1
|
Guan L, Wang W, Zhang X, Zhang Y, Wu J, Xue W, Huang S. Functionalized Green Carbon dots for Specific Detection of Copper in Human Serum Samples and Living Cells. J Fluoresc 2025; 35:1637-1649. [PMID: 38421599 DOI: 10.1007/s10895-024-03586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024]
Abstract
Intracellular copper ion (Cu2+) is irreplaceable and essential in regulation of physiological and biological processes, while excessive copper from bioaccumulation may cause potential hazards to human health. Hence, effective and sensitive recognition is urgently significant to prevent over-intake of copper. In this work, a novel highly sensitive and green carbon quantum dots (Green-CQDs) were synthesized by a low-cost and facile one-step microwave auxiliary method, which utilized gallic acid, carbamide and PEG400 as carbon source, nitrogen source and surface passivation agent, respectively. The decreased fluorescence illustrated excellent linear relationship with the increasing of Cu2+ concentration in a wide range. Substantial surface amino and hydroxyl group introduced by PEG400 significantly improved selectivity and sensitivity of Green-CQDs. The surface amino chelation mechanism and fluorescence internal filtration effect were demonstrated by the restored fluorescence after addition of EDTA. Crucially, the nanosensor illustrated good cell permeability, high biocompatibility and recovery rate, significantly practical application in fluorescent imaging and biosensing of intracellular Cu2+ in HepG-2 cells, which revealed a potential and promising biological applications in early diagnosis and treatment of copper ion related disease.
Collapse
Affiliation(s)
- Lijiao Guan
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Wenxian Wang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Xianfen Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Yuding Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China, 250022.
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| |
Collapse
|
2
|
Dai Y, Hu P, Chu T, Niu M, Shi H, Li H, Wang Z, Guo Y. Confinement of carbon dots into carboxymethyl cellulose matrice to prepare solid-state fluorescent films and couple with Eu-MOF toward white light-emitting diodes. Int J Biol Macromol 2025; 296:139682. [PMID: 39793810 DOI: 10.1016/j.ijbiomac.2025.139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
As a novel fluorescent carbon nanomaterial, carbon dots are restricted by their poor fluorescence in the solid state, although they exhibit favorable photoluminescence in solution. N-doped carbon dots (N-CDs) and solid-state fluorescence films were prepared using green and renewable cellulose-derived materials, respectively. The hydrogen bonding network of carboxymethyl cellulose (CMC) inhibits the self-aggregation behavior of N-CDs, which leads to solid-state fluorescence. The N-CDs was initially obtained with CMC as the carbon source, which showed excellent blue fluorescence. Subsequently, the white-emitting films (N-CDs@Eu-MOF/CMC) were successfully constructed by combining the blue fluorescent N-CDs with the red fluorescence of the europium metal-organic framework. The prepared films showed stable luminescence within 30 days and in the heat environment at 120 °C for 3 h. After covering the N-CDs@Eu-MOF/CMC films on the UV-LED chip with ultraviolet emissive at 365 nm, the white light-emitting diodes were obtained, which exhibited excellent color characteristics with the color coordinates, a correlated color temperature, and a color rendering index of (0.31, 0.32), 6580 K, and 92, respectively. The strategy proposed in this work will provide ideas for generating optical luminescent films from biomass and provide guidance for solid-state fluorescence biomass materials.
Collapse
Affiliation(s)
- Yunchuan Dai
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Pengyu Hu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Chu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Meihong Niu
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiqiang Shi
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiming Li
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanzhu Guo
- The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Fu Y, Li Y, Wang J, Jing Y, Pan J, Ma M, Shen Y, Wang D, Wei S, Wang C, Li J. Preparation of carboxymethyl chitosan-Tb 3+ (CMCh-Tb 3+) fluorescent probe: For high-sensitivity Cu 2+ detection and mechanism study. Int J Biol Macromol 2025; 297:139798. [PMID: 39805430 DOI: 10.1016/j.ijbiomac.2025.139798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Carboxymethyl chitosan (CMCh) is a natural polysaccharide derivative with biodegradability, rich in active amino and carboxyl groups. It can act as a ligand to coordinate with rare earth ions, transferring absorbed energy to the central ion to sensitize its luminescence. In this paper, CMCh-Tb3+ was prepared as a solid fluorescent probe by mixing CMCh solution with Tb3+. The morphology, structure and properties of CMCh-Tb3+ were characterized and analyzed by SEM, IR and XPS, and then the chemical structure of CMCh-Tb3+ was determined. CMCh-Tb3+, as a highly sensitive fluorescent sensor for detecting Cu2+, has a detection limit (LOD) of 27.14 nmol/L. Through characterization using fluorescence spectroscopy, ultraviolet absorption spectroscopy, and fluorescence lifetime, we further explored the mechanism of Cu2+ fluorescence quenching, finding that this process is primarily achieved through dynamic quenching. Additionally, we discovered that glutathione (GSH) can form a strong coordination with Cu2+, thereby inhibiting the quenching effect of Cu2+ on the emission intensity of CMCh-Tb3+ and restoring its luminescence characteristics. This finding indicates that CMCh-Tb3+ can not only serve as a fluorescence sensor for detecting Cu2+ but also as a reversible fluorescence sensor, significantly enhancing its performance in practical applications.
Collapse
Affiliation(s)
- Yuan Fu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Yuanhang Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Yichang Jing
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Jiangbo Pan
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Mingjian Ma
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Yuan Shen
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Di Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Shuangying Wei
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Chengyu Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Jian Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
4
|
Shi X, Tan Y, Zhang Y, Long Z, Wang C, Dai L, Dong C. Regulating Zn deposition via an ion-sieving, nanoporous cellulose separator for high performance aqueous zinc-ion batteries. Int J Biol Macromol 2025; 287:138542. [PMID: 39653210 DOI: 10.1016/j.ijbiomac.2024.138542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/21/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs), one of the most promising renewable energy storage devices, are largely impeded by the disreputable cycling stability in its large-scale application as a result of the undesirable Zn dendrites growth and the side reactions. In this context, a carboxylate (-COO-) anionic group functionalized cellulose nanofibrils separator (A-CNF) with nanoporous structure and ion-sieving effect is developed to realize a stable Zn anode without dendrites and by-products. An increased Zn2+ transference number and uniform Zn deposition can be achieved through the electrostatic adsorption between -COO- and Zn2+. More importantly, the synergistic effect between -COO- and hydroxyl group (-OH) in the cellulose nanofibrils separator inhibits the occurrence of side reactions caused by SO42- and free water molecules. As a result, the nanoporous separator consisting of carboxylated cellulose nanofibrils enables Zn anode with high stability and utilization, exhibiting a stable cycling life for 950 h in Zn//Zn cell and an admirable coulombic efficiency of 98.9 % after 300 cycles in Zn//Cu cell. The assembled Zn//MnO2 full cell with the nanoporous cellulose nanofibrils-based separator shows exceptional cyclability and capacity retention after 1000 cycles. This work provides a valuable and practical separator for high performance AZIBs, which might spur its practical application.
Collapse
Affiliation(s)
- Xiaorong Shi
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yongsong Tan
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yongming Zhang
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Zhu Long
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China.
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China.
| | - Lei Dai
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Cuihua Dong
- Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China
| |
Collapse
|
5
|
Qamar Z, Aslam AA, Fatima F, Hassan SU, Nazir MS, Ali Z, Awad SA, Khan AA. Recent development towards the novel applications and future prospects for cellulose-metal organic framework hybrid materials: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63501-63523. [PMID: 39500790 DOI: 10.1007/s11356-024-35449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
The hybrid material created by combining cellulose and MOF is highly promising and possesses a wide range of useful properties. Cellulose-based metal-organic frameworks (CelloMOFs) combine the inherent biocompatibility and sustainability of cellulose with the tunable porosity and diverse metal coordination chemistry of MOFs. Cellulose-MOF hybrids have countless applications in various fields, such as energy storage, water treatment, air filtration, gas adsorption, catalysis, and biomedicine. They are particularly remarkable as adsorbents that can eliminate pollutants from wastewater, including metals, oils, dyes, antibiotics, and drugs, and act as catalysts for oxidation and reduction reactions. Furthermore, they are highly efficient air filters, able to remove carbon dioxide, particulate matter, and volatile organic compounds. When it comes to energy storage, these hybrids have demonstrated exceptional results. They are also highly versatile in the realm of biomedicine, with applications such as antibacterial and drug delivery. This article provides an in-depth look at the fabrication methods, advanced applications of cellulose-MOF hybrids, and existing and future challenges.
Collapse
Affiliation(s)
- Zeenat Qamar
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Awais Ali Aslam
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
- Chemistry Department, University of Education Lahore, Vehari Campus, Vehari, Punjab, Pakistan
| | - Farheen Fatima
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan.
| | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sameer Ahmed Awad
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, 31001, Al-Anbar Governorate, Iraq
- Department of Chemistry, School of Science and Technology, University of New England, Armidale, 2351, NSW, Australia
| | - Aqeel Ahmad Khan
- Department of Chemical Engineering, Brunel University London, London, Uxbridge Middlesex, UB8 3PH, UK
| |
Collapse
|
6
|
Yang Y, Li D, Yan N, Guo F. A new 3D printing strategy by enhancing shear-induced alignment of gelled nanomaterial inks resulting in stronger and ductile cellulose films. Carbohydr Polym 2024; 340:122269. [PMID: 38858020 DOI: 10.1016/j.carbpol.2024.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Cellulose nanofibrils (CNFs) are derived from biomass and have significant potential as fossil-based plastic alternatives used in disposable electronics. Controlling the nanostructure of fibrils is the key to obtaining strong mechanical properties and high optical transparency. Vacuum filtration is usually used to prepare the CNFs film in the literature; however, such a process cannot control the structure of the CNFs film, which limits the transparency and mechanical strength of the film. Here, direct ink writing (DIW), a pressure-controlled extrusion process, is proposed to fabricate the CNFs film, which can significantly harness the alignment of fibrils by exerting shear stress force on the filaments. The printed films by DIW have a compact structure, and the degree of fibril alignment quantified by the small angle X-ray diffraction (SAXS) increases by 24 % compared to the vacuum filtration process. Such a process favors the establishment of the chemical bond (or interaction) between molecules, therefore leading to considerably high tensile strength (245 ± 8 MPa), elongation at break (2.2 ± 0.5 %), and good transparency. Thus, proposed DIW provides a new strategy for fabricating aligned CNFs films in a controlled manner with tunable macroscale properties. Moreover, this work provides theoretical guidance for employing CNFs as structural and reinforcing materials to design disposable electronics.
Collapse
Affiliation(s)
- Yunxia Yang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Dan Li
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China.
| | - Ning Yan
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, M5S 3E5, Canada
| | - Fu Guo
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China; School of Mechanical Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| |
Collapse
|
7
|
Deng Y, Jiang S, Yan Z, Chu Y, Wu W, Xiao H. Fluorescent Eu-MOF@nanocellulose-based nanopaper for rapid and sensitive detection of uranium (Ⅵ). Anal Chim Acta 2024; 1292:342211. [PMID: 38309843 DOI: 10.1016/j.aca.2024.342211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Radioactive uranium leaks into natural water bodies mainly in the form of uranyl ions (UO22+), posing ecological and human health risks. Fluorescent europium-based metal-organic frameworks (Eu-MOFs) have been demonstrated to be effective fluorescent sensors for UO22+, but the large size, powder state and poor dispersity limit their further application. In this work, fluorescent Eu-MOFs were in-situ grown on TEMPO-oxidized cellulose nanofibers (TOCNFs), which is the first time that spherical Eu-MOF crystals with sizes below 10 nm were prepared. Fluorescence spectral analysis revealed a nine-fold increase in the fluorescence intensity of TOCNF@Eu-MOF compared to Eu-MOF. The nanocomposites achieved rapid and sensitive fluorescence quenching to UO22+ through the "antenna effect" and unsaturated Lewis basic sites on the ligands binding with UO22+. Moreover, TOCNF@Eu-MOF demonstrated excellent selectivity and anti-interference for UO22+ detection. For the nanopaper-based sensor made from TOCNF@Eu-MOF, the Stern-Volmer quenching constant (KSV) was calculated as 8.21 × 104 M-1, and the lowest limit of detection (LOD) was 6.6 × 10-7 M, significantly lower than the 1.32 × 10-6 M of Eu-MOFs. In addition, the nanopaper exhibited good fluorescence stability and cyclic detection performance, enabling the rapid and convenient detection of UO22+ in the aqueous phase within 30 s by simple dipping.
Collapse
Affiliation(s)
- Yuqing Deng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zifei Yan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
8
|
Li Q, Lan Y, Yang Y, Kang S, Wang X, Jiang J, Liu S, Wang Q, Zhang W, Zhang L. Effect of luminescent materials on the biochemistry, ultrastructure, and rhizobial microbiota of Spirodela polyrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108427. [PMID: 38367389 DOI: 10.1016/j.plaphy.2024.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Fluorescent materials and technologies have become widely used in scientific research, and due to the ability to convert light wavelengths, their application to photosynthetic organisms can affect their development by altering light quality. However, the impacts of fluorescent materials on aquatic plants and their environmental risks remain unclear. To assess the effects of luminescent materials on floating aquatic macrophytes and their rhizosphere microorganisms, 4-(di-p-tolylamino)benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino)benzaldehyde-M (DTB-M) (emitting blue-green and orange-red light, respectively) were added individually and jointly to Spirodela polyrhiza cultures and set at different concentrations (1, 10, and 100 μM). Both DTB-A and DTB-M exhibited phytotoxicity, which increased with concentration under separate treatment. Moreover, the combined group exhibited obvious stress relief at 10 μM compared to the individually treated group. Fluorescence imaging showed that DTB-A and DTB-M were able to enter the cell matrix and organelles of plant leaves and roots. Peroxidation induced cellular damage, contributing to a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde (MDA) accumulation. Decomposition of organelle structures, starch accumulation in chloroplasts, and plasmolysis were observed under the ultrastructure, disrupting photosynthetic pigment content and photosynthesis. DTB-A and DTB-M exposure resulted in growth inhibition, dry weight loss, and leaf yellowing in S. polyrhiza. A total of 3519 Operational Taxonomic Units (OTUs) were identified in the rhizosphere microbiome. The microbial communities were dominated by Alphaproteobacteria, Oxyphotobacteria, and Gammaproteobacteria, with the abundance and diversity varied significantly among treatment groups according to Shannon, Simpson, and Chao1 indices. This study revealed the stress defense response of S. polyrhiza to DTB-A and DTB-M exposures, which provides a broader perspective for the bioremediation of pollutants using aquatic plants and supports the further development of fluorescent materials for applications.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Yiyang Lan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Shiyun Kang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Xin Wang
- The Chinese University of Hong Kong, Shenzhen, 518172, PR China
| | - Jiarui Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Shengyue Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | | | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Liping Zhang
- The Chinese University of Hong Kong, Shenzhen, 518172, PR China.
| |
Collapse
|
9
|
Ji C, Zhang J, Fan R, Sun T, Yang Y. Tetranuclear Cluster-Based Eu(III)-Metal-Organic Framework: Ratiometric Platform Design and Ultrasensitive Phenylglyoxylic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878990 DOI: 10.1021/acsami.3c12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Phenylglyoxalic acid (PGA) is a typical metabolite produced by the invasion of styrene into the human body. The detection of PGA can not only reflect the health status of the human body but also assess the level of styrene contamination in the environment. Herein, a novel Eu(III)-MOF (Eu-ttpd) with excellent fluorescence properties was designed by employing the tetrazole-based ligand of 5-((4'-(tetrazol-5'-yl)benzyl)oxy) isophthalic acid (H2ttpd), which successfully used a fluorescent sensor for PGA. The as-synthesized Eu-ttpd features the unique 10-connected tetranuclear cluster [Eu4(μ3-O)2(COO)8]4+ and exhibits a novel (3,10)-connected topological. Benefiting from the perfectly matched excited-state energy levels of the employed H2ttpd ligand with PGA, rapid photoinduced electron transfer (PET) and Dexter-ET can occur, which entitle Eu-ttpd a fast fluorescence quenching response to PGA with a remarkable LOD of 0.269 μM. More importantly, by integrating Eu-ttpd and Mg,N-CDs into the polyacrylamide hydrogel, we optimized Eu-ttpd into a hydrogel sensor which exhibited enhanced detection ability (LOD = 0.052 μM) accompanied by a distinguished color transformation (red-to-blue) and realized ultrasensitive and visual detection of PGA. This work offers an indication for the development of smart sensing materials for human health and environmental safety.
Collapse
Affiliation(s)
- Chengshan Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Tiancheng Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
10
|
Chen M, Shao R, Wang Q, Gao Y, Ma Y, Guan R, Yang T. Eu doped Zn-MOF nanofiber fluorescent membrane and its multifunctional detection of nitroaromatic compounds and Fe3+. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
11
|
Meng Z, Zhao F, Wang Z, Yang Y, Wang S. An efficient tetrahydroquinazolin-2-amine derivative-grafted cellulose fluorescent probe for detection of Cu 2+ and Zn 2. Carbohydr Polym 2023; 303:120445. [PMID: 36657857 DOI: 10.1016/j.carbpol.2022.120445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Cu2+ and Zn2+ play crucial roles in many physiological processes, and their disorder will cause harm to human health. An efficient difunctional fluorescent probe CMC-GE-PQA for simultaneous detection of Cu2+ and Zn2+ was synthesized based on carboxymethyl cellulose. The probe CMC-GE-PQA exhibited a moderate blue fluorescence color. Interestingly, this probe showed a distinct fluorescence enhancement response toward Zn2+, while it displayed a significant fluorescence quenching response toward Cu2+. The detection limits of CMC-GE-PQA for Cu2+ and Zn2+ were calculated as low as 5.0 × 10-8 M and 1.0 × 10-7 M, respectively. The detection mechanisms of CMC-GE-PQA for Cu2+ and Zn2+ were fully verified by Job's plot, X-ray photoelectron spectroscopy analysis. The probe CMC-GE-PQA was applied to determine the trace amounts of Cu2+ and Zn2+ in environmental water samples. In addition, the probe CMC-GE-PQA-based fluorescent film and hydrogel were manufactured to achieve the portable detection of Cu2+ and Zn2+.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Mai T, Li DD, Chen L, Ma MG. Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites. Carbohydr Polym 2023; 302:120359. [PMID: 36604046 DOI: 10.1016/j.carbpol.2022.120359] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Nanocellulose, as the star nanomaterial in carbohydrate polymers, has excellent mechanical properties, biodegradability, and easy chemical modification. However, further practical applications of nanocellulose are limited by their inadequate functionalization. Metal-organic frameworks (MOFs), as the star nanomaterial in functional polymers, have a large surface area, high porosity, and adjustable structure. The collaboration of nanocellulose and MOFs is a desirable strategy to make composites especially interesting for multifunctional and multi-field applications. What sparks will be produced by the collaboration of two-star nanomaterials? In this review article, we highlight an up-to-date overview of nanocellulose-based MOFs composites. The sewage treatment, gas separation, energy storage, and biomedical applications are mainly summarized. Finally, the challenges and research trends of nanocellulose-based MOFs composites are prospected. We hope this review may provide a valuable reference for the development and applications of carbohydrate polymer composites soon.
Collapse
Affiliation(s)
- Tian Mai
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Dan-Dan Li
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Lei Chen
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
13
|
Moharramnejad M, Ehsani A, Shahi M, Gharanli S, Saremi H, Malekshah RE, Basmenj ZS, Salmani S, Mohammadi M. MOF as nanoscale drug delivery devices: Synthesis and recent progress in biomedical applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
14
|
Che J, Jiang X, Fan Y, Li M, Zhang X, Gao D, Ning Z, Li H. A Novel Dual-Emission Fluorescence Probe Based on CDs and Eu 3+ Functionalized UiO-66-(COOH) 2 Hybrid for Visual Monitoring of Cu 2. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7933. [PMID: 36431418 PMCID: PMC9692640 DOI: 10.3390/ma15227933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
In this work, CDs@Eu-UiO-66(COOH)2 (denoted as CDs-F2), a fluorescent material made up of carbon dots (CDs) and a Eu3+ functionalized metal-organic framework, has been designed and prepared via a post-synthetic modification method. The synthesized CDs-F2 presents dual emissions at 410 nm and 615 nm, which can effectively avoid environmental interference. CDs-F2 exhibits outstanding selectivity, great sensitivity, and good anti-interference for ratiometric sensing Cu2+ in water. The linear range is 0-200 µM and the limit of detection is 0.409 µM. Interestingly, the CDs-F2's silicon plate achieves rapid and selective detection of Cu2+. The change in fluorescence color can be observed by the naked eye. These results reveal that the CDs-F2 hybrid can be employed as a simple, rapid, and sensitive fluorescent probe to detect Cu2+. Moreover, the possible sensing mechanism of this dual-emission fluorescent probe is discussed in detail.
Collapse
Affiliation(s)
- Jie Che
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xin Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yangchun Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Mingfeng Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xuejuan Zhang
- The Experiment Center, Shandong Police College, Jinan 250014, China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Zhanglei Ning
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| |
Collapse
|
15
|
Nguyen TMH, Bark CW. Self-Powered UVC Photodetector Based on Europium Metal-Organic Framework for Facile Monitoring Invisible Fire. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45573-45581. [PMID: 36178426 DOI: 10.1021/acsami.2c13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The effective use of a europium metal-organic framework (Eu-MOF) as a photoabsorber material has been reported. Using the advantages of Eu-MOFs including simple preparation, wide bandgap structure, and stability in the environment, a self-powered and high UVC-selectivity detector based on Eu-MOF nanoparticles was prepared with a simple device geometry. The as-fabricated photodetector was highly sensitive to 254 nm UV illumination without an external power supply. Accordingly, it exhibited a high UVC-to-UVA rejection ratio (I254/I365 ≈ 40) and UVC-to-solar rejection ratio (I254/Isolar light ≈ 34), a fast response time of 98/122 ms, a comparable on/off photocurrent ratio (107.33), and superior stability. The self-powered Eu-MOF photodetector can detect and monitor UV emission from an invisible fire in an early state at room temperature, suggesting practical use as a potential optoelectronic device.
Collapse
Affiliation(s)
- Thi My Huyen Nguyen
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, South Korea
| | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do13120, South Korea
| |
Collapse
|
16
|
Langari MM, Antxustegi MM, Labidi J. Nanocellulose-based sensing platforms for heavy metal ions detection: A comprehensive review. CHEMOSPHERE 2022; 302:134823. [PMID: 35525457 DOI: 10.1016/j.chemosphere.2022.134823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Increase in industrial activities has been arising a severe concern about water pollution caused by heavy metal ions (HMIs), such us lead (Pb2+), cadmium (Cd2+) or mercury (Hg2+). The presence of substantial amounts of these ions in the human body is harmful and can cause serious diseases. Hence, the detection of HMIs in water is of great importance. As technological advances have developed, some conventional methods have become obsolete due to some methodological disadvantages, giving way to a second generation that uses novel sensors. Recently, nanocellulose, as a biocompatible material, has drawn a remarkable attraction for developing sensors owing to its extraordinary physical and chemical properties. This review pays a special attention to the different dimensional nanocellulose-based sensors devised for HMIs recognition. What is more, different sensing techniques (optical and electrochemical), sensing mechanisms and the roles of nanocellulose in such sensors are discussed.
Collapse
Affiliation(s)
- Mahsa Mousavi Langari
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018, Donostia, Spain
| | - M Mirari Antxustegi
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Avenida Otaola 29, 20600, Eibar, Spain
| | - Jalel Labidi
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018, Donostia, Spain.
| |
Collapse
|
17
|
Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 2022; 291:119539. [DOI: 10.1016/j.carbpol.2022.119539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
18
|
Li H, Yin W, Ng CK, Huang R, Du S, Sharma M, Li B, Yuan G, Michalska M, Matta SK, Chen Y, Chandrasekaran N, Russo S, Cameron NR, Funston AM, Jasieniak JJ. Macroporous perovskite nanocrystal composites for ultrasensitive copper ion detection. NANOSCALE 2022; 14:11953-11962. [PMID: 35899800 DOI: 10.1039/d2nr02737b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accumulation of heavy metal ions, including copper ions (Cu2+), presents a serious threat to human health and to the environment. A substantial amount of research has focused on detecting such species in aqueous solutions. However, progress towards ultrasensitive and easy-to-use sensors for non-aqueous solutions is still limited. Here, we focus on the detection of copper species in hexane, realising ultra-sensitive detection through a fluorescence-based approach. To achieve this, a novel macroporous composite material has been developed featuring luminescent CsPbBr3 nanocrystals (NCs) chemically adhered to a polymerized high internal phase emulsion (polyHIPE) substrate through surface thiol groups. Due to this thiol functionality, sub-monolayer NC formation is realised, which also renders outstanding stability of the composite in the ambient environment. Copper detection is achieved through a direct solution based immersion of the CsPbBr3-(SH)polyHIPE composite, which results in concentration-dependent quenching of the NC photoluminescence. This newly developed sensor has a limit of detection (LOD) for copper as low as 1 × 10-16 M, and a wide operating window spanning 10-2 to 10-16 M. Moreover, the composite exhibits excellent selectivity among different transition metals.
Collapse
Affiliation(s)
- Hanchen Li
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wenping Yin
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Chun Kiu Ng
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxi Huang
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Shengrong Du
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Manoj Sharma
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Bin Li
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Gangcheng Yuan
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Monika Michalska
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Sri Kasi Matta
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- School of Science, RMIT University, Melbourne, 3000, Australia
| | - Yu Chen
- Monash Centre for Electron Microscopy (MCEM), Monash University, Clayton, Victoria, 3800, Australia
| | - Naresh Chandrasekaran
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Salvy Russo
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- School of Science, RMIT University, Melbourne, 3000, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Alison M Funston
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacek J Jasieniak
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
19
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
20
|
Lu Y, Liu C, Mei C, Sun J, Lee J, Wu Q, Hubbe MA, Li MC. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Tb-coordination polymer-anchored nanocellulose composite film for selective and sensitive detection of ciprofloxacin. Carbohydr Polym 2022; 287:119337. [DOI: 10.1016/j.carbpol.2022.119337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
|
22
|
Zhai Y, Li Y, Hou Q, Zhang Y, Zhou E, Li H, Ai S. Highly sensitive colorimetric detection and effective adsorption of phosphate based on MOF-808(Zr/Ce). NEW J CHEM 2022. [DOI: 10.1039/d2nj00640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MOF-808(Zr/Ce) has been successfully used for the sensitive and rapid detection of phosphate and phosphate removal by effective adsorption.
Collapse
Affiliation(s)
- Yuzhu Zhai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Qin Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Yuanhong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Enlong Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Houshen Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| |
Collapse
|
23
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Pei L, Zhao X, Liu B, Li Z, Wei Y. Rationally Tailoring Pore and Surface Properties of Metal-Organic Frameworks for Boosting Adsorption of Dy 3. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46763-46771. [PMID: 34565141 DOI: 10.1021/acsami.1c14302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The adsorption and recovery of dysprosium ions (Dy3+) from industrial wastewater are necessary but still challenging. Herein, we constructed a series of defect-containing metal-organic frameworks (MOFs) [UiO-66-(COOH)2] using sodium benzoate (BCNa) as a modulator. Upon the formation of defects, the porosity and surface charge properties of the MOFs were improved, leading to a higher utilization ratio of active groups and higher adsorption capacities for Dy3+. The synthesized UiO-66-(COOH)2-B10 with an optimal addition of BCNa exhibited a superior adsorption capacity of 150.6 mg g-1. Fast adsorption occurred at ∼5 min, and equilibrium was reached at ∼60 min. Higher pH and temperature were found to be beneficial for boosting Dy3+ adsorption, and selective adsorption over other metal ions was achieved in a multicomponent solution. Further, FTIR spectroscopy and XPS investigations indicate that free carboxyl contributes to the capture of Dy3+. Thus, this work provides a promising strategy to enhance the utilization ratio of active groups and further adsorption performance.
Collapse
Affiliation(s)
- Lei Pei
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xudong Zhao
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
- Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Baosheng Liu
- Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan 030024, China
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zhengjie Li
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yinghui Wei
- Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan 030024, China
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
25
|
Zhao X, Pei L, Fan H, Zhang Y, Liu B, Gao X, Wei Y. Synergic coordination and precipitation effects induced by free carboxyl for separation of iron(III) and nickel(II) in zirconium-metal-organic framework. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Mallakpour S, Sirous F, Hussain CM. Metal–organic frameworks/biopolymer nanocomposites: from fundamentals toward recent applications in modern technology. NEW J CHEM 2021. [DOI: 10.1039/d1nj01302e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bio–nanocomposite compounds based on biopolymers and MOFs have presented great potential in various applications for modern technology.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
27
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
28
|
Dias OAT, Konar S, Leão AL, Yang W, Tjong J, Sain M. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Front Chem 2020; 8:420. [PMID: 32528931 PMCID: PMC7253724 DOI: 10.3389/fchem.2020.00420] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022] Open
Abstract
Novel and unique applications of nanocellulose are largely driven by the functional attributes governed by its structural and physicochemical features including excellent mechanical properties and biocompatibility. In recent years, thousands of groundbreaking works have helped in the development of targeted functional nanocellulose for conductive, optical, luminescent materials, and other applications. The growing demand for sustainable and renewable materials has led to the rapid development of greener methods for the design and fabrication of high-performance green nanomaterials with multiple features, and consequently new challenges and opportunities. The present review article discusses historical developments, various fabrication and functionalization methods, the current stage, and the prospects of flexible energy and hybrid electronics based on nanocellulose.
Collapse
Affiliation(s)
| | - Samir Konar
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Alcides Lopes Leão
- College of Agricultural Sciences, São Paulo State University (Unesp), São Paulo, Brazil
| | - Weimin Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jimi Tjong
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|