the specific therapeutic requirements of different stages by regulating various enzyme activities in the healing of infected wounds. Furthermore, the biocompatible CMHA/GA/ZHMCe shows the ability to promote cell migration and angiogenesis in vitro while reprogramming macrophages toward an anti-inflammatory phenotype due to the effective release of active ingredients. In vivo experiments confirm that the CMHA/GA/ZHMCe hydrogel significantly enhances infectious wound healing by accelerating re-epithelialization, promoting collagen deposition, regulating inflammation, and contributing to vascularization. These findings underscore the therapeutic potential of our hydrogel dressings for the treatment of bacterially infected cutaneous wound healing.
Collapse
Affiliation(s)
- Yajiang Yuan
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Haosen Zhao
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xuechen Yin
- Department of Laboratory Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Dahao Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121002, China
| | - Xifan Mei
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Peng Zhang
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
12
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
13
|
Yang Y, Ma Y, Wu M, Wang X, Zhao Y, Zhong S, Gao Y, Cui X. Fe 3+-induced coordination cross-linking gallic acid-carboxymethyl cellulose self-healing hydrogel. Int J Biol Macromol 2024; 267:131626. [PMID: 38631590 DOI: 10.1016/j.ijbiomac.2024.131626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Self-healing hydrogel is a promising soft material for applications in wound dressings, drug delivery, tissue engineering, biomimetic electronic skin, and wearable electronic devices. However, it is a challenge to fabricate the self-healing hydrogels without external stimuli. Inspired by mussel, the metal-catechol complexes were introduced into the hydrogel systems to prepare the mussel-inspired hydrogels by regulating the gelation kinetics of Fe3+ crosslinkers with gallic acid (GA) in this research. The amine-functionalized carboxymethyl cellulose (CMC) was grafted with GA and then chelated with Fe3+ to form a multi-response system. The crosslinking of carboxymethyl cellulose-ethylenediamine-gallic acid (CEG) hydrogel was controlled by adjusting the pH to affect the iron coordination chemistry, which could enhance the self-healing properties and mechanical strength of hydrogels. In addition, the CEG hydrogel exhibited great antibacterial and antioxidant properties. And the CEG hydrogel could strongly adhere to the skin tissue. The adhesion strength of CEG hydrogel on pigskin was 11.44 kPa, which is higher than that of commercial wound dressings (∼5 kPa). Moreover, the thixotropy of the CEG hydrogel was confirmed with rheological test. In summary, it has great potential in the application field of wound dressing.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Meiliang Wu
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xueping Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuan Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
14
|
Hou Z, Wang T, Wang L, Wang J, Zhang Y, Zhou Q, Zhang Z, Li P, Huang W. Skin-adhesive and self-healing diagnostic wound dressings for diabetic wound healing recording and electrophysiological signal monitoring. MATERIALS HORIZONS 2024; 11:1997-2009. [PMID: 38362709 DOI: 10.1039/d3mh02064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Performing efficient wound management is essential for infected diabetic wounds due to the complex pathology. Flexible electronics have been recognized as one of the promising solutions for wound management. Herein, a kind of skin-adhesive and self-healing flexible bioelectronic was developed, which could be employed as a diagnostic wound dressing to record diabetic wound healing and monitor electrophysiological signals of the patients. The flexible substrate of diagnostic wound dressings showed excellent tissue adhesive (to various substrates including biological samples), self-healing (fracture strength restores by 96%), and intrinsic antibacterial properties (antibacterial ratio >96% against multidrug-resistant bacteria). The diagnostic wound dressings could record the glucose level (1-30 mM), pH values (4-7), and body temperature (18.8-40.0 °C) around the infected diabetic wounds. Besides, the dressings could help optimize treatment strategies based on electrophysiological signals of patients monitored in real-time. This study contributes to developing flexible bioelectronics for the diagnosis and management of diabetic wounds.
Collapse
Affiliation(s)
- Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Lei Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
| | - Yong Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Qian Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China.
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
15
|
Hia EM, Jang SR, Maharjan B, Park J, Park CH. Cu-MSNs and ZnO nanoparticles incorporated poly(ethylene glycol) diacrylate/sodium alginate double network hydrogel for simultaneous enhancement of osteogenic differentiation. Colloids Surf B Biointerfaces 2024; 236:113804. [PMID: 38428209 DOI: 10.1016/j.colsurfb.2024.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
In this study, a double network (DN) hydrogel was synthesized using poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA), incorporating copper-doped mesoporous silica nanospheres (Cu-MSNs) and zinc oxide nanoparticles (ZnO NPs). The blending of PEGDA and SA (PS) facilitates the double network and improves the less porous microstructure of pure PEGDA hydrogel. Furthermore, the incorporation of ZnO NPs and Cu-MSNs into the hydrogel network (PS@ZnO/Cu-MSNs) improved the mechanical properties of the hydrogel (Compressive strength = ⁓153 kPa and Young's modulus = ⁓ 1.66 kPa) when compared to PS hydrogel alone (Compressive strength = ⁓ 103 kPa and Young's modulus = ⁓ 0.95 kPa). In addition, the PS@ZnO/Cu-MSNs composite hydrogel showed antibacterial activities against Staphylococcus aureus and Escherichia coli. Importantly, the PS@ZnO/Cu-MSNs hydrogel demonstrated excellent biocompatibility, enhanced MC3T3-E1 cell adhesion, proliferation, and significant early-stage osteoblastic differentiation, as evidenced by increased alkaline phosphatase (ALP), and improved calcium mineralization, as evidenced by increased alizarin red staining (ARS) activities. These findings point to the possible use of the PS@ZnO/Cu-MSNs composite hydrogel in bone tissue regeneration.
Collapse
Affiliation(s)
- Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Jeesoo Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea.
| |
Collapse
|
16
|
Liu L, Fan X, Lu Q, Wang P, Wang X, Han Y, Wang R, Zhang C, Han S, Tsuboi T, Dai H, Yeow J, Geng H. Antimicrobial research of carbohydrate polymer- and protein-based hydrogels as reservoirs for the generation of reactive oxygen species: A review. Int J Biol Macromol 2024; 260:129251. [PMID: 38211908 DOI: 10.1016/j.ijbiomac.2024.129251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Reactive oxygen species (ROS) play an important role in biological milieu. Recently, the rapid growth in our understanding of ROS and their promise in antibacterial applications has generated tremendous interest in the combination of ROS generators with bulk hydrogels. Hydrogels represent promising supporters for ROS generators and can locally confine the nanoscale distribution of ROS generators whilst also promoting cellular integration via biomaterial-cell interactions. This review highlights recent efforts and progress in developing hydrogels derived from biological macromolecules with embedded ROS generators with a focus on antimicrobial applications. Initially, an overview of passive and active antibacterial hydrogels is provided to show the significance of proper hydrogel selection and design. These are followed by an in-depth discussion of the various approaches for ROS generation in hydrogels. The structural engineering and fabrication of ROS-laden hydrogels are given with a focus on their biomedical applications in therapeutics and diagnosis. Additionally, we discuss how a compromise needs to be sought between ROS generation and removal for maximizing the efficacy of therapeutic treatment. Finally, the current challenges and potential routes toward commercialization in this rapidly evolving field are discussed, focusing on the potential translation of laboratory research outcomes to real-world clinical outcomes.
Collapse
Affiliation(s)
- Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Pengxu Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Yuxing Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Runming Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Canyang Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Tatsuhisa Tsuboi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW 2052, Australia.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
17
|
Hia EM, Jang SR, Maharjan B, Park J, Park CH, Kim CS. Construction of a PEGDA/chitosan hydrogel incorporating mineralized copper-doped mesoporous silica nanospheres for accelerated bone regeneration. Int J Biol Macromol 2024; 262:130218. [PMID: 38367780 DOI: 10.1016/j.ijbiomac.2024.130218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Hydrogels, integrating diverse biocompatible materials, have emerged as promising candidates for bone repair applications. This study presents a double network hydrogel designed for bone tissue engineering, combining poly(ethylene glycol) diacrylate (PEGDA) and chitosan (CS) crosslinked through UV polymerization and ionic crosslinking. Concurrently, copper-doped mesoporous silica nanospheres (Cu-MSNs) were synthesized using a one-pot method. Cu-MSNs underwent additional modification through in-situ biomineralization, resulting in the formation of an apatite layer. Polydopamine was employed to facilitate the deposition of Calcium (Ca) and Phosphate (P) ions on the surface of Cu-MSNs (Cu-MSNs/PDA@CaP). Composite hydrogels were created by integrating varied concentrations of Cu-MSNs/PDA@CaP (25, 50, 100, 150, 200 μg/mL). Characterization unveiled distinctive interconnected porous structures within the composite hydrogel, showcasing a notable 169.6 % enhancement in compressive stress (elevating from 89.01 to 240.19 kPa) compared to pure PEGDA. In vitro biocompatibility experiments illustrated that the composite hydrogel maintained elevated cell viability (up to 106.6 %) and facilitated rapid cell proliferation over 7 days. The hydrogel demonstrated a substantial 57.58 % rise in ALP expression and a surprising 235.27 % increase in ARS staining. Moreover, it significantly enhanced the expression of crucial osteogenic genes, such as run-related transcription factors 2 (RUNX2), collagen 1a1 (Col1a1), and secreted phosphoprotein 1 (Spp1), establishing it as a promising scaffold for bone regeneration. This study shows how Cu-MSNs/PDA@CaP were successfully integrated into a double network hydrogel, resulting in a composite material with good biological responses. Due to its improved characteristics, this composite hydrogel holds the potential for advancing bone regeneration procedures.
Collapse
Affiliation(s)
- Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jeesoo Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
18
|
Wang W, Yuan Z, Li T, Wang Y, Zhang K, Wu J, Zhang S, Yuan F, Dong W. Rapid Preparation of Highly Stretchable and Fast Self-Repairing Antibacterial Hydrogels for Promoting Hemostasis and Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:394-405. [PMID: 38150008 DOI: 10.1021/acsabm.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Hydrogel dressings have emerged as a vital resource in wound management, offering several advantages over conventional wound dressing materials. Their inherent biocompatibility, ability to replicate the native extracellular matrix, and capacity to provide an ideal environment for cell survival make them particularly valuable. Nevertheless, the mechanical properties of many hydrogel dressings are an area that warrants improvement, as it currently constrains their application range. This limitation is especially evident when skin wounds are addressed in highly active or easily scratched areas. In this study, we present the development of a highly stretchable self-repairing hydrogel by cross-linking poly(vinyl alcohol) (PVA) through dynamic boron ester bonds, coupled with the hydrogen bonding of carboxymethyl cellulose sodium (CMC) via an efficient one-pot method without adding any catalyst. This innovative PVA/CMC hydrogel exhibited remarkable antibacterial properties achieved through the incorporation of bergamot oil, which was dispersed in a β-cyclodextrin solution. The hydrogel's elongation at the point of rupture reached an impressive 1910%, and it was capable of rapid self-healing in just 3 min upon bonding. Additionally, the hydrogel demonstrated excellent hemostatic properties, effectively mitigating blood loss and exudation. In vivo wound models have shown that PVA/CMC significantly expedites wound healing by reducing bacterial infections, inflammatory responses, and blood loss and by promoting collagen deposition. In summary, this research provides crucial insights into its potential as an advanced wound dressing material, particularly well-suited for addressing wounds in places with frequent activities or easy scratches.
Collapse
Affiliation(s)
- Wei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengdong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kaiwen Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Junjie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Shiru Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fenglai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Huang Y, Chen Y, Cheng G, Li W, Zhang H, Yu C, Fang J, Zuo J, Li Y, Xu L, Sun D. A TA/Cu 2+ Nanoparticle Enhanced Carboxymethyl Chitosan-Based Hydrogel Dressing with Antioxidant Properties and Promoting Wound Healing. Int J Nanomedicine 2024; 19:231-245. [PMID: 38223881 PMCID: PMC10788072 DOI: 10.2147/ijn.s445844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background As the first line of immune defense and the largest organ of body, skin is vulnerable to damage caused by surgery, burns, collisions and other factors. Wound healing in the skin is a long and complex physiological process that is influenced by a number of different factors. Proper wound care can greatly improve the speed of wound healing and reduce the generation of scars. However, traditional wound dressings (bandages, gauze, etc.) often used in clinical practice have a single function, lack of active ingredients and are limited in use. Hydrogels with three-dimensional network structure are a potential biomedical material because of their physical and chemical environment similar to extracellular matrix. In particular, hydrogel dressings with low price, good biocompatibility, degradability, antibacterial and angiogenic activity are favored by the public. Methods Here, a carboxymethyl chitosan-based hydrogel dressing (CMCS-TA/Cu2+) reinforced by copper ion crosslinked tannic acid (TA/Cu2+) nanoparticles was developed. This study investigated the physical and chemical characteristics, cytotoxicity, and angiogenesis of TA/Cu2+ nanoparticles and CMCS-TA/Cu2+ hydrogels. Furthermore, a full-thickness skin defect wound model was employed to assess the in vivo wound healing capacity of hydrogel dressings. Results The introduction of TA/Cu2+ nanoparticles not only could increase the mechanical properties of the hydrogel but also continuously releases copper ions to promote cell migration (the cell migration could reach 92% at 48 h) and tubule formation, remove free radicals and promote wound healing (repair rate could reach 90% at 9 days). Conclusion Experiments have proved that CMCS-TA/Cu2+ hydrogel has good cytocompatibility, antioxidant and wound healing ability, providing an advantageous solution for skin repair.
Collapse
Affiliation(s)
- Yongjun Huang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Yong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, People’s Hospital, Qingyuan, 511518, People’s Republic of China
| | - Guoyun Cheng
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, 510500, People’s Republic of China
| | - Hongan Zhang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
- The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510260, People’s Republic of China
| | - Chaoqun Yu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jia Fang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jieyi Zuo
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Ying Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Lei Xu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Dawei Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| |
Collapse
|
20
|
Li J, Su J, Liang J, Zhang K, Xie M, Cai B, Li J. A hyaluronic acid / chitosan composite functionalized hydrogel based on enzyme-catalyzed and Schiff base reaction for promoting wound healing. Int J Biol Macromol 2024; 255:128284. [PMID: 37992934 DOI: 10.1016/j.ijbiomac.2023.128284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The healing of full-thickness skin defect has been a clinical challenge. Hydrogels with multiple functions inspired by extracellular matrix are expected to be used as wound dressing. In this paper, dopamine-grafted oxidized hyaluronic acid was blended with quaternary ammonium chitosan to form a composite functionalized hydrogel by enzyme-catalyzed cross-linking and Schiff base reaction. The hydrogel has convenient preparation, good biocompatibility, antibacterial and antioxidant, high adhesion and self-healing properties. The results in vivo show that the hydrogel can effectively close the wound and accelerate the speed of wound healing by up-regulating the expression of angiogenic protein and promoting the distribution of collagen deposition more uniform and regular. It is expected that this composite functionalized hydrogel dressing has great potential in wound regeneration.
Collapse
Affiliation(s)
- Jiankang Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
21
|
Liu F, Wang L, Zhai X, Ji S, Ye J, Zhu Z, Teng C, Dong W, Wei W. A multi-functional double cross-linked chitosan hydrogel with tunable mechanical and antibacterial properties for skin wound dressing. Carbohydr Polym 2023; 322:121344. [PMID: 37839832 DOI: 10.1016/j.carbpol.2023.121344] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
Chitosan hydrogels with essential antibacterial properties and biocompatibility have great potential in tissue engineering and regeneration medicine. However, pure chitosan hydrogel could be limited by insufficient mechanical properties. In this work, we designed a multi-functional chitosan hydrogel based on the combination of chitosan methacrylate (CTSMA) and sulfhydrated chitosan (CTSSH), which is cross-linked simultaneously by free-radical polymerization reaction and Thiol-ene reaction. The CTSMA/CTSSH (CMS) hydrogels displayed superior tissue adhesive and mechanical properties when compared to pure CTSMA hydrogel. Additionally, the resulting hydrogels exhibited potent antimicrobial effects against both E. coli and S. aureus. Besides, the CMS hydrogels exhibited good biocompatibility as demonstrated by cytotoxicity and cell proliferation experiments using fibroblasts cells (L929) and adipose-derived stem cells (ADSCs). In vivo experiment, the repairing effect of hydrogels on full-thickness skin defect model in rats was studied. Histological and immunohistochemical staining results showed that CMS hydrogels promoted angiogenesis, dermal repair and epidermal regeneration. Overall, the study highlights the potential of the CMS hydrogels as a promising biomaterial in wound healing applications.
Collapse
Affiliation(s)
- Fengling Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Lu Wang
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Xinrang Zhai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Shunxian Ji
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Jingjia Ye
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhiqiang Zhu
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Chong Teng
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Wei Wei
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
22
|
Nakipoglu M, Tezcaner A, Contag CH, Annabi N, Ashammakhi N. Bioadhesives with Antimicrobial Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300840. [PMID: 37269168 DOI: 10.1002/adma.202300840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Indexed: 06/04/2023]
Abstract
Bioadhesives with antimicrobial properties enable easier and safer treatment of wounds as compared to the traditional methods such as suturing and stapling. Composed of natural or synthetic polymers, these bioadhesives seal wounds and facilitate healing while preventing infections through the activity of locally released antimicrobial drugs, nanocomponents, or inherently antimicrobial polers. Although many different materials and strategies are employed to develop antimicrobial bioadhesives, the design of these biomaterials necessitates a prudent approach as achieving all the required properties including optimal adhesive and cohesive properties, biocompatibility, and antimicrobial activity can be challenging. Designing antimicrobial bioadhesives with tunable physical, chemical, and biological properties will shed light on the path for future advancement of bioadhesives with antimicrobial properties. In this review, the requirements and commonly used strategies for developing bioadhesives with antimicrobial properties are discussed. In particular, different methods for their synthesis and their experimental and clinical applications on a variety of organs are reviewed. Advances in the design of bioadhesives with antimicrobial properties will pave the way for a better management of wounds to increase positive clinical outcomes.
Collapse
Affiliation(s)
- Mustafa Nakipoglu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Department of Molecular Biology and Genetics, Faculty of Sciences, Bartin University, Bartin, 74000, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
Dutta SD, Patil TV, Ganguly K, Randhawa A, Acharya R, Moniruzzaman M, Lim KT. Trackable and highly fluorescent nanocellulose-based printable bio-resins for image-guided tissue regeneration. Carbohydr Polym 2023; 320:121232. [PMID: 37659796 DOI: 10.1016/j.carbpol.2023.121232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 09/04/2023]
Abstract
Dynamic tracking of cell migration during tissue regeneration remains challenging owing to imaging techniques that require sophisticated devices, are often lethal to healthy tissues. Herein, we developed a 3D printable non-invasive polymeric hydrogel based on 2,2,6,6-(tetramethylpiperidin-1-yl) oxyl (TEMPO)-oxidized nanocellulose (T-CNCs) and carbon dots (CDs) for the dynamic tracking of cells. The as-prepared T-CNC@CDs were used to fabricate a liquid bio-resin containing gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (GPCD) for digital light processing (DLP) bioprinting. The shear-thinning properties of the GPCD bio-resin were further improved by the addition of T-CNC@CDs, allowing high-resolution 3D printing and bioprinting of human cells with higher cytocompatibility (viability ∼95 %). The elastic modulus of the printed GPCD hydrogel was found to be ∼13 ± 4.2 kPa, which is ideal for soft tissue engineering. The as-fabricated hydrogel scaffold exhibited tunable structural color property owing to the addition of T-CNC@CDs. Owing to the unique fluorescent property of T-CNC@CDs, the human skin cells could be tracked within the GPCD hydrogel up to 30 days post-printing. Therefore, we anticipate that GPCD bio-resin can be used for 3D bioprinting with high structural stability, dynamic tractability, and tunable mechanical stiffness for image-guided tissue regeneration.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institue of Forest Science, Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institue of Forest Science, Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
24
|
Gu R, Zhou H, Zhang Z, Lv Y, Pan Y, Li Q, Shi C, Wang Y, Wei L. Research progress related to thermosensitive hydrogel dressings in wound healing: a review. NANOSCALE ADVANCES 2023; 5:6017-6037. [PMID: 37941954 PMCID: PMC10629053 DOI: 10.1039/d3na00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 11/10/2023]
Abstract
Wound healing is a dynamic and complex process in which the microenvironment at the wound site plays an important role. As a common material for wound healing, dressings accelerate wound healing and prevent external wound infections. Hydrogels have become a hot topic in wound-dressing research because of their high water content, good biocompatibility, and adjustable physical and chemical properties. Intelligent hydrogel dressings have attracted considerable attention because of their excellent environmental responsiveness. As smart polymer hydrogels, thermosensitive hydrogels can respond to small temperature changes in the environment, and their special properties make them superior to other hydrogels. This review mainly focuses on the research progress in thermosensitive intelligent hydrogel dressings for wound healing. Polymers suitable for hydrogel formation and the appropriate molecular design of the hydrogel network to achieve thermosensitive hydrogel properties are discussed, followed by the application of thermosensitive hydrogels as wound dressings. We also discuss the future perspectives of thermosensitive hydrogels as wound dressings and provide systematic theoretical support for wound healing.
Collapse
Affiliation(s)
- Ruting Gu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Haiqing Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Zirui Zhang
- Emergency Departments, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yun Lv
- School of Nursing, Qingdao University Qingdao 266000 China
| | - Yueshuai Pan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Qianqian Li
- Ophthalmology Department, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Changfang Shi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Lili Wei
- Office of the Dean, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| |
Collapse
|
25
|
de Castro R, Kandhola G, Kim JW, Moore QC, Thompson AK. Fabrication of Chitosan/PEGDA Bionanocomposites for Enhanced Drug Encapsulation and Release Efficiency. Mol Pharm 2023; 20:5532-5542. [PMID: 37774674 DOI: 10.1021/acs.molpharmaceut.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Drug delivery systems (DDS) have evolved in the last decades with the development of hydrogels and particles. However, challenges such as high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be significant hurdles faced by such DDSs. Particles and hydrogels can be specifically designed for targeted DDSs to mitigate some of these problems. This study developed chitosan (Cs) particles (Ps) and composite films using poly(ethylene glycol) diacrylate (PEGDA) as a copolymer to encapsulate gentamicin (GtS) for drug delivery. We demonstrated that lysozyme degrades the chitosan β-1,4 glycosidic bonds to release GtS. PEGDA increased drug encapsulation efficiency by shielding the repelling forces of like charges between Cs and GtS. The data show that PEGDA does not hinder enzymatic degradation while increasing drug encapsulation efficiency and producing more homogeneous particles. Additionally, we utilized Michael's reaction to cross-link Cs, CsPs, and PEGDA to produce a film designed for drug delivery. The film is an anchor for CsPs to prevent premature drug release. The cross-linking of Cs and PEGDA does not affect lysozyme activity, and CsPs could successfully release GtS without affecting GtS activity.
Collapse
Affiliation(s)
- Raquel de Castro
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Gurshagan Kandhola
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science & Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Quincy C Moore
- Department of Biology, Prairie View A&M University, Prairie View, Texas 77446, United States
| | - Audie K Thompson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, Mississippi 39180, United States
| |
Collapse
|
26
|
Amaral KR, Silva AS, Santos LF, Castanheira EJ, Mendes MC, Costa DCS, Rodrigues JMM, Marto J, Mano JF. Biomimetic Adhesive Micropatterned Hydrogel Patches for Drug Release. Adv Healthc Mater 2023; 12:e2301513. [PMID: 37515450 DOI: 10.1002/adhm.202301513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The optimized physical adhesion between bees' leg hairs and pollen grains-whereby the latter's diameter aligns with the spacing between the hairs-has previously inspired the development of a biomimetic drug dressing. Combining this optimized process with the improved natural mussels' adhesion in wet environments in a dual biomimetic process, it is herein proposed the fabrication of a natural-derived micropatterned hydrogel patch of methacrylated laminarin (LAM-MET), with enriched drug content and improved adhesiveness, suitable for applications like wound healing. Enhanced adhesion is accomplished by modifying LAM-MET with hydroxypyridinone groups, following the patch microfabrication by soft lithography and UV/vis-irradiation, resulting in a membrane with micropillars with a high aspect ratio. Following the biomimetics rational, a drug patch is engineered by combining the microfabricated dressing with drug particles milled to fit the spaces between pillars. Controlled drug release is achieved, together with inherent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa, and enhanced biocompatibility using the bare micropatterned patches. This new class of biomimetic dressings overcomes the challenges of current patches, like poor mechanical properties and biocompatibility, limited adhesiveness and drug dosage, and lack of prolonged antimicrobial activity, opening new insights for the development of high drug-loaded dressings with improved patient compliance.
Collapse
Affiliation(s)
- Katia R Amaral
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A Sofia Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lúcia F Santos
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Edgar J Castanheira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria C Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Dora C S Costa
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João M M Rodrigues
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, 1649-003, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
27
|
Kang D, Wang W, Li Y, Ma Y, Huang Y, Wang J. Biological Macromolecule Hydrogel Based on Recombinant Type I Collagen/Chitosan Scaffold to Accelerate Full-Thickness Healing of Skin Wounds. Polymers (Basel) 2023; 15:3919. [PMID: 37835967 PMCID: PMC10575414 DOI: 10.3390/polym15193919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The development of biological macromolecule hydrogel dressings with fatigue resistance, sufficient mechanical strength, and versatility in clinical treatment is critical for accelerating full-thickness healing of skin wounds. Therefore, in this study, multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal-polyphenol structure were fabricated to accelerate wound healing. The resulting biological macromolecule hydrogel possesses sufficient mechanical strength, fatigue resistance, and healing properties, including antibacterial, antioxygenic, self-healing, vascularization, hemostatic, and adhesive abilities. Chitosan and recombinant type I collagen formed the scaffold network, which was the first covalent crosslinking network of the hydrogel. The second physical crosslinking network comprised the coordination of a metal-polyphenol structure, i.e., Cu2+ with the catechol group of dopamine methacrylamide (DMA) and stacking of DMA benzene rings. Double-crosslinked networks are interspersed and intertwined in the hydrogel to reduce the mechanical strength and increase its fatigue resistance, making it more suitable for clinical applications. Moreover, the biological macromolecule hydrogel can continuously release Cu2+, which provides strong antibacterial and vascularization properties. An in vivo full-thickness skin defect model confirmed that multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal-polyphenol structure can facilitate the formation of granulation tissue and collagen deposition for a short period to promote wound healing. This study highlights that this biological macromolecule hydrogel is a promising acute wound-healing dressing for biomedical applications.
Collapse
Affiliation(s)
- Duo Kang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China;
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
28
|
Feng Y, Qin S, Li H, Yang Y, Zheng Y, Liu H, Yap WY, Zhou X, Wen J. Composite Hydrogel Dressings with Enhanced Mechanical Properties and Anti-Inflammatory Ability for Effectively Promoting Wound Repair. Int J Nanomedicine 2023; 18:5183-5195. [PMID: 37720596 PMCID: PMC10503508 DOI: 10.2147/ijn.s411478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023] Open
Abstract
Background Hydrogel dressings have been used as a crucial method to keep the wound wet and hasten the healing process. Due to safety concerns regarding the gel components, low mechanical adhesiveness, and unsatisfactory anti-inflammatory capacity qualities for practical uses in vivo, leading to the clinical translation of wound dressings is still difficult. Methods A type of composite hydrogel (acrylamide/polyethylene glycol diacrylate/tannic acid, ie, AM/PEGDA/TA) by double bond crosslinking, Schiff base, and hydrogen bond interaction is proposed. The mechanical characteristics, adhesiveness, and biocompatibility of the hydrogel system were all thoroughly examined. Additionally, a full-thickness cutaneous wound model was employed to assess the in vivo wound healing capacity of resulting hydrogel dressings. Results Benefiting the mechanism of multiple crosslinking, the designed composite hydrogels showed significant mechanical strength, outstanding adhesive capability, and good cytocompatibility. Moreover, the hydrogel system also had excellent shape adaptability, and they can be perfectly integrated into the irregularly shaped wounds through a fast in situ forming approach. Additional in vivo tests supported the findings that the full-thickness wound treated with the composite hydrogels showed quicker epithelial tissue regeneration, fewer inflammatory cells, more collagen deposition, and greater levels of platelet endothelial cell adhesion molecule (CD31) expression. Conclusion These above results might offer a practical and affordable product or method of skin wound therapy in a medical context.
Collapse
Affiliation(s)
- Yuqin Feng
- Department of Dermatology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Si Qin
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Huarun Li
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Yemei Yang
- Department of Dermatology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People’s Republic of China
| | - Yushi Zheng
- Department of Dermatology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People’s Republic of China
| | - Hongsheng Liu
- Guangdong Huace Life Medicine Research Center, Guangzhou, 511450, People’s Republic of China
| | - Wei Yin Yap
- Department of Dermatology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People’s Republic of China
- School of International Education of Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Xianyi Zhou
- Department of Dermatology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People’s Republic of China
| | - Ju Wen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, People’s Republic of China
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| |
Collapse
|
29
|
Wang X, Song R, Johnson M, A S, Shen P, Zhang N, Lara-Sáez I, Xu Q, Wang W. Chitosan-Based Hydrogels for Infected Wound Treatment. Macromol Biosci 2023; 23:e2300094. [PMID: 37158294 DOI: 10.1002/mabi.202300094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Wound infections slow down the healing process and lead to complications such as septicemia, osteomyelitis, and even death. Although traditional methods relying on antibiotics are effective in controlling infection, they have led to the emergence of antibiotic-resistant bacteria. Hydrogels with antimicrobial function become a viable option for reducing bacterial colonization and infection while also accelerating healing processes. Chitosan is extensively developed as antibacterial wound dressings due to its unique biochemical properties and inherent antibacterial activity. In this review, the recent research progress of chitosan-based hydrogels for infected wound treatment, including the fabrication methods, antibacterial mechanisms, antibacterial performance, wound healing efficacy, etc., is summarized. A concise assessment of current limitations and future trends is presented.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 KW52, Ireland
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
30
|
Liu W, Zhai X, Zhao X, Cai Y, Zhang X, Xu K, Weng J, Li J, Chen X. Multifunctional Double-Layer and Dual Drug-Loaded Microneedle Patch Promotes Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2300297. [PMID: 37114597 DOI: 10.1002/adhm.202300297] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Chronic nonhealing diabetic wounds are a serious complication of diabetes, with a high morbidity rate that can cause disability or death. The long period of inflammation and dysfunctional angiogenesis are the main reasons for wound-healing difficulty in diabetes. In this study, a multifunctional double-layer microneedle (DMN) is constructed to control infection and promote angiogenesis, meeting the multiple demands of the healing process of a diabetic wound. The double-layer microneedle is consisted in a hyaluronic acid substrate and a mixture of carboxymethyl chitosan and gelatin as the tip. The antibacterial drug tetracycline hydrochloride (TH) is loaded into the substrate of the microneedle to achieve rapid sterilization and promote resistance to external bacterial infections. The microneedle tip loaded with recombinant human epidermal growth factor (rh-EGF) is inserted into the skin, in response to gelatinase produced by resident microbe and disassociate to achieve the enzymatic response release. The double-layer drug-loaded microneedles (DMN@TH/rh-EGF) have antibacterial and antioxidant effects, and promote cell migration and angiogenesis in vitro. In an in vivo diabetic wound model, using rats, the DMN@TH/rh-EGF patch is able to inhibit inflammation, promote angiogenesis, collagen deposition, and tissue regeneration during the wound healing process, promoting its healing.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xingxing Zhai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xue Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yongjie Cai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xinmei Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
31
|
Tang Y, Xu H, Wang X, Dong S, Guo L, Zhang S, Yang X, Liu C, Jiang X, Kan M, Wu S, Zhang J, Xu C. Advances in preparation and application of antibacterial hydrogels. J Nanobiotechnology 2023; 21:300. [PMID: 37633883 PMCID: PMC10463510 DOI: 10.1186/s12951-023-02025-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023] Open
Abstract
Bacterial infections, especially those caused by drug-resistant bacteria, have seriously threatened human life and health. There is urgent to develop new antibacterial agents to reduce the problem of antibiotics. Biomedical materials with good antimicrobial properties have been widely used in antibacterial applications. Among them, hydrogels have become the focus of research in the field of biomedical materials due to their unique three-dimensional network structure, high hydrophilicity, and good biocompatibility. In this review, the latest research progresses about hydrogels in recent years were summarized, mainly including the preparation methods of hydrogels and their antibacterial applications. According to their different antibacterial mechanisms, several representative antibacterial hydrogels were introduced, such as antibiotics loaded hydrogels, antibiotic-free hydrogels including metal-based hydrogels, antibacterial peptide and antibacterial polymers, stimuli-responsive smart hydrogels, and light-mediated hydrogels. In addition, we also discussed the applications and challenges of antibacterial hydrogels in biomedicine, which are expected to provide new directions and ideas for the application of hydrogels in clinical antibacterial therapy.
Collapse
Affiliation(s)
- Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021 Jilin China
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shichen Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021 Jilin China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Jizhou Zhang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
32
|
Zhang Y, Zhu Y, Ma P, Wu H, Xiao D, Zhang Y, Sui X, Zhang L, Dong A. Functional carbohydrate-based hydrogels for diabetic wound therapy. Carbohydr Polym 2023; 312:120823. [PMID: 37059550 DOI: 10.1016/j.carbpol.2023.120823] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Diabetes wound are grave and universal complications of diabetes. Owing to poor treatment course, high amputation rate and mortality, diabetes wound treatment and care have become a global challenge. Wound dressings have received much attention due to their ease of use, good therapeutic effect, and low costs. Among them, carbohydrate-based hydrogels with excellent biocompatibility are considered to be the best candidates for wound dressings. Based on this, we first systematically summarized the problems and healing mechanism of diabetes wounds. Next, common treatment methods and wound dressings were discussed, and the application of various carbohydrate-based hydrogels and their corresponding functionalization (antibacterial, antioxidant, autoxidation and bioactive substance delivery) in the treatment of diabetes wounds were emphatically introduced. Ultimately, the future development of carbohydrate-based hydrogel dressings was proposed. This review aims to provide a deeper understanding of wound treatment and theoretical support for the design of hydrogel dressings.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
33
|
Moreno-Castellanos N, Cuartas-Gómez E, Vargas-Ceballos O. Functionalized Collagen/Poly(ethylene glycol) Diacrylate Interpenetrating Network Hydrogel Enhances Beta Pancreatic Cell Sustenance. Gels 2023; 9:496. [PMID: 37367166 PMCID: PMC10298015 DOI: 10.3390/gels9060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Three-dimensional matrices are a new strategy used to tackle type I diabetes, a chronic metabolic disease characterized by the destruction of beta pancreatic cells. Type I collagen is an abundant extracellular matrix (ECM), a component that has been used to support cell growth. However, pure collagen possesses some difficulties, including a low stiffness and strength and a high susceptibility to cell-mediated contraction. Therefore, we developed a collagen hydrogel with a poly (ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN), functionalized with vascular endothelial growth factor (VEGF) to mimic the pancreatic environment for the sustenance of beta pancreatic cells. We analyzed the physicochemical characteristics of the hydrogels and found that they were successfully synthesized. The mechanical behavior of the hydrogels improved with the addition of VEGF, and the swelling degree and the degradation were stable over time. In addition, it was found that 5 ng/mL VEGF-functionalized collagen/PEGDA IPN hydrogels sustained and enhanced the viability, proliferation, respiratory capacity, and functionality of beta pancreatic cells. Hence, this is a potential candidate for future preclinical evaluation, which may be favorable for diabetes treatment.
Collapse
Affiliation(s)
- Natalia Moreno-Castellanos
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Elías Cuartas-Gómez
- CICTA Research Group, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Oscar Vargas-Ceballos
- GIMAT Research Group, Escuela de Ingeniería Metalúrgica y Ciencia de Materiales, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia;
| |
Collapse
|
34
|
Li X, Wan L, Zhu T, Li R, Zhang M, Lu H. Biomimetic Liquid Crystal-Modified Mesoporous Silica-Based Composite Hydrogel for Soft Tissue Repair. J Funct Biomater 2023; 14:316. [PMID: 37367280 DOI: 10.3390/jfb14060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The reconstruction of blood vessels plays a critical role in the tissue regeneration process. However, existing wound dressings in tissue engineering face challenges due to inadequate revascularization induction and a lack of vascular structure. In this study, we report the modification of mesoporous silica nanospheres (MSNs) with liquid crystal (LC) to enhance bioactivity and biocompatibility in vitro. This LC modification facilitated crucial cellular processes such as the proliferation, migration, spreading, and expression of angiogenesis-related genes and proteins in human umbilical vein endothelial cells (HUVECs). Furthermore, we incorporated LC-modified MSN within a hydrogel matrix to create a multifunctional dressing that combines the biological benefits of LC-MSN with the mechanical advantages of a hydrogel. Upon application to full-thickness wounds, these composite hydrogels exhibited accelerated healing, evidenced by enhanced granulation tissue formation, increased collagen deposition, and improved vascular development. Our findings suggest that the LC-MSN hydrogel formulation holds significant promise for the repair and regeneration of soft tissues.
Collapse
Affiliation(s)
- Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| |
Collapse
|
35
|
Ren Y, Huang T, Zhao X, Wang K, Zhao L, Tao A, Jiang J, Yuan M, Wang J, Tu Q. Double network hydrogel based on curdlan and flaxseed gum with photothermal antibacterial properties for accelerating infectious wound healing. Int J Biol Macromol 2023; 242:124715. [PMID: 37148939 DOI: 10.1016/j.ijbiomac.2023.124715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
The healing of infected wounds has always been a clinical challenge. With the increasing threat of drug resistance due to antibiotic overuse, it is imperative to improve antibacterial wound dressings. In this study, we designed a double network (DN) hydrogel via a "one pot method" with antibacterial activity, and natural polysaccharides with the potential to promote skin wound healing were used. That is, a DN hydrogel matrix was formed by the hydrogen bond crosslinking of curdlan and the covalent crosslinking of flaxseed gum under the action of borax. We added ε-polylysine (ε-PL) as a bactericide. Tannic acid/ferric ion (TA/Fe3+) complex was also introduced into the hydrogel network as a photothermal agent to induce photothermal antibacterial properties. The hydrogel had fast self-healing, tissue adhesion, mechanical stability, good cell compatibility and photothermal antibacterial activity. In vitro studies of hydrogel showed its ability to inhibit S. aureus and E. coli. In vivo experiments also demonstrated the significant healing effect of hydrogel when used to treat wounds infected by S. aureus by promoting collagen deposition and accelerating the formation of skin appendage. This work provides a new design for the preparation of safe antibacterial hydrogel wound dressings and demonstrates great potential for promoting wound healing of bacterial infections.
Collapse
Affiliation(s)
- Yu Ren
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyao Zhao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Keke Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhao
- The Hospital of NWAFU, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anju Tao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maosen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
36
|
Wang Q, Wang X, Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023; 9:gels9050373. [PMID: 37232967 DOI: 10.3390/gels9050373] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan hydrogels have a wide range of applications in tissue engineering scaffolds, mainly due to the advantages of their chemical and physical properties. This review focuses on the application of chitosan hydrogels in tissue engineering scaffolds for vascular regeneration. We have mainly introduced these following aspects: advantages and progress of chitosan hydrogels in vascular regeneration hydrogels and the modification of chitosan hydrogels to improve the application in vascular regeneration. Finally, this paper discusses the prospects of chitosan hydrogels for vascular regeneration.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
37
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
38
|
Chen X, Zhang Y, Yu W, Zhang W, Tang H, Yuan WE. In situ forming ROS-scavenging hybrid hydrogel loaded with polydopamine-modified fullerene nanocomposites for promoting skin wound healing. J Nanobiotechnology 2023; 21:129. [PMID: 37055835 PMCID: PMC10099971 DOI: 10.1186/s12951-023-01879-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Excessive oxidative stress at the wound sites always leads to a prolonged healing and even causes chronic inflammatory wounds. Therefore, antioxidative dressings with multiple features are desired to improve wound healing performance. Herein, we fabricated a ROS-scavenging hybrid hydrogel by incorporating mussel-inspired fullerene nanocomposites (C60@PDA) into gelatin methacryloyl (GelMA) hydrogel. RESULTS The developed C60@PDA/GelMA hydrogel showed a sustainable free radical scavenging ability, and eliminated ROS to protect cells against external oxidative stress damage. Besides, the hydrogel presented favorable cytocompatibility, hemocompatibility, and antibacterial ability in vitro. Furthermore, in a mouse full-thickness wound defect model, the in situ forming hybrid hydrogel accelerated wound closure by 38.5% and 42.9% on day 3 and day 7 over the control. Histological results demonstrated that hybrid hydrogels effectively enhanced wound healing on re-epithelialization, collagen deposition and angiogenesis. CONCLUSION Collectively, the C60@PDA/GelMA hydrogel could be a promising dressing for promoting cutaneous wound repair.
Collapse
Affiliation(s)
- Xuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yihui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenkai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, PR China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
39
|
Lan Z, Kar R, Chwatko M, Shoga E, Cosgriff-Hernandez E. High porosity PEG-based hydrogel foams with self-tuning moisture balance as chronic wound dressings. J Biomed Mater Res A 2023; 111:465-477. [PMID: 36606332 PMCID: PMC11542385 DOI: 10.1002/jbm.a.37498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
A major challenge in chronic wound treatment is maintaining an appropriate wound moisture balance throughout the healing process. Wound dehydration hinders wound healing due to impeded molecule transport and cell migration with associated tissue necrosis. In contrast, wounds that produce excess fluid contain high levels of reactive oxygen species and matrix metalloproteases that impede cell recruitment, extracellular matrix reconstruction, and angiogenesis. Dressings are currently selected based on the relative amount of wound exudate with no universal dressing available that can maintain appropriate wound moisture balance to enhance healing. This work aimed to develop a high porosity poly(ethylene glycol) diacrylate hydrogel foam that can both rapidly remove exudate and provide self-tuning moisture control to prevent wound dehydration. A custom foaming device was used to vary hydrogel foam porosity from 25% to 75% by adjusting the initial air-to-solution volume ratio. Hydrogel foams demonstrated substantial improvements in water uptake volume and rate as compared to bulk hydrogels while maintaining similar hydration benefits with slow dehydration rates. The hydrogel foam with the highest porosity (~75%) demonstrated the greatest water uptake and rate, which outperformed commercial dressing products, Curafoam® and Silvercel®, in water absorption, moisture retention, and exudate management. Investigation of the water vapor transmission rates of each dressing at varied hydration levels was characterized and demonstrated the dynamic moisture-controlling capability of the hydrogel foam dressing. Overall, the self-tuning moisture control of this hydrogel foam dressing holds great promise to improve healing outcomes for both dry and exudative chronic wounds.
Collapse
Affiliation(s)
- Ziyang Lan
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | - Malgorzata Chwatko
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Erik Shoga
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | | |
Collapse
|
40
|
Carpa R, Farkas A, Dobrota C, Butiuc-Keul A. Double-Network Chitosan-Based Hydrogels with Improved Mechanical, Conductive, Antimicrobial, and Antibiofouling Properties. Gels 2023; 9:gels9040278. [PMID: 37102890 PMCID: PMC10137542 DOI: 10.3390/gels9040278] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, the antimicrobial activity of chitosan-based hydrogels has been at the forefront of research in wound healing and the prevention of medical device contamination. Anti-infective therapy is a serious challenge given the increasing prevalence of bacterial resistance to antibiotics as well as their ability to form biofilms. Unfortunately, hydrogel resistance and biocompatibility do not always meet the demands of biomedical applications. As a result, the development of double-network hydrogels could be a solution to these issues. This review discusses the most recent techniques for creating double-network chitosan-based hydrogels with improved structural and functional properties. The applications of these hydrogels are also discussed in terms of tissue recovery after injuries, wound infection prevention, and biofouling of medical devices and surfaces for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina Dobrota
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
41
|
Silver doped-silica nanoparticles reinforced poly (ethylene glycol) diacrylate/hyaluronic acid hydrogel dressings for synergistically accelerating bacterial-infected wound healing. Carbohydr Polym 2023; 304:120450. [PMID: 36641182 DOI: 10.1016/j.carbpol.2022.120450] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Various cutaneous wounds are easily infected with external bacteria, which might result in a chronic wound and ongoing consequences. However, the appropriate development of biomaterials for the controllable delivery of antibacterial silver (Ag) and the simultaneous enhancement of mechanical adhesiveness remains an urgent challenge. Herein, we proposed a double network (DN) hydrogel dressings based on a covalent network of polyethylene glycol diacrylate (PEGDA) and a coordination network between catechol-modified hyaluronic acid (C-HA) and Ag-doped mesoporous silica nanoparticle (AMSN) for promoting the bacterial-infected full-thickness skin wound regeneration. This distinctive dual cross-linked structure of PEGDA/C-HA-AMSN significantly improved physicochemical properties, including gelation time, mechanical performance, and tissue adhesion strength. Importantly, PEGDA/C-HA-AMSN served as a hydrogel dressing that can respond to the acidic environment of bacterial-infected wounds leading to the controllable and optimized delivery of Ag, enabling the durable antibacterial activity accompanied by favorable cytocompatibility and angiogenesis capability. Further in vivo studies validated the higher efficacy of hydrogel dressings in treating wound healing by the synergistic antibacterial, anti-inflammatory, and pro-vascular strategies, meaning the prominent potential of the prepared dressings for overcoming the concerns of wound theranostics.
Collapse
|
42
|
Saeedi M, Moghbeli MR, Vahidi O. Chitosan/glycyrrhizic acid hydrogel: Preparation, characterization, and its potential for controlled release of gallic acid. Int J Biol Macromol 2023; 231:123197. [PMID: 36639089 DOI: 10.1016/j.ijbiomac.2023.123197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In the present work, chitosan (CHT) as a biodegradable polymer was crosslinked using various amounts of glycyrrhizic acid (GLA) as a novel crosslinking agent to prepare biocompatible hydrogels. The prepared hydrogels were used for the controlled release of gallic acid (GA) in transdermal therapy application. FTIR, XRD, and SEM were used to characterize the prepared gels. The results indicated that the carboxylic acid groups of GLA react with the amine groups of the CHT in the presence of activating coupling reagents to form covalent amide linkage between the polymer chains of CHT and construct CHT cross-linked hydrogel (CCH) network structure. The prepared CCH samples were characterized and used for the controlled release of a drug, i.e. (GA). For this purpose, the swelling kinetic, loading and encapsulation efficiency, in vitro drug release, drug release kinetics, cell viability assay, and anti-bacterial activity of the samples were evaluated. The swelling ratio of CCH samples were in the range of 455-37 % depending on the pH of environment. Swelling kinetic results showed an aggregate to the non-linear second-order kinetic model. Drug release results were fitted by kinetic models while the Korsmeyer-Peppas model was fitted better. The CCH samples exhibited high biocompatibility for 5 mg/ml hydrogel concentration. In addition, the CHT and CCH sample without the GA did not show anti-bacterial properties for 1200 and 150 μg/ml concentrations, respectively. The CCH sample containing the GA exhibited enough anti-bacterial activity on the S. aureus bacteria strain at 150 μg/ml concentration. In contrast, the CCH sample containing the GA has a light anti-bacterial effect on the E. coli bacteria strain. The calculated mesh size of hydrogel networks, drug size, and kinetics models revealed that the CCH samples could release GA based on a diffusion mechanism. In conclusion, the designed CCH samples have enough ability for controlled drug release in transdermal applications.
Collapse
Affiliation(s)
- Mostafa Saeedi
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| | - Mohammad Reza Moghbeli
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran.
| | - Omid Vahidi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| |
Collapse
|
43
|
Li X, Sun S, Feng X, Chen Y, Chen S, Ma J, Zhou F. Tannic acid-crosslinked O-carboxymethyl chitosan hydrogels for enhanced antibacterial activity and rapid hemostasis. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:184-199. [PMID: 35951330 DOI: 10.1080/09205063.2022.2112480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial infection and massive blood loss are major challenges for global public health. Herein, a series of tannic acid encapsulated O-carboxymethyl chitosan (CMC) based hydrogels were prepared using a facile approach for both hemorrhage control and effective anti-bacterium. The results indicated that the tannic acid-cosslinked CMC hydrogels had excellent mechanical property, swelling ability as well as great cytocompatibility. Comparably, with increasing tannic acid loading, the bleeding control and antibacterial performance against both E. coli and S. aureus were improved simultaneously, especially for the 5% tannic acid-cosslinked CMC hydrogel. Moreover, the prepared CMC hydrogel loading with tannic acid could induce hemocytes and platelets aggregation, promote the blood clotting and achieve bleeding control in vivo due to the interconnected fibrous web structure and the chemical activation (the phenol group of tannic acid). Thus, the resultant CMC hydrogel enabled the maintenance of high bioavailability of tannic acid and synchronization with the interconnected fibrous structure of CMC hydrogels, which was expected to be a promising candidate for robust and safe hemostatic dressings.
Collapse
Affiliation(s)
- Xueyan Li
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, China
| | - Shibin Sun
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, China
| | - Xiaofan Feng
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, China
| | - Yuxin Chen
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, China
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, China
| | - Fang Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
44
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
45
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
46
|
Liu X, Qin S, Xu L, Fu G, Huang Y, Yu C, Cheng G, Li Y, He Y, Qi Y, Sun D. A tough and mechanically stable adhesive hydrogel for non-invasive wound repair. Front Bioeng Biotechnol 2023; 11:1173247. [PMID: 37122868 PMCID: PMC10133566 DOI: 10.3389/fbioe.2023.1173247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Wound healing has been a great challenge throughout human history. Improper treatment for wounds is so easy to lead to infection and a series of serious symptoms, even death. Because of the ability of absorbing fluid and keeping a moist environment, the hydrogel with 3D networks is ideal candidate for wound dressing. More important, it has good biocompatibility. However, most of the hydrogel dressings reported have weak mechanical properties and adhesion properties, which greatly limit their clinical application. Herein, a tough adhesive hydrogel with good mechanical stability for non-invasive wound repair is reported. The hydrogel is composed of polyethylene glycol dimethacrylate (PEGDA), chitosan (CS) and chitin nano-whisker (CW). PEGDA and CS form interpenetrating network hydrogel through free radical polymerization reaction under the UV light. The introduction of CW further enhances the toughness of the hydrogel. The pH-sensitive CS can form adhesion to various materials through topological adhesion. As a wound closure repair material, PEGDA/CS/CW hydrogel not only has the characteristic of effectively closing the wound, defending against invading bacteria, and keeping the wound clean, but also has good tensile and mechanical stability, which is expected to realize the closure and repair of joints and other moving parts of the wound. This adhesive hydrogel is proven a promising material for wound closure repair.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Si Qin
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei Xu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guo Fu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongjun Huang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chaoqun Yu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guoyun Cheng
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yunzhi He
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yong Qi
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Yong Qi, ; Dawei Sun,
| | - Dawei Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Yong Qi, ; Dawei Sun,
| |
Collapse
|
47
|
Growth Factor Binding Peptides in Poly (Ethylene Glycol) Diacrylate (PEGDA)-Based Hydrogels for an Improved Healing Response of Human Dermal Fibroblasts. Gels 2022; 9:gels9010028. [PMID: 36661794 PMCID: PMC9857753 DOI: 10.3390/gels9010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Growth factors (GF) are critical cytokines in wound healing. However, the direct delivery of these biochemical cues into a wound site significantly increases the cost of wound dressings and can lead to a strong immunological response due to the introduction of a foreign source of GFs. To overcome this challenge, we designed a poly(ethylene glycol) diacrylate (PEGDA) hydrogel with the potential capacity to sequester autologous GFs directly from the wound site. We demonstrated that synthetic peptide sequences covalently tethered to PEGDA hydrogels physically retained human transforming growth factor beta 1 (hTGFβ1) and human vascular endothelial growth factor (hVEGF) at 3.2 and 0.6 ng/mm2, respectively. In addition, we demonstrated that retained hTGFβ1 and hVEGF enhanced human dermal fibroblasts (HDFa) average cell surface area and proliferation, respectively, and that exposure to both GFs resulted in up to 1.9-fold higher fraction of area covered relative to the control. After five days in culture, relative to the control surface, non-covalently bound hTGFβ1 significantly increased the expression of collagen type I and hTGFβ1 and downregulated vimentin and matrix metalloproteinase 1 expression. Cumulatively, the response of HDFa to hTGFβ1 aligns well with the expected response of fibroblasts during the early stages of wound healing.
Collapse
|
48
|
Mortier C, Costa D, Oliveira M, Haugen H, Lyngstadaas S, Blaker J, Mano J. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. MATERIALS TODAY CHEMISTRY 2022; 26:101222. [DOI: 10.1016/j.mtchem.2022.101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Hamidi S, Monajjemzadeh F, Siahi‐Shadbad M, Khatibi SA, Farjami A. Antibacterial activity of natural polymer gels and potential applications without synthetic antibiotics. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Farnaz Monajjemzadeh
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadreza Siahi‐Shadbad
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Amin Khatibi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
50
|
Zhang H, Shi LWE, Zhou J. Recent developments of polysaccharide‐based double‐network hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haodong Zhang
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Ling Wa Eric Shi
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| |
Collapse
|