1
|
Deng ZA, Wu M, Shen C, Yang X, Wang D, Li J, Wu D, Chen K. Microfluidic-blow-spinning of carvacrol-loaded porphyrin metal - organic framework nanofiber films with synergistic antibacterial capabilities for food packaging. Food Chem 2024; 460:140707. [PMID: 39111037 DOI: 10.1016/j.foodchem.2024.140707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
The adherence of foodborne microorganisms threatens human health, necessitating the development of antibacterial food packaging films. In this study, the antibacterial agent carvacrol (CV), hindered by its high volatility and intense aromatic odor, was encapsulated within the photosensitive metal-organic frameworks (MOFs) material PCN-224 (loading rate 50%). Subsequently, the microfluidic-blow-spinning (MBS) technique was employed for the rapid fabrication of CV@PCN-224/polycaprolactone (PCL)/chitosan (CS) nanofiber films. The incorporation of CV@PCN-224 NPs enhances the nanofiber films' thermal stability and mechanical properties and improves the water vapor permeability while maintaining the sustained release of CV over an extended period and good biocompatibility. Due to the simultaneous loading of antibacterial agent (CV) and photosensitive agent (PCN-224), the CV@PCN-224/PCL/CS films exhibited good synergistic antibacterial functionality, as demonstrated by effective inhibition against both E. coli and S. aureus. All results show the vast potential of the prepared nanofiber films in antibacterial food packaging.
Collapse
Affiliation(s)
- Zi-An Deng
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Menglu Wu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangzheng Yang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Da Wang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, PR China
| | - Jiangkuo Li
- Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, PR China
| | - Di Wu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
2
|
Ma X, Yue Q, Wang Q, Liu C, Fu S, Luan J. Hydrophilic Components as Key Active Ingredients in Adipose-Derived Matrix Bioscaffolds for Inducing Fat Regeneration. Adv Healthc Mater 2024:e2402331. [PMID: 39188185 DOI: 10.1002/adhm.202402331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Decellularized adipose-derived matrix (DAM) has emerged as a promising biomaterial for soft tissue reconstruction. However, due to a lack of research on its complex composition, the understanding of the key components in DAM remains limited, leading to inconsistent adipogenic properties and challenges in optimizing preparation methods purposefully. In this study, it is proposed for the first time that DAM comprises two distinct components: hydrophilic (H-DAM) and lipophilic (L-DAM), each with markedly different effects on fat regeneration. It is confirmed that H-DAM is the key component for inducing fat regeneration due to its enhanced cell-cell and cell-scaffold interactions, primarily mediated by the Hedgehog signaling pathway. In contrast, L-DAM exhibits poor cell adhesion and contains more antigenic components, leading to a higher immunoinflammatory response and reduced adipogenesis. In addition, it is found that intracellular proteins, which are more abundant in H-DAM, can be retained as beneficial components due to their hydrophilicity, contrary to the conventional view that they shall be removed. Accordingly, a purified bioscaffold with unprecedented efficacy is proposed for fat regeneration and reduced immunogenicity. This finding provides insights for developing scaffolds for fat regeneration and promotes the realization of xenotransplantation.
Collapse
Affiliation(s)
- Xiaomu Ma
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Qiang Yue
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Qian Wang
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Chunjun Liu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Su Fu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Jie Luan
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| |
Collapse
|
3
|
Hasan Aneem T, Sarker M, Wong SY, Lim S, Li X, Rashed A, Chakravarty S, Arafat MT. Antimicrobial peptide immobilization on catechol-functionalized PCL/alginate wet-spun fibers to combat surgical site infection. J Mater Chem B 2024. [PMID: 38958038 DOI: 10.1039/d4tb00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Surgical site infection (SSI) caused by pathogenic bacteria leads to delayed wound healing and extended hospitalization. Inappropriate uses of antibiotics have caused a surge in SSI and common antibiotics are proving to be ineffective against SSI. Antimicrobial peptides (AMPs) can be a potential solution to prevent SSI because of their broad spectrum of antimicrobial activities. In this study, naturally sourced AMPs were studied along with microfibers, fabricated by a novel wet-spinning method using sodium alginate and polycaprolactone. Afterward, fibers were functionalized by the catechol groups of dopamine immobilizing nucleophilic AMPs on the surface. Conjugation between PCL and alginate resulted in fibers with smooth surfaces improving their mechanical strength via hydrogen bonds. Having an average diameter of 220 μm, the mechanical properties of the fiber complied with USP standards for suture size 3-0. Engineered microfibers were able to hinder the growth of Proteus spp., a pathogenic bacterium for at least 60 hours whereas antibiotic ceftazidime failed. When subjected to a linear incisional wound model study, accelerated healing was observed when the wound was closed using the engineered fiber compared to Vicryl. The microfibers promoted faster re-epithelialization compared to Vicryl proving their higher wound healing capacity.
Collapse
Affiliation(s)
- Taufiq Hasan Aneem
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh.
| | - Mridul Sarker
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Siew Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Sierin Lim
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Xu Li
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Asif Rashed
- Department of Microbiology, Mugda Medical College, Dhaka-1214, Bangladesh
| | - Saumitra Chakravarty
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka-1000, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh.
| |
Collapse
|
4
|
Mohammadi A, Jafarpour E, Mirzaei K, Shojaei A, Jafarpour P, Beikmohammadi Eyni M, Mirzaei S, Molavi H. Novel ZIF-8/CNC Nanohybrid with an Interconnected Structure: Toward a Sustainable Adsorbent for Efficient Removal of Cd(II) Ions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3862-3875. [PMID: 38194357 DOI: 10.1021/acsami.3c15524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Water pollution, especially by heavy metals, continues to pose significant challenges, emphasizing the urgency to develop sustainable processes to remove pollutants while developing sustainable materials derived from renewable sources. In the present research, a nanoscale adsorbent was prepared to remove cadmium (Cd(II)) ions from wastewater by hybridizing zeolitic imidazolate framework-8 (ZIF-8) with a cellulose nanocrystal (CNC). The prepared nanohybrid exhibited an interconnected structure in which the ZIF-8 particles were connected to each other via CNC nanoneedles. The hybridization of ZIF-8 with CNC caused a significant enhancement in the adsorption performance of the fabricated nanohybrid compared to pure ZIF-8, increasing its adsorption capacity by nearly 36%. The adsorption of ZIF/CNC followed the Langmuir isotherm model and pseudo-second-order kinetics models, remarking homogeneous adsorption onto the surface of ZIF/CNC, where chemisorption controlled the rate of adsorption. The thermodynamic study uncovered that the adsorption is spontaneous, endothermic, and entropy-governed as the randomness was increased at the solid-liquid interface. Additionally, the influence of operating variables, such as temperature, adsorbent dosage, pH, and ionic strength, was studied to mimic the adsorption capabilities of the adsorbent in real conditions. Accordingly, the optimum conditions were found to be at 45 °C and pH = 7 with a dosage of 0.4 g/L for the adsorbent. Moreover, the adsorption in a multimetal solution showed that the ZIF/CNC nanohybrid can remove various heavy metals, including Cd(II), Fe(III), Cu(II), and Pb(II) ions simultaneously. Finally, the regeneration study confirmed the great potential of the ZIF/CNC nanohybrid, which retained 94% of its initial adsorption capacity after 5 consecutive adsorption/desorption cycles.
Collapse
Affiliation(s)
- Ali Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Erfan Jafarpour
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Kamyar Mirzaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Peyman Jafarpour
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mahboube Beikmohammadi Eyni
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465 Tehran, Iran
| | - Shaghayegh Mirzaei
- School of Chemical Engineering, College of Engineering, University of Tehran, 14176-14411 Tehran, Iran
| | - Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, 45137-66731 Zanjan, Iran
| |
Collapse
|
5
|
Abdelhakeem E, Monir S, Teaima MHM, Rashwan KO, El-Nabarawi M. State-of-the-Art Review of Advanced Electrospun Nanofiber Composites for Enhanced Wound Healing. AAPS PharmSciTech 2023; 24:246. [PMID: 38030812 DOI: 10.1208/s12249-023-02702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a complex biological process with four main phases: hemostasis, inflammation, proliferation, and remodeling. Current treatments such as cotton and gauze may delay the wound healing process which gives a demand for more innovative treatments. Nanofibers are nanoparticles that resemble the extracellular matrix of the skin and have a large specific surface area, high porosity, good mechanical properties, controllable morphology, and size. Nanofibers are generated by electrospinning method that utilizes high electric force. Electrospinning device composed of high voltage power source, syringe that contains polymer solution, needle, and collector to collect nanofibers. Many polymers can be used in nanofiber that can be from natural or from synthetic origin. As such, electrospun nanofibers are potential scaffolds for wound healing applications. This review discusses the advanced electrospun nanofiber morphologies used in wound healing that is prepared by modified electrospinning techniques.
Collapse
Affiliation(s)
- Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt.
| | - Sawsan Monir
- Production Sector, Semisolid Department, Nile Company for Pharmaceuticals and Chemical Industries, Cairo, Egypt
| | - Mahmoud H M Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| | - Kareem Omar Rashwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
6
|
Lima TDPDL, Canelas CADA, Dutra JDCF, Rodrigues APD, Brígida RTSS, Concha VOC, da Costa FAM, Passos MF. Poly (ε-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests. Polymers (Basel) 2023; 15:4403. [PMID: 38006127 PMCID: PMC10674666 DOI: 10.3390/polym15224403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tissue engineering is vital in treating injuries and restoring damaged tissues, aiming to accelerate regeneration and optimize the complex healing process. In this study, multizonal scaffolds, designed to mimic tissues with bilayer architecture, were prepared using the rotary jet spinning technique (RJS scaffolds). Polycaprolactone and different concentrations of alginate hydrogel (2, 4, and 6% m/v) were used. The materials were swollen in pracaxi vegetable oil (PO) (Pentaclethra macroloba) and evaluated in terms of surface morphology, wettability, functional groups, thermal behavior, crystallinity, and cytotoxicity. X-ray diffraction (XRD) showed the disappearance of the diffraction peak 2θ = 31.5° for samples from the polycaprolactone/pracaxi/alginate (PCLOA) group, suggesting a reduction of crystallinity according to the presence of PO and semi-crystalline structure. Wettability gradients (0 to 80.91°) were observed according to the deposition layer and hydrogel content. Pore diameters varied between 9.27 μm and 37.57 μm. Molecular interactions with the constituents of the formulation were observed via infrared spectra with Fourier transform (FTIR), and their influence was detected in the reduction of the maximum degradation temperature within the groups of scaffolds (polycaprolactone/alginate (PCLA) and PCLOA) about the control. In vitro tests indicated reduced cell viability in the presence of alginate hydrogel and PO, respectively.
Collapse
Affiliation(s)
- Tainara de Paula de Lima Lima
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Materials Science and Engineering Program, Federal University of Pará, Ananindeua 67130-660, PA, Brazil;
| | | | - Joyce da Cruz Ferraz Dutra
- Microbiology Department, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Ana Paula Drummond Rodrigues
- Electron Microscopy Laboratory, Evandro Chagas Institute, Ministry of Health, Belém 66093-020, PA, Brazil; (A.P.D.R.); (R.T.S.S.B.)
| | | | | | | | - Marcele Fonseca Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Materials Science and Engineering Program, Federal University of Pará, Ananindeua 67130-660, PA, Brazil;
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (C.A.d.A.C.); (F.A.M.d.C.)
| |
Collapse
|
7
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Yi N, Wang M, Song L, Feng F, Li J, Xie R, Zhao Z, Chen W. Highly hygroscopicity and antioxidant nanofibrous dressing base on alginate for accelerating wound healing. Colloids Surf B Biointerfaces 2023; 225:113240. [PMID: 36889107 DOI: 10.1016/j.colsurfb.2023.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The removal of bacterium and free radicals is important for wound healing. Therefore, it is necessary to prepare biological dressings with antibacterial and antioxidant properties. In this study, high-performance calcium alginate/carbon polymer dots/forsythin composite nanofibrous membrane (CA/CPDs/FT) was explored under the influence of carbon polymer dots and forsythin. The addition of carbon polymer dots improved the nanofiber morphology and therefore enhanced the mechanical strength of the composite membrane. Moreover, CA/CPDs/FT membranes displayed satisfactory antibacterial and antioxidant properties because of the natural properties of forsythin. Meanwhile, outstanding hygroscopicity over 700% was also obtained for the composite membrane. In vitro and in vivo experiments showed that the CA/CPDs/FT nanofibrous membrane could prevent the invasion of bacteria, scavenge free radicals, and promote wound healing. Moreover, its good hygroscopicity and antioxidation characteristics were friendly for the clinical application of high-exudate wounds.
Collapse
Affiliation(s)
- Na Yi
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mengyue Wang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Li Song
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fan Feng
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiwei Li
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Ruyi Xie
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhihui Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Weichao Chen
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
9
|
Saraiva MM, Campelo MDS, Câmara Neto JF, Lima ABN, Silva GDA, Dias ATDFF, Ricardo NMPS, Kaplan DL, Ribeiro MENP. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J Biomed Mater Res B Appl Biomater 2023; 111:220-233. [PMID: 35959858 DOI: 10.1002/jbm.b.35146] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The skin is the largest organ in the human body and its physical integrity must be maintained for body homeostasis and to prevent the entry of pathogenic microorganisms. Sodium alginate (SA) and polyvinyl alcohol (PVA) are two polymers widely used in films for wound dressing applications. Furthermore, blends between SA and PVA improve physical, mechanical and biological properties of the final wound healing material when compared to the individual polymers. Different drugs have been incorporated into SA/PVA-based films to improve wound healing activity. It is noteworthy that SA/PVA films can be crosslinked with Ca2+ or other agents, which improves physicochemical and biological properties. Thus, SA/PVA associations are promising for the biomedical field, as a potential alternative for wound treatment. This review focuses on the main techniques for obtaining SA/PVA films, their physical-chemical characterization, drug incorporation, and the advantages and challenges of these films for wound healing.
Collapse
Affiliation(s)
- Matheus Morais Saraiva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - João Francisco Câmara Neto
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Beatriz Nogueira Lima
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - George de Almeida Silva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Andre Tavares de Freitas Figueredo Dias
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
10
|
N’Gatta KM, Belaid H, El Hayek J, Assanvo EF, Kajdan M, Masquelez N, Boa D, Cavaillès V, Bechelany M, Salameh C. 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering. Sci Rep 2022; 12:21244. [PMID: 36482172 PMCID: PMC9732347 DOI: 10.1038/s41598-022-25652-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cellulose nanocrystals (CNC) are drawing increasing attention in the fields of biomedicine and healthcare owing to their durability, biocompatibility, biodegradability and excellent mechanical properties. Herein, we fabricated using fused deposition modelling technology 3D composite scaffolds from polylactic acid (PLA) and CNC extracted from Ficus thonningii. Scanning electron microscopy revealed that the printed scaffolds exhibit interconnected pores with an estimated average pore size of approximately 400 µm. Incorporating 3% (w/w) of CNC into the composite improved PLA mechanical properties (Young's modulus increased by ~ 30%) and wettability (water contact angle decreased by ~ 17%). The mineralization process of printed scaffolds using simulated body fluid was validated and nucleation of hydroxyapatite confirmed. Additionally, cytocompatibility tests revealed that PLA and CNC-based PLA scaffolds are non-toxic and compatible with bone cells. Our design, based on rapid 3D printing of PLA/CNC composites, combines the ability to control the architecture and provide improved mechanical and biological properties of the scaffolds, which opens perspectives for applications in bone tissue engineering and in regenerative medicine.
Collapse
Affiliation(s)
- Kanga Marius N’Gatta
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France ,grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Habib Belaid
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France ,grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Joelle El Hayek
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Edja Florentin Assanvo
- grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Marilyn Kajdan
- grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Nathalie Masquelez
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - David Boa
- grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Vincent Cavaillès
- grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Mikhael Bechelany
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Chrystelle Salameh
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
11
|
Properties of polyvinyl alcohol films reinforced by citric acid modified cellulose nanocrystals and silica aerogels. Carbohydr Polym 2022; 298:120116. [DOI: 10.1016/j.carbpol.2022.120116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
|
12
|
Mathew JT, Jose E T, Philip P, Mohan M. G, Cherian SK. Preparation and Characterization of Sodium Alginate-Polyvinyl Alcohol Electrospun Nanofibres Using Green Solvents for Biomedical Applications. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x23700633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
13
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
14
|
Sowmya B, Panda PK. Fabrication and characterization of super-hydrophilic poly (ε-caprolactone)/hydroxypropyl methylcellulose (HPMC) based composite electrospun membranes for tissue engineering applications. Prog Biomater 2022; 12:1-12. [PMID: 36287377 PMCID: PMC9958216 DOI: 10.1007/s40204-022-00205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Tissue engineering (TE) employs scaffolds as a structural support for initially seeding of cells followed by development of new tissues. Electrospun scaffolds generally function as a template of native extracellular matrix (ECM). The chemical composition of the scaffold and its surface morphology strongly influence the interaction between various cell types and materials. In this work, PCL and PCL/HPMC-based composite membranes with varying concentrations of HPMC (20-30% by weight) were fabricated using electrospinning technique. The membranes were evaluated for their surface, physio-chemical and biological properties. It was observed probably for the first time that blending of HPMC with PCL produced super-hydrophilic scaffolds. DSC studies confirmed the semi- crystalline nature of HPMC. PCL/HPMC composite scaffolds are found biocompatible from cytotoxicity assay. From the cell culture studies (apoptosis), PCL/HPMC composite scaffolds did not inhibit the adhesion of L929 cells due to their super-hydrophilic nature. The cell adhesion and spreading varied with HPMC concentration. PCL/HPMC (70/30) membranes showed highest cell adhesion among others due to its porous structure.
Collapse
Affiliation(s)
- B Sowmya
- Materials Science Division, CSIR-National Aerospace Laboratories, Old Airport Road, Kodihalli, Bengaluru, 560017, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P K Panda
- Materials Science Division, CSIR-National Aerospace Laboratories, Old Airport Road, Kodihalli, Bengaluru, 560017, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Tan G, Wang L, Pan W, Chen K. Polysaccharide Electrospun Nanofibers for Wound Healing Applications. Int J Nanomedicine 2022; 17:3913-3931. [PMID: 36097445 PMCID: PMC9464040 DOI: 10.2147/ijn.s371900] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
As a type of biological macromolecule, natural polysaccharides have been widely used in wound healing due to their low toxicity, good biocompatibility, degradability and reproducibility. Electrospinning is a versatile and simple technique for producing continuous nanoscale fibers from a variety of natural and synthetic polymers. The application of electrospun nanofibers as wound dressings has made great progress and they are considered one of the most effective wound dressings. This paper reviews the preparation of polysaccharide nanofibers by electrospinning and their application prospects in the field of wound healing. A variety of polysaccharide nanofibers, including chitosan, starch, alginate, and hyaluronic acid are introduced. The preparation strategy of polysaccharide electrospun nanofibers and their functions in promoting wound healing are summarized. In addition, the future prospects and challenges for the preparation of polysaccharide nanofibers by electrospinning are also discussed.
Collapse
Affiliation(s)
- Guoxin Tan
- School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China
| | - Lijie Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Kai Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
16
|
Hurtado A, Cano-Vicent A, Tuñón-Molina A, Aparicio-Collado JL, Salesa B, I Serra RS, Serrano-Aroca Á. Engineering alginate hydrogel films with poly(3-hydroxybutyrate-co-3-valerate) and graphene nanoplatelets: Enhancement of antiviral activity, cell adhesion and electroactive properties. Int J Biol Macromol 2022; 219:694-708. [PMID: 35961550 PMCID: PMC9364692 DOI: 10.1016/j.ijbiomac.2022.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 12/27/2022]
Abstract
A new biodegradable semi-interpenetrated polymer network (semi-IPN) of two US Food and Drug Administration approved materials, poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and calcium alginate (CA) was engineered to provide an alternative strategy to enhance the poor adhesion properties of CA. The synthesis procedure allows the additional incorporation of 10 % w/w of graphene nanoplatelets (GNPs), which have no cytotoxic effect on human keratinocytes. This quantity of multilayer graphene provides superior antiviral activity to the novel semi-IPN against a surrogate virus of SARS-CoV-2. Adding GNPs hardly affects the water absorption or electrical conductivity of the pure components of CA and PHBV. However, the semi-IPN's electrical conductivity increases dramatically after adding GNP due to molecular rearrangements of the intertwined polymer chains that continuously distribute the GNP nanosheets, This new hydrophilic composite biomaterial film shows great promise for skin biomedical applications, especially those that require antiviral and/or biodegradable electroconductive materials.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Jose Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
| | - Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain.
| |
Collapse
|
17
|
Shirehjini LM, Sharifi F, Shojaei S, Irani S. Poly-caprolactone nanofibrous coated with sol-gel alginate/ mesenchymal stem cells for cartilage tissue engineering. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Li S, Biswas M, Ford E. Dual roles of sodium polyacrylate in alginate fiber wet-spinning: Modify the solution rheology and strengthen the fiber. Carbohydr Polym 2022; 297:120001. [DOI: 10.1016/j.carbpol.2022.120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
|
19
|
Baghersad S, Hivechi A, Bahrami SH, Brouki Milan P, Siegel RA, Amoupour M. Optimal Aloe vera encapsulated PCL/Gel nanofiber design for skin substitute application and the evaluation of its in vivo implantation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Ma X, Men J, Gao T, Liu W, Wang X, Lou T. Electrospinning nanofibrous sodium alginate/β‐cyclodextrin composite membranes for methylene blue adsorption. STARCH-STARKE 2022. [DOI: 10.1002/star.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaolong Ma
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Jinxin Men
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Tong Gao
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Wenxia Liu
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Xuejun Wang
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Tao Lou
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| |
Collapse
|
21
|
Chandika P, Khan F, Heo SY, Kim YM, Yi M, Jung WK. Enhanced wound-healing capability with inherent antimicrobial activities of usnic acid incorporated poly(ε-caprolactone)/decellularized extracellular matrix nanofibrous scaffold. BIOMATERIALS ADVANCES 2022; 140:213046. [PMID: 35930818 DOI: 10.1016/j.bioadv.2022.213046] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 12/22/2022]
Abstract
An extracellular matrix-mimicking, biodegradable tissue-engineered skin substitute with improved antibacterial, antibiofilm, and wound healing capabilities is essential in skin tissue regeneration applications. The purpose of this study was to develop a novel biodegradable composite nanofibrous poly(ε-caprolactone) (PCL)/decellularized extracellular matrix (dECM) scaffolds loaded with usnic acid (UA); (PEU), where UA is employed as an antibacterial agent as well as a wound-healing accelerator. The architecture and fiber structure of the scaffolds were examined using scanning electron microscopy, and the results revealed that the average diameters decreased as the dECM content increased. The chemical composition, changes in the crystalline structure, homogeneity, and thermal stability of the nanofiber scaffolds with different material compositions were determined using Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis, respectively. The composite nanofibrous scaffolds exhibited strong antibacterial activity against various bacterial species, such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Cutibactrium acnes, and fungal pathogens (such as Candida albicans). Additionally, the composite nanofibrous scaffolds exhibited biofilm inhibition properties against Klebsiella pneumoniae and Pseudomonas aeruginosa. An evaluation of the appearance of in vivo full-thickness excisional wounds treated with the composite nanofiber scaffolds, as well as a histological analysis of the wounds 21 days after surgery, revealed that treatment with nanofibrous PEU scaffolds enhanced wound healing. This study reveals that the proposed composite nanofibrous PEU scaffold has substantial potential for treating infectious full-thickness wounds.
Collapse
Affiliation(s)
- Pathum Chandika
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong-Yong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology, Jeju 63349, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Myunggi Yi
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
22
|
Goudarzi ZM, Soleimani M, Ghasemi-Mobarakeh L, Sajkiewicz P, Sharifianjazi F, Esmaeilkhanian A, Khaksar S. Control of drug release from cotton fabric by nanofibrous mat. Int J Biol Macromol 2022; 217:270-281. [PMID: 35760164 DOI: 10.1016/j.ijbiomac.2022.06.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022]
Abstract
A drug delivery system (DDSs) was developed in the present study based on textile substrates as drug carriers and electrospun nanofibers as a controller of release rate. Three types of drugs consisting of ciprofloxacin (CIP), clotrimazole (CLO), and benzalkonium chloride (BEN) were loaded into the cover glass (CG) and cotton fabrics (CF1 and CF2) separately. Then, the drug-loaded substrates were coated with polycaprolactone (PCL) and polycaprolactone/gelatin (PCL/Gel) nanofibers with various thicknesses. The morphology and hydrophilicity of the electrospun nanofibers and the release profile of drug-loaded samples were investigated. FTIR, XRD, and in vitro biodegradability analysis were analyzed to characterize the drug delivery system. A morphological study of electrospun fibers showed the mean diameter of the PCL and PCL/Gel nanofibers 127 ± 25 and 178 ± 38 nm, respectively. The drug delivery assay revealed that various factors affect the rate of drug releases, such as the type of drug, the type of drug carrier, and the thickness of the covered nanofibers. The study highlights the ability of drugs to load substrates with coated nanofibers as controlled drug delivery systems. In conclusion, it is shown that the obtained samples are excellent candidates for future wound dressing applications.
Collapse
Affiliation(s)
- Zahra Moazzami Goudarzi
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-106, Poland
| | - Mahnaz Soleimani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-106, Poland
| | | | | | - Samad Khaksar
- School of Science and Technology, University of Georgia, Tbilisi, Georgia
| |
Collapse
|
23
|
Amini N, Milan PB, Sarmadi VH, Derakhshanmehr B, Hivechi A, Khodaei F, Hamidi M, Ashraf S, Larijani G, Rezapour A. Microorganism-derived biological macromolecules for tissue engineering. Front Med 2022; 16:358-377. [PMID: 35687278 DOI: 10.1007/s11684-021-0903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran. .,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran. .,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Bahareh Derakhshanmehr
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ahmad Hivechi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fateme Khodaei
- Burn Research Center, Department of Plastic and Reconstructive Surgery, Iran University of Medical Sciences, Tehran, 1591639675, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, 4477166595, Iran
| | - Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Alireza Rezapour
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, 3715835155, Iran. .,Department of Tissue Engineering and Regenerative Medicine, School of Medicine, Qom University of Medical Sciences, Qom, 3715835155, Iran.
| |
Collapse
|
24
|
Aparicio-Collado JL, García-San-Martín N, Molina-Mateo J, Torregrosa Cabanilles C, Donderis Quiles V, Serrano-Aroca A, Sabater I Serra R. Electroactive calcium-alginate/polycaprolactone/reduced graphene oxide nanohybrid hydrogels for skeletal muscle tissue engineering. Colloids Surf B Biointerfaces 2022; 214:112455. [PMID: 35305322 DOI: 10.1016/j.colsurfb.2022.112455] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Graphene derivatives such as reduced graphene oxide (rGO) are used as components of novel biomaterials for their unique electrical properties. Electrical conductivity is a crucial factor for muscle cells, which are electrically active. This study reports the development of a new type of semi-interpenetrated polymer network based on two biodegradable FDA-approved biomaterials, sodium alginate (SA) and polycaprolactone (PCL), with Ca2+ ions as SA crosslinker. Several drawbacks such as the low cell adhesion of SA and weak structural stability can be improved with the incorporation of PCL. Furthermore, this study demonstrates how this semi-IPN can be engineered with rGO nanosheets (0.5% and 2% wt/wt rGO nanosheets) to produce electroactive nanohybrid composite biomaterials. The study focuses on the microstructure and the enhancement of physical and biological properties of these advanced materials, including water sorption, surface wettability, thermal behavior and thermal degradation, mechanical properties, electrical conductivity, cell adhesion and myogenic differentiation. The results suggest the formation of a complex nano-network with different interactions between the components: bonds between SA chains induced by Ca2+ ions (egg-box model), links between rGO nanosheets and SA chains as well as between rGO nanosheets themselves through Ca2+ ions, and strong hydrogen bonding between rGO nanosheets and SA chains. The incorporation of rGO significantly increases the electrical conductivity of the nanohybrid hydrogels, with values in the range of muscle tissue. In vitro cultures with C2C12 murine myoblasts revealed that the conductive nanohybrid hydrogels are not cytotoxic and can greatly enhance myoblast adhesion and myogenic differentiation. These results indicate that these novel electroactive nanohybrid hydrogels have great potential for biomedical applications related to the regeneration of electroactive tissues, particularly in skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- J L Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | - N García-San-Martín
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | - J Molina-Mateo
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | | | - V Donderis Quiles
- Department of Electrical Engineering, Universitat Politècnica de València, Spain
| | - A Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| | - R Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain; Department of Electrical Engineering, Universitat Politècnica de València, Spain; Biomedical Research Networking Centre in Bioingenieering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
25
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
26
|
Ravichandran S, Radhakrishnan J. Anticancer efficacy of lupeol incorporated electrospun Polycaprolactone/gelatin nanocomposite nanofibrous mats. NANOTECHNOLOGY 2022; 33:295104. [PMID: 35413702 DOI: 10.1088/1361-6528/ac667b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Despite the anticancer effect of lupeol (Lup), low aqueous solubility can make its therapeutic usage difficult. However, polycaprolactone/Gelatin (PCL-GEL) nanofibers scaffold eliminates this problem. This study has been conducted to recognize PCL-GEL-Lup nanofibers effect on cancer cell lines. PCL-GEL solution was prepared at different ratios (8 wt% and 4 wt%) for achieving optimal nanofibers. PCL-GEL-Lup nanofibers were provided via electrospinning technique. The surface morphology of nanofibers was examined using FESEM. Functional groups were investigated by a Fourier Transform Infrared spectroscopy. Lupeol released from nanofibers was detected by a UV-Visible spectroscopy. The drug release profile confirmed the sustained release of about 80% achieved within 40 h. IC50of lupeol against ACHN and HSC-3 cell lines are 52.57 and 66.10μg ml-1respectively. The study results from aid an understanding of the fabrication of a scaffold with an optimum dose of bioactive lupeol in 6 wt% with bead free uniform diameter that is capable of binding the drug efficiently. The enhanced cytotoxicity activity by effective diffusion and elution to the target achieved in this study help to develop a nanofiber in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Siranjeevi Ravichandran
- Department of Chemistry, Faculty of E&T, SRM Institute of Science and Technology (SRMIST), Kattankulathur-603 203, Kancheepuram (Dist), Tamil Nadu, India
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-602 105, Tamil Nadu, India
| | - Jeyalakshmi Radhakrishnan
- Department of Chemistry, Faculty of E&T, SRM Institute of Science and Technology (SRMIST), Kattankulathur-603 203, Kancheepuram (Dist), Tamil Nadu, India
| |
Collapse
|
27
|
Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers (Basel) 2022; 14:polym14081508. [PMID: 35458258 PMCID: PMC9029721 DOI: 10.3390/polym14081508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence: or (A.A.N.); (S.B.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: or (A.A.N.); (S.B.)
| |
Collapse
|
29
|
Pompa-Monroy DA, Iglesias AL, Dastager SG, Thorat MN, Olivas-Sarabia A, Valdez-Castro R, Hurtado-Ayala LA, Cornejo-Bravo JM, Pérez-González GL, Villarreal-Gómez LJ. Comparative Study of Polycaprolactone Electrospun Fibers and Casting Films Enriched with Carbon and Nitrogen Sources and Their Potential Use in Water Bioremediation. MEMBRANES 2022; 12:327. [PMID: 35323802 PMCID: PMC8951516 DOI: 10.3390/membranes12030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022]
Abstract
Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth. Bacterial growth was observed by scanning electron microscopy; thermal characteristics were also evaluated; bacterial cell growth was measured by ultraviolet-visible spectrophotometry at 600-nm. Fibers produced have an average diameter between 313 to 766 nm, with 44% superficial porosity of the scaffolds, a glass transition around ~64 °C and a critical temperature of ~338 °C. The fibrous scaffold increased the cell growth of Escherichia coli by 23% at 72 h, while Pseudomonas aeruginosa and Staphylococcus aureus increased by 36% and 95% respectively at 48 h, when compared to the normal growth of their respective bacterial cultures. However, no significant difference in bacterial growth between the scaffolds and the casted films could be observed. Cell growth depended on a combination of several factors: type of bacteria, carbon or nitrogen sources, casted films or 3D scaffolds. Microscopy showed traces of a biofilm formation around 3 h in culture of P. aeruginosa. Water bioremediation studies showed that P. aeruginosa on poly (caprolactone)/Glucose fibers was effective in removing 87% of chromium in 8 h.
Collapse
Affiliation(s)
- Daniella Alejandra Pompa-Monroy
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Ana Leticia Iglesias
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
| | - Syed Gulam Dastager
- National Collection of Industrial Microorganism (NCIM), CSIR-National Chemical Laboratory, Pune 41008, Maharashtra, India; (S.G.D.); (M.N.T.)
| | - Meghana Namdeo Thorat
- National Collection of Industrial Microorganism (NCIM), CSIR-National Chemical Laboratory, Pune 41008, Maharashtra, India; (S.G.D.); (M.N.T.)
| | - Amelia Olivas-Sarabia
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico; (A.O.-S.); (R.V.-C.)
| | - Ricardo Valdez-Castro
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico; (A.O.-S.); (R.V.-C.)
| | - Lilia Angélica Hurtado-Ayala
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| |
Collapse
|
30
|
Rezaei M, Hassanzadeh Nemati N, Mehrabani D, Komeili A. Characterization of sodium carboxymethyl cellulose/calcium alginate scaffold loaded with curcumin in skin tissue engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohadeseh Rezaei
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz Iran
- Center of Comparative and Experimental Medicine Shiraz University of Medical Sciences Shiraz Iran
- Li Ka Shing Center for Health Research and Innovation University of Alberta Edmonton Canada
| | - Ali Komeili
- Applied Biophotonics Research Center Science and Research Branch, Islamic Azad University Tehran Iran
| |
Collapse
|
31
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
32
|
Karimi SNH, Mehdinavaz Aghdam R, Ebrahimi SAS, Chehrehsaz Y. Tri‐layered alginate/
PCL
electrospun scaffold for cardiac tissue engineering. POLYM INT 2022. [DOI: 10.1002/pi.6371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seyed Nasir Hosseini Karimi
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
| | - Seyed Ali Seyyed Ebrahimi
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
- Advanced Magnetic Materials Research Center, College of Engineering University of Tehran Tehran Iran
| | - Yalda Chehrehsaz
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
33
|
Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr Polym 2022; 275:118668. [PMID: 34742407 DOI: 10.1016/j.carbpol.2021.118668] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022]
Abstract
The present review explores the recent developments of cellulose nanocrystals, a class of captivating nanomaterials in variety of applications. CNCs are made by acid hydrolysing cellulosic materials like wood, cotton, tunicate, flax fibers by sonochemistry. It has many desirable properties, including a high tensile strength, wide surface area, stiffness, exceptional colloidal stability, and the ability to be modified. CNCs are colloidally stable, hydrophilic, and rigid rod-shaped bio-based nanomaterials in the form of rigid rods with high strength and surface area that has a diverse set of applications and properties. The intriguing features emerging from numerous fibers studies, such as renewable character and biodegradability, piqued the curiosity of many researchers who worked on lowering the size of these fibers. Physicochemical properties such as rheological, mechanical, thermal, lipid crystalline, swelling capacity, microstructural properties result in affecting surface-area to volume ratio and crystallinity of cellulose nanocrystals. The present article highlights the fundamentals of cellulose nanocrystals such as sources, isolation, fabrication, properties and surface modification with an emphasis on plethora of biomedical applications. Selected nanocellulose studies with significant findings on cellular labelling and bioimaging, tissue engineering, biosensors, gene delivery, anti-viral property, anti-bacterial property, ocular delivery, modified drug release, anti-cancer activity and enzyme immobilization are emphasized.
Collapse
Affiliation(s)
- Prajakta Mali
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
34
|
3D Bioprinting of Polycaprolactone-Based Scaffolds for Pulp-Dentin Regeneration: Investigation of Physicochemical and Biological Behavior. Polymers (Basel) 2021; 13:polym13244442. [PMID: 34960993 PMCID: PMC8707254 DOI: 10.3390/polym13244442] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, two structurally different scaffolds, a polycaprolactone (PCL)/45S5 Bioglass (BG) composite and PCL/hyaluronic acid (HyA) were fabricated by 3D printing technology and were evaluated for the regeneration of dentin and pulp tissues, respectively. Their physicochemical characterization was performed by field emission scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, and compressive strength tests. The results indicated that the presence of BG in the PCL/BG scaffolds promoted the mechanical properties, surface roughness, and bioactivity. Besides, a surface treatment of the PCL scaffold with HyA considerably increased the hydrophilicity of the scaffolds which led to an enhancement in cell adhesion. Furthermore, the gene expression results showed a significant increase in expression of odontogenic markers, e.g., dentin sialophosphoprotein (DSPP), osteocalcin (OCN), and dentin matrix protein 1 (DMP-1) in the presence of both PCL/BG and PCL/HyA scaffolds. Moreover, to examine the feasibility of the idea for pulp-dentin complex regeneration, a bilayer PCL/BG-PCL/HyA scaffold was successfully fabricated and characterized by FESEM. Based on these results, it can be concluded that PCL/BG and PCL/HyA scaffolds have great potential for promoting hDPSC adhesion and odontogenic differentiation.
Collapse
|
35
|
Mendez-López M, Ramos-Hernández A, Moreno-Serna V, Bonardd S, Ramírez O, Silva H, Inostroza-Rivera R, Diaz DD, Leiva A, Saldías C. A facile approach for tuning optical and surface properties of novel biobased Alginate/POTE handleable films via solvent vapor exposure. Int J Biol Macromol 2021; 193:258-268. [PMID: 34655589 DOI: 10.1016/j.ijbiomac.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Novel biobased films consisting of alginate blends with poly (octanoic acid 2-thiophen-3-yl-ethyl ester) (POTE), a conducting polymer, were prepared by solution casting, and their optical, morphological, thermal, and surface properties were studied. Using UV-visible spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), the effects of tetrahydrofuran solvent vapors on the optical properties and surface morphology of biobased films with different POTE contents were studied. Results indicate that morphological rearrangements of POTE take place during the process of solvent exposure. Specifically, the solvent vapor induced the formation of POTE small crystalline domains, which allows envisioning the potential of tuning UV-visible absorbance and wettability behavior of biobased films. Finally, theoretical electronic calculations (specifically frontier molecular orbitals analysis) provided consistent evidence on POTE's preferential orientation and selectivity toward the THF-vapor medium.
Collapse
Affiliation(s)
- M Mendez-López
- Departamento de Química y Biología, Universidad el Norte, km 5 vía Pto Colombia, P. O. Box 1569-51820, Barranquilla, Atlántico, Colombia
| | - A Ramos-Hernández
- Grupo de investigación Química Supramolecular Aplicada, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Cra 30# 8-49 Pto Colombia, Atlántico, Colombia
| | - V Moreno-Serna
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo de Polímeros, Chile
| | - S Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - O Ramírez
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Macul, 7820436 Santiago, Chile
| | - Hernán Silva
- Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Inostroza-Rivera
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, 7820436 Santiago, Chile
| | - D Diaz Diaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - A Leiva
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Macul, 7820436 Santiago, Chile
| | - C Saldías
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Macul, 7820436 Santiago, Chile.
| |
Collapse
|
36
|
Meng Z, Wang L, Shen L, Li Z, Zhao Z, Wang X. Supercritical carbon dioxide assisted fabrication of biomimetic sodium alginate/silk fibroin nanofibrous scaffolds. J Appl Polym Sci 2021. [DOI: 10.1002/app.51421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhi‐Yuan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Li Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Lin‐Yi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Ze‐Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| | - Xin‐Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| |
Collapse
|
37
|
Meng Y, Long Z, He Z, Fu X, Dong C. Chiral Cellulose Nanocrystal Humidity-Responsive Iridescent Films with Glucan for Tuned Iridescence and Reinforced Mechanics. Biomacromolecules 2021; 22:4479-4488. [PMID: 34605629 DOI: 10.1021/acs.biomac.1c00595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The fabrication of biomimetic photonic materials with environmental stimuli-responsive functions from entirely biobased materials is becoming increasingly challenging with the growing demand for biodegradable materials. Herein, the effect of glucan with different molecular weights on the mechanical performance and tunable structural color of iridescent CNC composite films was investigated. The existence of glucan did not influence the self-assembly performance of CNCs, but rather led to an improvement in the mechanical performance, enabling cholesteric CNC composite films with an adjustable structural color. Simultaneously, the iridescent films showed a conspicuous redshift and enlarged initial pitch without obstruction of the chiral structure. In response to environmental humidity, the structural colors of the iridescent composite films can be changed by regulating their chiral nematic structure. In particular, the films demonstrate a reversible structural color change between blue and red at RH between 50 and 98%. The resulting biobased iridescent composite films have potential applications in decorative coating, optical and humidity sensing, and anticounterfeiting.
Collapse
Affiliation(s)
- Yahui Meng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhu Long
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhibin He
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Xiaotong Fu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Cuihua Dong
- Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353, People's Republic of China
| |
Collapse
|
38
|
Kassem I, Ablouh EH, El Bouchtaoui FZ, Kassab Z, Khouloud M, Sehaqui H, Ghalfi H, Alami J, El Achaby M. Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties. Int J Biol Macromol 2021; 189:1029-1042. [PMID: 34411612 DOI: 10.1016/j.ijbiomac.2021.08.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/11/2023]
Abstract
Effective fertilizers management is essential for sustainable agricultural practices. One way to improve agronomic practices is by using slow-release fertilizers (SRF) that have shown interesting role in optimizing nutrients availability for plants growth. Considering the current ecological concerns, coated SRF using ecofriendly materials continue to attract great attention. In this context, novel waterborne and biodegradable coating nanocomposite formulations were elaborated from cellulose nanocrystals (CNC)-filled poly (vinyl alcohol) (PVA) for slow release NPK fertilizer with water retention property. CNC were extracted from hemp stalks using sulfuric acid hydrolysis process and their physico-chemical characteristics were investigated. CNC with various weight loadings (6, 10, 14.5 wt%) were incorporated into PVA polymer via solvent mixing method to produce viscous coating nanocomposite formulations with moderated shear viscosity. Uniform PVA@CNC coating microlayer was applied on the surface of NPK fertilizer granules in Wurster chamber of a fluidized bed dryer at controlled spraying and drying parameters. The nitrogen, phosphorus and potassium release profiles from coated NPK fertilizer were determined in water and soil. It was found that the coating materials extended the N-P-K nutrients release time from 3 days for uncoated fertilizer to 10 and 30 days for neat PVA- and CNC/PVA-coated fertilizer in soil medium, indicating the positive role of the presence of CNC in the PVA-based coatings. The morphology, coating rate and crushing strength of the as-prepared coated products were investigated in addition to their effect on water holding capacity and water retention of the soil. Enhanced crushing strength and water retention with a positive effect on the soil moisture were observed after coating NPK fertilizer, mainly with high CNC content (14.5 wt%). Therefore, these proposed nanocomposite coating materials showed a great potential for producing a new class of SRF with high nutrients use efficiency and water retention capacity, which could be beneficial to sustainable crop production.
Collapse
Affiliation(s)
- Ihsane Kassem
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco.
| | - Fatima-Zahra El Bouchtaoui
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Mehdi Khouloud
- Chemical & Biochemical Sciences-Green Process Engineering (CBS-GPE), Mohammed VI Polytechnic University, OCP Jorf Lasfar Industrial Complex, P.O. Box 118, El Jadida 24025, Morocco
| | - Houssine Sehaqui
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Hakim Ghalfi
- Innovation OCP, OCP Jorf Lasfar Industrial Complex, P.O. Box 118, El Jadida 24025, Morocco
| | - Jones Alami
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco.
| |
Collapse
|
39
|
Mohamady Hussein MA, Guler E, Rayaman E, Cam ME, Sahin A, Grinholc M, Sezgin Mansuroglu D, Sahin YM, Gunduz O, Muhammed M, El-Sherbiny IM, Megahed M. Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers. Carbohydr Polym 2021; 270:118373. [PMID: 34364617 DOI: 10.1016/j.carbpol.2021.118373] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Dual-drug delivery systems were constructed through coaxial techniques, which were convenient for the model drugs used the present work. This study aimed to fabricate core-shell electrospun nanofibrous membranes displaying simultaneous cell proliferation and antibacterial activity. For that purpose, phenytoin (Ph), a well-known proliferative agent, was loaded into a polycaprolactone (PCL) shell membrane, and as-prepared silver-chitosan nanoparticles (Ag-CS NPs), as biocidal agents, were embedded in a polyvinyl alcohol (PVA) core layer. The morphology, chemical composition, mechanical and thermal properties of the nanofibrous membranes were characterized by FESEM/STEM, FTIR and DSC. The coaxial PVA-Ag CS NPs/PCL-Ph nanofibers (NFs) showed more controlled Ph release than PVA/PCL-Ph NFs. There was notable improvement in the morphology, thermal, mechanical, antibacterial properties and cytobiocompatibility of the fibers upon incorporation of Ph and Ag-CS NPs. The proposed core-shell PVA/PCL NFs represent promising scaffolds for tissue regeneration and wound healing by the effective dual delivery of phenytoin and Ag-CS NPs.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, Aachen 52074, Germany; Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo 12622, Egypt.
| | - Ece Guler
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Erkan Rayaman
- Department of Pharmaceutical Microbiology, Marmara University, Istanbul, Turkey.
| | - Muhammet Emin Cam
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey; Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| | - Ali Sahin
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722 Istanbul, Turkey.
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland.
| | - Demet Sezgin Mansuroglu
- Polymer Technologies and Composite Application and Research Center (ArelPOTKAM), Istanbul Arel University, Istanbul 34537, Turkey
| | - Yesim Müge Sahin
- Polymer Technologies and Composite Application and Research Center (ArelPOTKAM), Istanbul Arel University, Istanbul 34537, Turkey.
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey.
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt.
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, Aachen 52074, Germany.
| |
Collapse
|
40
|
Fabrication of Hybrid Nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13132104. [PMID: 34206747 PMCID: PMC8271691 DOI: 10.3390/polym13132104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.
Collapse
|
41
|
Shuai C, Yuan X, Yang W, Peng S, Qian G, Zhao Z. Synthesis of a mace-like cellulose nanocrystal@Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydr Polym 2021; 262:117937. [DOI: 10.1016/j.carbpol.2021.117937] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
|
42
|
Ghaffari-Bohlouli P, Jafari H, Khatibi A, Bakhtiari M, Tavana B, Zahedi P, Shavandi A. Osteogenesis enhancement using poly (l-lactide-co-d, l-lactide)/poly (vinyl alcohol) nanofibrous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int J Biol Macromol 2021; 182:168-178. [PMID: 33838184 DOI: 10.1016/j.ijbiomac.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Electrospun poly (l-lactide-co-d, l-lactide) (PLDLLA)/poly (vinyl alcohol) (PVA) nanofibers were reinforced by various contents (0-1 wt%) of phospho-calcified cellulose nanowhiskers (PCCNWs) as scaffolds in bone applications. The hydrophilicity and rate of hydrolytic degradation of PLDLLA were improved by introducing 10 wt% of PVA. PCCNWs with inherent hydrophilic properties, high aspect ratio, and large elastic modulus enhanced the hydrophilicity, accelerated the rate of degradation, and improved the mechanical properties of the nanofibrous samples. Moreover, calcium phosphate and phosphate functional groups on the surface of PCCNWs possessing act as stimulating agents for cellular activities such as proliferation and differentiation. Besides the physico-chemical properties investigation of PLDLLA/PVA-PCCNWs nanofibrous samples, their cytotoxicity was also studied and they did not show any adverse side effect. Incorporation of PCCNWs (1 wt%) into the PLDLLA/PVA nanofibrous samples showed more enzymatic activities and deposited calcium. The micrograph images of the morphology of human mesenchymal stem cells (hMSCs) cultured on the nanofibrous sample containing 1 wt% of PCCNWs after 14 days of cell differentiation revealed their high potential for bone tissue engineering.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Hafez Jafari
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Alireza Khatibi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mamak Bakhtiari
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Beeta Tavana
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
43
|
Hivechi A, Milan PB, Modabberi K, Amoupour M, Ebrahimzadeh K, Gholipour AR, Sedighi F, Amini N, Bahrami SH, Rezapour A, Hamidi M, Delattre C. Synthesis and Characterization of Exopolysaccharide Encapsulated PCL/Gelatin Skin Substitute for Full-Thickness Wound Regeneration. Polymers (Basel) 2021; 13:polym13060854. [PMID: 33802198 PMCID: PMC8000589 DOI: 10.3390/polym13060854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of skin integrity can lead to serious problems and even death. In this study, for the first time, the effect of exopolysaccharide (EPS) produced by cold-adapted yeast R. mucilaginosa sp. GUMS16 on a full-thickness wound in rats was evaluated. The GUMS16 strain's EPS was precipitated by adding cold ethanol and then lyophilized. Afterward, the EPS with polycaprolactone (PCL) and gelatin was fabricated into nanofibers with two single-needle and double-needle procedures. The rats' full-thickness wounds were treated with nanofibers and Hematoxylin and eosin (H&E) and Masson's Trichrome staining was done for studying the wound healing in rats. Obtained results from SEM, DLS, FTIR, and TGA showed that EPS has a carbohydrate chemical structure with an average diameter of 40 nm. Cell viability assessments showed that the 2% EPS loaded sample exhibits the highest cell activity. Moreover, in vivo implantation of nanofiber webs on the full-thickness wound on rat models displayed a faster healing rate when EPS was loaded into a nanofiber. These results suggest that the produced EPS can be used for skin tissue engineering applications.
Collapse
Affiliation(s)
- Ahmad Hivechi
- Department of Textile Engineering, School of Materials and Advanced Processing, Amirkabir University of Technology, Tehran 1591639675, Iran; (A.H.); (S.H.B.)
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1591639675, Iran; (P.B.M.); (N.A.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1591639675, Iran
| | - Khashayar Modabberi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4477166595, Iran; (K.M.); (A.R.G.); (F.S.)
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1591639675, Iran;
| | - Kaveh Ebrahimzadeh
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1591639675, Iran;
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1591639675, Iran
| | - Amir Reza Gholipour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4477166595, Iran; (K.M.); (A.R.G.); (F.S.)
| | - Faezeh Sedighi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4477166595, Iran; (K.M.); (A.R.G.); (F.S.)
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1591639675, Iran; (P.B.M.); (N.A.)
| | - S. Hajir Bahrami
- Department of Textile Engineering, School of Materials and Advanced Processing, Amirkabir University of Technology, Tehran 1591639675, Iran; (A.H.); (S.H.B.)
| | - Alireza Rezapour
- Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom 3716993456, Iran;
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4477166595, Iran; (K.M.); (A.R.G.); (F.S.)
- Correspondence: (M.H.); (C.D.); Tel.: +32-26-50-3681 (M.H.); +33-(0)4-73-40-7423 (C.D.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
- Correspondence: (M.H.); (C.D.); Tel.: +32-26-50-3681 (M.H.); +33-(0)4-73-40-7423 (C.D.)
| |
Collapse
|
44
|
Siddiqui N, Kishori B, Rao S, Anjum M, Hemanth V, Das S, Jabbari E. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Mol Biotechnol 2021; 63:363-388. [PMID: 33689142 DOI: 10.1007/s12033-021-00311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 01/17/2023]
Abstract
Regeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment. The biocompatibility and hydrophilicity of PCL nanofibres can be improved by combining PCL with other biomaterials to form composite scaffolds for bone regeneration. This work reviews the most recent research on synthesis, characterization and cellular response to nanofibrous PCL scaffolds and the composites of PCL with other natural and synthetic materials for bone tissue engineering.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India.
| | - Braja Kishori
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Saranya Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Mohammad Anjum
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Venkata Hemanth
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Swati Das
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
45
|
Ahmadi S, Hivechi A, Bahrami SH, Milan PB, Ashraf SS. Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. Int J Biol Macromol 2021; 173:580-590. [PMID: 33513421 DOI: 10.1016/j.ijbiomac.2021.01.156] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/11/2023]
Abstract
This study develops chitosan/gelatin nanofiber membranes with sustained release capacity to prevent infection by delivering cinnamon extract (CE) in the implanted site. The effects of the incorporation of CE content (2-6%) on the properties of the nanofibers were evaluated. Morphological studies using SEM indicated that loading the extract did not affect the average diameter of nanofiber mats, which remained around 140-170 nm. TGA and FTIR spectroscopy results confirmed successful CE loading. Furthermore, the results showed that incorporating extract into the nanofibers enhanced their degradation behavior, antibacterial activity, and biocompatibility. Cultured cells attached to and proliferate on the nanofiber membrane with high cell viability capacity until the CE content reached 4%. The extract release profile consisted of a burst release in the first 6 h, followed by a controlled release in the next 138 h. Therefore, CE loaded chitosan/gelatin nanofiber is an excellent construct for biomedical applications.
Collapse
Affiliation(s)
- Soroush Ahmadi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ahmad Hivechi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Peiman B Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Ashraf
- Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int J Pharm 2021; 596:120213. [PMID: 33493599 DOI: 10.1016/j.ijpharm.2021.120213] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process that takes a long time to complete. The three-layer nanofiber wound dressing containing melatonin is highly expected to show remarkable wound repair by reducing the wound healing time. In this study, chitosan (Cs)-polycaprolactone (PCL)/ polyvinylalcohol (PVA)-melatonin (MEL)/ chitosan-polycaprolactone three-layer nanofiber wound dressing was prepared by electrospinning for melatonin sustained release. The characteristics of the wound dressing were further evaluated. The wound dressing had a high water uptake after 24 h (401%), and the water contact angle results showed that it had hydrophilicity effect that supported the cell attachment. The wound healing effect of wound dressing was examined using a full-thickness excisional model of rat skin by the local administration of MEL. The gene expressions of transforming growth factor-beta (TGF-β1), alpha-smooth muscle actin (α-SMA), collagen type I (COL1A1), and collagen type III (COL3A1) were further studied. The histopathological evaluation showed the complete regeneration of the epithelial layer, remodeling of wounds, collagen synthesis, and reduction in inflammatory cells. The NF + 20% MEL significantly increased TGF-β1, COL1A1, COL3A1, and α-SMA mRNA expressions. This wound dressing may have a considerable potential as a wound dressing to accelerate the wound healing.
Collapse
Affiliation(s)
- Tahereh Mirmajidi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Faraz Chogan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran.
| | - Ali Mohammad Sharifi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran; Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
47
|
Three dimensional polycaprolactone/cellulose scaffold containing calcium-based particles: a new platform for bone regeneration. Carbohydr Polym 2020; 250:116880. [DOI: 10.1016/j.carbpol.2020.116880] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
|
48
|
de Oliveira Santos RP, Ramos LA, Frollini E. Bio-based electrospun mats composed of aligned and nonaligned fibers from cellulose nanocrystals, castor oil, and recycled PET. Int J Biol Macromol 2020; 163:878-887. [DOI: 10.1016/j.ijbiomac.2020.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
|
49
|
Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020; 12:E983. [PMID: 33080849 PMCID: PMC7589858 DOI: 10.3390/pharmaceutics12100983] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms'adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.
Collapse
Affiliation(s)
- Andreea-Teodora Iacob
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Maria Drăgan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Oana-Maria Ionescu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Lenuța Profire
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Luminița Georgeta Confederat
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania;
| | - Dan Lupașcu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| |
Collapse
|
50
|
Madhukiran Dr, Jha A, Kumar M, Ajmal G, Bonde GV, Mishra B. Electrospun nanofiber-based drug delivery platform: advances in diabetic foot ulcer management. Expert Opin Drug Deliv 2020; 18:25-42. [PMID: 32924638 DOI: 10.1080/17425247.2021.1823966] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Electrospinning is a facile and viable method for the fabrication of nanofibers. Electrospun nanofiber has a great potential in providing local drug or therapeutic molecule delivery to the wound site. The versatile nature of this technique ensures a broad scope of material used in the fabrication of nanofibers. AREA COVERED A brief introduction to diabetic foot ulcer (DFU) is covered with its pathogenesis, followed by the role of electrospun nanofibers in DFU. This review covers the evolution of the electrospinning technique over the past few years, various types of electrospun nanofibers reported for DFU or chronic diabetic wounds, the challenges associated with the preparation of nanofibers, and various methods to evaluate their efficacy and performance in diabetic wound healing. EXPERT OPINION Electrospinning-based nanofibers provide a safe, effective, and multifunctional system for effective management of DFU.
Collapse
Affiliation(s)
- Madhukiran Dr
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Gufran Ajmal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi, India.,School of Pharmacy, Bharat Institute of Technology , Meerut, Uttar Pradesh, India
| | - Gunjan Vasant Bonde
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi, India.,School of Health Sciences, University of Petroleum and Energy Studies , Bidholi, Dehradun, Uttarakhand, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi, India
| |
Collapse
|