1
|
Zhang Z, Mu L, Li J, Zhao H, Hou HM, Zhang GL, Hao H, Bi J. A double cross-linked film based on carboxymethyl chitosan binding with L-cysteine/ oxidized konjac glucomannan with slow-release of nisin for food preservation. Food Chem 2025; 472:142876. [PMID: 39827557 DOI: 10.1016/j.foodchem.2025.142876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
In order to address the issue of food contamination by microorganisms and effectively harness the antibacterial properties of nisin, we attempted to incorporate nisin into natural polymer films while addressing its inherent instability. An antibacterial food packaging film based on carboxymethyl chitosan (CCS) binding with L-cysteine (CYS) and oxidized konjac glucomannan (OKG) was developed through both Schiff base reaction and addition reaction of thiol aldehyde. To analyze the effect of addition reaction of thiol aldehyde on the CCS-CYS/OKG films' physicochemical properties, the CCS-CYS was prepared with different CYS combination rates, which were further used to fabricate composite films. It is found that the incorporation of CYS improved the mechanical properties of CCS-CYS/OKG films and facilitated the formation of a denser network structure. The incorporation of CYS also enhanced the film's ultraviolet barrier property, swelling behaviors, as well as loading and release capacity of nisin. As the CYS binding rate of 22.76 %, the CCS-CYS(2)/OKG film exhibited an efficient loading capacity for nisin at 91.53 % with a sustained release over 240 min. Kinetic model analysis revealed that nisin was released through non-Fickian diffusion, mainly driven by gradient concentration and osmotic pressure. Furthermore, the CCS-CYS(2)/OKG-nisin film also displayed significant antibacterial activity against Staphylococcus aureus with an inhibition zone diameter of 22.63 mm at 10 h, thereby, that was also successfully employed for salmon preservation.
Collapse
Affiliation(s)
- Zihao Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Lu Mu
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Jinlong Li
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Haixin Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Hong-Man Hou
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Gong-Liang Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Jingran Bi
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Zhao Y, Chen M, Li G, Zhang L, Duan Y, Zhong P, Yang T, Yao Y, Wang Y, Gong G, Huang L, Liu Y, Wang Z. Antioxidant activity of differently sized and sulfated konjac glucomannan fragments prepared by the relay strategy. Int J Biol Macromol 2025; 307:142188. [PMID: 40112981 DOI: 10.1016/j.ijbiomac.2025.142188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Konjac glucomannan (KGM) is a polysaccharide with potential medical and functional properties. Here, the antioxidant and cytoprotective effects of sulfated and differently sized KGM fractions were investigated using various in vitro assays. The sulfated KGMs (SKGMs) were prepared via a relay strategy. First, Vitamin C (Vc)-H2O2 degradation was employed to obtain three soluble KGM fractions with different molecular weights. Second, nine KGM derivatives with varying sulfate content were obtained by the sulfur trioxide-pyridine method. The scavenging of DPPH, superoxide, and hydroxyl radicals was measured in vitro. The antioxidant activity of SKGM correlated positively with sulfate content. SKGM-I-2 displayed the most potent radical scavenging activity. Its purification by cellulose DEAE-52 column chromatography yielded four homogeneous fractions (SKGM-I-2a, SKGM-I-2b, SKGM-I-2c, and SKGM-I-2d). Pretreatment with SKGM-I-2d increased the viability of RAW264.7 cells exposed to H2O2. Moreover, SKGM-I-2d significantly increased the activity of superoxide dismutase and catalase, as well as the levels of glutathione, while regulating the expression of Keap1, Nrf2, and HO-1 in RAW264.7 cells. The present study suggests that SKGM-I-2d protects RAW264.7 cells against H2O2-induced oxidative injury through the activation of the Nrf2/Keap1 signaling pathway. These results provide a scientific basis for future studies linking the structural and functional features of KGM.
Collapse
Affiliation(s)
- Yilong Zhao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Min Chen
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guo Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Lan Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxi Duan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tong Yang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxuan Yao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yizhe Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Jittham R, Putdon N, Uyama H, Hsu YI, Theerakulpisut S, Okhawilai M, Srikhao N, Kasemsiri P. Injectable gelatin/modified starch waste hydrogels containing metal-phenolic network derived from phenol-rich spent coffee grounds for self-healing and pH-responsive drug release. Int J Biol Macromol 2025; 307:141774. [PMID: 40054817 DOI: 10.1016/j.ijbiomac.2025.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Injectable hydrogels hold promise for drug delivery and biomedical applications but often lack multifunctional properties such as antibacterial activity, self-adhesion, and controlled drug release. This study developed a multifunctional gelatin-based hydrogel using modified cassava starch waste (CSW) and a metal-phenolic complex from spent coffee grounds (ex-SCG). The CSW was used to prepare aldehyde starch (DAS), while ferric ions formed metal-ligand bonds with phenolic compounds extracted from ex-SCG. The injectable hydrogel's properties were evaluated based on metal coordination complex with Fe3+ (ex-SCG-Fe3+) content. The presence of 1 % ex-SCG-Fe3+ in the gelatin/DAS hydrogel exhibited a minimum inhibitory concentration against both gram-positive and gram-negative bacteria. The adhesive strength of the samples increased from 1.44 ± 0.45 kPa to 6.50 ± 0.12 kPa with the addition of ex-SCG-Fe3+ ranging from 0 to 3 %. The gelatin/DAS hydrogel containing ex-SCG-Fe3+ exhibited better pH-responsive control of drug release compared to the neat gelatin/DAS hydrogel. Additionally, it demonstrated self-healing ability. The presence of metronidazole (MTZ) as a model drug in the gelatin/DAS hydrogel containing ex-SCG-Fe3+ enhanced antibacterial activities but slightly decreased mechanical properties. The obtained injectable hydrogel presents a promising approach, utilizing food by-products as a beneficial material for medical applications.
Collapse
Affiliation(s)
- Rawit Jittham
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Noppanan Putdon
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Manunya Okhawilai
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natwat Srikhao
- Department of Chemical Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Cheng QS, Xu PY, Luo SC, Chen AZ. Advances in Adhesive Materials for Oral and Maxillofacial Soft Tissue Diseases. Macromol Biosci 2025; 25:e2400494. [PMID: 39588806 DOI: 10.1002/mabi.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Oral diseases represent a prevalent global health burden, profoundly affecting patients' quality of life. Given the involvement of oral mucosa and muscles in diverse physiological functions, coupled with clinical aesthetics considerations, repairing oral and maxillofacial soft tissue defects poses a formidable challenge. Wet-adhesive materials are regarded as promising oral repair materials due to their unique advantages in easily overcoming physical and biological barriers in the oral cavity. This review first introduces the intricate wet-state environment prevalent in the oral cavity, meticulously explaining the fundamental physical and chemical adhesion mechanisms that underpin adhesive materials. It then comprehensively summarizes the diverse types of adhesives utilized in stomatology, encompassing polysaccharide, protein, and synthetic polymer adhesive materials. The review further evaluates the latest research advancements in utilizing these materials to treat various oral and maxillofacial soft tissue diseases, including oral mucosal diseases, periodontitis, peri-implantitis, oral and maxillofacial skin defects, and maxillofacial tumors. Finally, it also highlights the promising future prospects and pivotal challenges related to stomatology application of multifunctional adhesive materials.
Collapse
Affiliation(s)
- Qiu-Shuang Cheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
5
|
Tang S, Feng K, Yang R, Cheng Y, Chen M, Zhang H, Shi N, Wei Z, Ren H, Ma Y. Multifunctional Adhesive Hydrogels: From Design to Biomedical Applications. Adv Healthc Mater 2025; 14:e2403734. [PMID: 39604246 DOI: 10.1002/adhm.202403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Adhesive hydrogels characterized by structural properties similar to the extracellular matrix, excellent biocompatibility, controlled degradation, and tunable mechanical properties have demonstrated significant potential in biomedical applications, including tissue engineering, biosensors, and drug delivery systems. These hydrogels exhibit remarkable adhesion to target substrates and can be rationally engineered to meet specific requirements. In recent decades, adhesive hydrogels have experienced significant advancements driven by the introduction of numerous multifunctional design strategies. This review initially summarizes the chemical bond-based design strategies for tissue adhesion, encompassing static covalent bonds, dynamic covalent bonds, and non-covalent interactions. Subsequently, the multiple functionalities imparted by these diverse design strategies, including highly stretchable and tough performances, responsiveness to microenvironments, anti-freezing/heating properties, conductivity, antibacterial activity, and hemostatic properties are discussed. In addition, recent advances in the biomedical applications of adhesive hydrogels, focusing on tissue repair, drug delivery, medical devices, and wearable sensors are reviewed. Finally, the current challenges are highlighted and future trends in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Keru Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meiyue Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Zhang C, Zhao H, Geng S, Li C, Liu J, Chen Y, Yi M, Liu Y, Guan F, Yao M. Adhesive, Stretchable, and Photothermal Antibacterial Hydrogel Dressings for Wound Healing of Infected Skin Burn at Joints. Biomacromolecules 2024; 25:7750-7766. [PMID: 39540762 DOI: 10.1021/acs.biomac.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dressings for infectious skin burn wounds at joints should have therapeutic functions as well as high tissue-adhesion, stretching, and self-healing properties. This makes it difficult for most hydrogel dressings to simultaneously meet the above-mentioned requirements. In this study, poly(vinyl alcohol), anhydrous sodium borax, epigallocatechin gallate, and copper chloride were used to prepare a hydrogel dressing (PBEC) for the infected burn wound healing at joints. The PBEC hydrogel can adhere to a variety of substrates, has a stretching capacity, and quickly self-healing after being damaged. Additionally, the PBEC hydrogel has the properties of reactive oxygen species scavenging, photothermal sterilization, hemostatic ability, and biocompatibility. Finally, the hydrogel could accelerate the process of wound healing in vivo, especially with the assistance of near-infrared radiation. Therefore, the hydrogel dressing shows great potential for clinical application in the healing of infected burn wounds at joints.
Collapse
Affiliation(s)
- Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Shanshan Geng
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Chenghao Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Jingmei Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Yuxin Chen
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Ming Yi
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Yuntong Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
7
|
Wang Y, Huang Z, Zhou T, Li C, Sun Y, Pang J. Progress of research on aroma absorption mechanism and aroma fixation pathway of jasmine green tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9111-9127. [PMID: 38877788 DOI: 10.1002/jsfa.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
This overview summarizes the latest research progress on the aroma absorption mechanism and aroma fixation pathway of jasmine green tea, and discusses in depth the aroma absorption mechanism of green tea, the aroma release mechanism of jasmine flowers, as well as the absorption and fixation mechanism of the aroma components of jasmine green tea in the process of scenting, to provide a theoretical basis for the improvement of the quality of jasmine green tea and the innovation of processing technology. It was found that the aroma absorption mechanism of jasmine green tea is mainly associated with both physical and chemical adsorption, aroma release in jasmine involves the phenylpropanoid/benzoin biosynthetic pathway, β-glycosidase enzymes interpreting putative glycosidic groups, and heat shock proteins (HSPs) as molecular chaperones to prevent stress damage in postharvest flowers due to high temperatures and to promote the release of aroma components, and so forth. The preparation of aroma-protein nano-complexes, heat stress microcapsules, and the spraying of polymeric substances - β-cyclodextrin are three examples of aroma-fixing pathways. This overview also summarizes the problems and future development trends of the current research and proposes the method of loading benzyl acetate, the main aroma component of jasmine, through konjac glucomannan (KGM)-based gel to solve the problem of volatile aroma and difficult-to-fix aroma, which provides a reference for the sustainable development of the jasmine green tea industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yueguang Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zifeng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taoyi Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Charlie Li
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Yilan Sun
- Department of Oral and maxillofacial Head and neck Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Chen X, Wang L, Zhang D, Bu N, Liu W, Wu Z, Mu R, Tan P, Zhong Y, Pang J. Enhancing Strawberry Freshness: Multifunction Sustainable Films Utilizing Two Types of Modified Carbon Nanotubes for Photothermal Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63964-63977. [PMID: 39504039 DOI: 10.1021/acsami.4c09955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Currently, antimicrobial films with stable and efficient antibacterial activities are receiving considerable attention in the food packaging industry. Herein, a chemically/physically linked konjac glucomannan-sodium alginate (KGM-SA)@carbon nanotubes (CNTs)/Fe3+ composite film with outstanding resistance to ultraviolet radiation, oxidation, and bacteria, as well as excellent photothermal effects and mechanical properties, was successfully prepared using a solvent flow method. Tannic acid-modified carboxyl-functionalized CNTs (TCCNTs), l-cysteine-modified carboxyl-functionalized CNTs (LCCNTs), and Fe3+ were incorporated into the prepared film. The film structure of KGM-SA@CNTs/Fe3+ was characterized using various methods, confirming the formation of a dual-cross-linked network through metal-coordination bonds and hydrogen bonding. This unique structure endowed the film with excellent water vapor permeability (3.58 g mm/m2 day kPa), water resistance (water contact angle = 93.66°), and thermal stability. Further, the film exhibited outstanding photothermal conversion efficiency and stability under near-infrared irradiation (300 mW/cm2) as well as excellent bactericidal properties against Staphylococcus aureus and Escherichia coli, achieving a bacterial inhibition rate of >99%. In a strawberry preservation experiment, the KGM-SA@CNTs/Fe3+ composite film exhibited remarkable preservation effects, extending the shelf life of strawberries by 4-6 d. Thus, this photothermal antibacterial film offers a new approach for the application of CNTs in food packaging.
Collapse
Affiliation(s)
- Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Zhenzhen Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingping Tan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanbo Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Lan T, Wang X, Dong Y, Jin M, Shi J, Xu Z, Jiang L, Zhang Y, Sui X. Fabrication of soy protein nanoparticles based on metal-phenolic networks for stabilization of nano-emulsions delivery system. Food Chem 2024; 448:139164. [PMID: 38574717 DOI: 10.1016/j.foodchem.2024.139164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The use of soy protein isolate (SPI) nanoparticles as a stabilizer in nano-emulsion systems has garnered significant interest. While metal-phenolic networks (MPNs) have been explored for their multifunctional surface modification capabilities, their integration with food protein-based delivery systems remains less explored. In this study, we attempt to develop a novel strategy to encapsulate cinnamaldehyde using MPNs (EGCG-Fe3+) with self-assembling soy protein nanoparticles (SE-Fe NPs) as a stabilizer for nano-emulsions. UV, Raman, and X-ray photoelectron spectroscopy analyses demonstrated that SE-Fe NPs were generated through metal-phenolic coordination and covalent interactions. SE-Fe NPs had a narrower particle size distribution and enhanced radical scavenging (up to 3.35-fold), as well as thermal stability. Furthermore, the smaller droplet size, higher modulus, higher cinnamaldehyde encapsulation efficiency (from 63.5% to 84.2%), and improved bio-accessibility of SE-Fe NPs stabilized nano-emulsions delivery system demonstrated in this study shows promising future applications in the food industry.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Manzhe Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Concórdio-Reis P, Martins M, Araújo D, Alves VD, Moppert X, Guézennec J, Reis MAM, Freitas F. Iron(III) cross-linked hydrogels based on Alteromonas macleodii Mo 169 exopolysaccharide. Int J Biol Macromol 2024; 274:133312. [PMID: 38914406 DOI: 10.1016/j.ijbiomac.2024.133312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024]
Abstract
Recently, polysaccharide-based hydrogels crosslinked with the trivalent iron cation have attracted interest due to their remarkable properties that include high mechanical stability, stimuli-responsiveness, and enhanced absorptivity. In this study, a Fe3+ crosslinked hydrogel was prepared using the biocompatible extracellular polysaccharide (EPS) secreted by the marine bacterium Alteromonas macleodii Mo169. Hydrogels with mechanical strengths (G') ranging from 0.3 kPa to 44.5 kPa were obtained as a result of the combination of different Fe3+ (0.05-9.95 g L-1) and EPS (0.3-1.7 %) concentrations. All the hydrogels had a water content above 98 %. Three different hydrogels, named HA, HB, and HC, were chosen for further characterization. With strength values (G') of 3.2, 28.9, and 44.5 kPa, respectively, these hydrogels might meet the strength requirements for several specific applications. Their mechanical resistance increased as higher Fe3+ and polymer concentrations were used in their preparation (the compressive hardness increased from 8.7 to 192.1 kPa for hydrogel HA and HC, respectively). In addition, a tighter mesh was noticed for HC, which was correlated to its lower swelling ratio value compared to HA and HB. Overall, this preliminary study highlighted the potential of these hydrogels for tissue engineering, drug delivery, or wound healing applications.
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Matilde Martins
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Diana Araújo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Vítor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Xavier Moppert
- Pacific Biotech, BP 140 289, 98 701 Arue, Tahiti, French Polynesia
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d'Ouessant, 29280 Plouzané, France
| | - Maria A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
11
|
Kim Y, Kim K, Jeong JP, Jung S. Drug delivery using reduction-responsive hydrogel based on carboxyethyl-succinoglycan with highly improved rheological, antibacterial, and antioxidant properties. Carbohydr Polym 2024; 335:122076. [PMID: 38616075 DOI: 10.1016/j.carbpol.2024.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The development of exopolysaccharide-based polymers is gaining increasing attention in various industrial biotechnology fields for materials such as thickeners, texture modifiers, anti-freeze agents, antioxidants, and antibacterial agents. High-viscosity carboxyethyl-succinoglycan (CE-SG) was directly synthesized from succinoglycan (SG) isolated from Sinorhizobium meliloti Rm 1021, and its structural, rheological, and physiological properties were investigated. The viscosity of CE-SG gradually increased in proportion to the degree of carboxyethylation substitution. In particular, when the molar ratio of SG and 3-chloropropionic acid was 1:100, the viscosity was significantly improved by 21.18 times at a shear rate of 10 s-1. Increased carboxyethylation of SG also improved the thermal stability of CE-SG. Furthermore, the CE-SG solution showed 90.18 and 91.78 % antibacterial effects against Escherichia coli and Staphylococcus aureus and effective antioxidant activity against DPPH and hydroxyl radicals. In particular, CE-SG hydrogels coordinated with Fe3+ ions, which improved both viscosity and rheological properties, while also exhibiting reduction-responsive drug release through 1,4-dithiothreitol. The results of this study suggest that SG derivatives, such as CE-SG, can be used as functional biomaterials in various fields such as food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Kyungho Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Jae-Pil Jeong
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
12
|
Zhu X, Wu S, Yang K, Wei W, Aziz Y, Yuan W, Miyatake H, Ito Y, Wei Z, Li J, Chen Y. Polydopamine-modified konjac glucomannan scaffold with sustained release of vascular endothelial growth factor to promote angiogenesis. Int J Biol Macromol 2024; 271:132333. [PMID: 38754686 DOI: 10.1016/j.ijbiomac.2024.132333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The fabrication of scaffolds capable of the sustained release of the vascular endothelial growth factor (VEGF) to promote angiogenesis for a long time remains a challenge in tissue engineering. Here, we report a facile approach for effectively fabricating a bioactive scaffold that gradually releases VEGF to promote angiogenesis. The scaffold was fabricated by coating polydopamine (PDA) on a konjac glucomannan (KGM) scaffold, followed by the surface immobilization of VEGF with PDA. The resulting VEGF-PDA/KGM scaffold, with a porous and interconnected microstructure (392 μm pore size with 84.80 porosity), combined the features of long-term biodegradability (10 weeks with 51 % degradation rate), excellent biocompatibility, and sustained VEGF release for up to 21 days. The bioactive VEGF-PDA/KGM scaffold exhibited multiple angiogenic activities over time, as confirmed by in vivo and in vitro experiments. For example, the scaffold significantly promoted the attachment and proliferation of human umbilical vein endothelial cells and the formation of vascular tubes in vitro. Moreover, the in vivo results demonstrated the formation and maturation of blood vessels after subcutaneous implantation in rats for four weeks. This promising strategy is a feasible approach for producing bioactive materials that can induce angiogenesis in vivo. These findings provide a new avenue for designing and fabricating biocompatible and long-term biodegradable scaffolds for sustained VEGF release to facilitate angiogenesis.
Collapse
Affiliation(s)
- Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuhan Wu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yasir Aziz
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wenjin Yuan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Zhao Wei
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| | - Yongmei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
13
|
Wang H, Yuan D, Meng Q, Zhang Y, Kou X, Ke Q. Pickering nanoemulsion loaded with eugenol contributed to the improvement of konjac glucomannan film performance. Int J Biol Macromol 2024; 267:131495. [PMID: 38614180 DOI: 10.1016/j.ijbiomac.2024.131495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Konjac glucomannan (KGM) is becoming a very potential food packaging material due to its good film-forming properties and stability. However, KGM film has several shortcomings such as low mechanical strength, strong water absorption, and poor self-antibacterial performance, which limits its application. Therefore, in order to enhance the mechanical and functional properties of KGM film, this study prepared Pickering nanoemulsion loaded with eugenol and added it to the KGM matrix to explore the improvement effect of Pickering nanoemulsion on KGM film properties. Compared to pure KGM film and eugenol directly added film, the mechanical strength of Pickering-KGM film was significantly improved due to the establishment of ample hydrogen bonding interactions between the β-cyclodextrin inclusion complex system and KGM. Pickering-KGM film had significant antioxidant capacity than pure KGM film and eugenol directly added KGM film (eugenol-KGM film) (~3.21 times better than KGM film, ~0.51 times better than eugenol-KGM film). In terms of antibacterial activity, Pickering-KGM film had good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Candida albicans, and raspberry preservation experiment showed that the shelf life of the Pickering-KGM film could be extended to about 6 days. To sum up, this study developed a novel means to improve the film performance and provide a new insight for the development and application of food packaging film.
Collapse
Affiliation(s)
- Hui Wang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Dan Yuan
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| |
Collapse
|
14
|
Zhang Y, Tong C, Chen Y, Xia X, Jiang S, Qiu C, Pang J. Advances in the construction and application of konjac glucomannan-based delivery systems. Int J Biol Macromol 2024; 262:129940. [PMID: 38320637 DOI: 10.1016/j.ijbiomac.2024.129940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Konjac glucomannan (KGM) has been widely used to deliver bioactive components due to its naturalness, non-toxicity, excellent biodegradability, biocompatibility, and other characteristics. This review presents an overview of konjac glucomannan as a matrix, and the types of konjac glucomannan-based delivery systems (such as hydrogels, food packaging films, microencapsulation, emulsions, nanomicelles) and their construction methods are introduced in detail. Furthermore, taking polyphenol compounds, probiotics, flavor substances, fatty acids, and other components as representatives, the applied research progress of konjac glucomannan-based delivery systems in food are summarized. Finally, the prospects for research directions in konjac glucomannan-based delivery systems are examined, thereby providing a theoretical basis for expanding the application of konjac glucomannan in other industries, such as food and medicine.
Collapse
Affiliation(s)
- Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Yuanyuan Chen
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Xiaolu Xia
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Shizhong Jiang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, 214122, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China.
| |
Collapse
|
15
|
Zhang D, Chen X, Bu N, Huang L, Lin H, Zhou L, Mu R, Wang L, Pang J. Biosynthesis of Quercetin-Loaded Melanin Nanoparticles for Improved Antioxidant Activity, Photothermal Antimicrobial, and NIR/pH Dual-Responsive Drug Release. Foods 2023; 12:4232. [PMID: 38231693 DOI: 10.3390/foods12234232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Quercetin (QCT) is a promising dose-dependent nutraceutical that usually suffers from poor water solubility and low bioavailability issues. In this work, a novel QCT-loaded nanoscale delivery system was constructed based on the oxidative self-polymerization of melanin (Q@MNPs). The FT-IR, XRD, and Zeta potential analyses confirmed that QCT was successfully absorbed on the melanin nanoparticles (MNPs) via Π-Π and hydrogen bonding interactions. The encapsulation efficiency and particle size of Q@MNPs were 43.78% and 26.68 nm, respectively. Q@MNPs improved the thermal stability of QCT and the antioxidant properties in comparison to MNPs. Meanwhile, Q@MNPs presented fantastic photothermal conversion capacity and stability triggered by the NIR laser, which significantly enhanced the antibacterial capability with a sterilization rate of more than 98% against E. coli and S. aureus. More importantly, Q@MNPs exhibited NIR/pH dual-responsive drug release behavior and good biocompatibility (at concentrations of < 100 μg/mL). Thus, Q@MNPs show promising prospects for flavonoid delivery.
Collapse
Affiliation(s)
- Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lizhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Bu N, Zhou N, Cao G, Mu R, Pang J, Ma C, Wang L. Konjac glucomannan/carboxymethyl chitosan film embedding gliadin/casein nanoparticles for grape preservation. Int J Biol Macromol 2023; 249:126131. [PMID: 37543273 DOI: 10.1016/j.ijbiomac.2023.126131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Constructing biopolymer-based packaging films with fantastic water resistance and mechanical properties for food preservation is highly desirable and challenging. In this work, Gliadin/Casein nanoparticles (GCNPs) were prepared by pH-driven method and embedded into konjac glucomannan/carboxymethyl chitosan (KC) film matrix to improve the water resistance and mechanical properties of KC film. Gliadin and Casein showed good compatibility and co-assembled to form compact GCNPs clusters through hydrogen bonding and hydrophobic interaction verified by FT-IR spectroscopy, and fluorescence spectroscopy. The particle size and zeta potential of GCNPs was 269.7 nm and -7.6 mV, respectively. The effect of GCNPs on the mechanics, water barrier, thermal stability, and UV-shielding of KC-GCNPs film was investigated. SEM images revealed that GCNPs uniformly distributed into KC film matrix and significantly improved the mechanics (tensile strength: 75.6 MPa, elongation at breaking: 36.7 %), water barrier ability (water contact angle: 91.3°, water vapor permeability: 0.994 g mm/m2 day kPa, water solubility: 52.0 %), thermal stability and UV blocking property of KC-GCNPs film. Furthermore, KC-GCNPs film could also be applied to extend the shelf life of grapes. This paper demonstrated the great potential of GCNPs as functional nanofillers in enhancing the physicochemical properties of KC film.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Araújo D, Martins M, Concórdio-Reis P, Roma-Rodrigues C, Morais M, Alves VD, Fernandes AR, Freitas F. Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPol: Design, Characterization and Biological Properties. Pharmaceuticals (Basel) 2023; 16:991. [PMID: 37513903 PMCID: PMC10383424 DOI: 10.3390/ph16070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
FucoPol, a fucose-rich polyanionic polysaccharide, was used for the first time for the preparation of hydrogel membranes (HMs) using Fe3+ as a crosslinking agent. This study evaluated the impact of Fe3+ and FucoPol concentrations on the HMs' strength. The results show that, above 1.5 g/L, Fe3+ concentration had a limited influence on the HMs' strength, and varying the FucoPol concentration had a more significant effect. Three different FucoPol concentrations (1.0, 1.75 and 2.5 wt.%) were combined with Fe3+ (1.5 g/L), resulting in HMs with a water content above 97 wt.% and an Fe3+ content up to 0.16 wt.%. HMs with lower FucoPol content exhibited a denser porous microstructure as the polymer concentration increased. Moreover, the low polymer content HM presented the highest swelling ratio (22.3 ± 1.8 g/g) and a lower hardness value (32.4 ± 5.8 kPa). However, improved mechanical properties (221.9 ± 10.2 kPa) along with a decrease in the swelling ratio (11.9 ± 1.6 g/g) were obtained for HMs with a higher polymer content. Furthermore, all HMs were non-cytotoxic and revealed anti-inflammatory activity. The incorporation of FucoPol as a structuring agent and bioactive ingredient in the development of HMs opens up new possibilities for its use in tissue engineering, drug delivery and wound care management.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Matilde Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Patrícia Concórdio-Reis
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria Morais
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Vítor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Mu R, Bu N, Yuan Y, Pang J, Ma C, Wang L. Development of chitosan/konjac glucomannan/tragacanth gum tri-layer food packaging films incorporated with tannic acid and ε-polylysine based on mussel-inspired strategy. Int J Biol Macromol 2023:125100. [PMID: 37236557 DOI: 10.1016/j.ijbiomac.2023.125100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Constructing biodegradable food packaging with good mechanics, gas barrier and antibacterial properties to maintain food quality is still challenge. In this work, mussel-inspired bio-interface emerged as a tool for constructing functional multilayer films. Konjac glucomannan (KGM) and tragacanth gum (TG) with physical entangled network are introduced in the core layer. Cationic polypeptide ε-polylysine (ε-PLL) and chitosan (CS) producing cationic-π interaction with adjacent aromatic residues in tannic acid (TA) are introduced in the two-sided outer layer. The triple-layer film mimics the mussel adhesive bio-interface, where cationic residues in outer layers interact with negatively charged TG in the core layer. Furthermore, a series of physical tests showed excellent performance of triple-layer film with great mechanical properties (tensile strength (TS): 21.4 MPa, elongation at break (EAB): 7.9 %), UV-shielding (almost 0 % UV transmittance), thermal stability, water, and oxygen barrier (oxygen permeability (OP): 1.14 × 10-3 g/m s Pa and water vapor permeability (WVP): 2.15 g mm/m2 day kPa). In addition, the triple-layer film demonstrated advanced degradability, antimicrobial functions, and presented good moisture-proof performance for crackers, which can be potentially applied as dry food packaging.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Sun Y, Xu X, Zhang Q, Zhang D, Xie X, Zhou H, Wu Z, Liu R, Pang J. Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers (Basel) 2023; 15:polym15081852. [PMID: 37111999 PMCID: PMC10145206 DOI: 10.3390/polym15081852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Konjac glucomannan (KGM) is a naturally occurring macromolecular polysaccharide that exhibits remarkable film-forming and gel-forming properties, and a high degree of biocompatibility and biodegradability. The helical structure of KGM is maintained by the acetyl group, which plays a crucial role in preserving its structural integrity. Various degradation methods, including the topological structure, can enhance the stability of KGM and improve its biological activity. Recent research has focused on modifying KGM to enhance its properties, utilizing multi-scale simulation, mechanical experiments, and biosensor research. This review presents a comprehensive overview of the structure and properties of KGM, recent advancements in non-alkali thermally irreversible gel research, and its applications in biomedical materials and related areas of research. Additionally, this review outlines prospects for future KGM research, providing valuable research ideas for follow-up experiments.
Collapse
Affiliation(s)
- Yilan Sun
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaowei Xu
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinhua Zhang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Zhang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Xie
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanlin Zhou
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenzhen Wu
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Yao R, Yu X, Deng R, Zou H, He Q, Huang W, Li C, Zou K. Preparation and Application of Double Network Interpenetrating Colon Targeting Hydrogel Based on Konjac Glucomannan and N-Isopropylacrylamide. Gels 2023; 9:gels9030221. [PMID: 36975670 PMCID: PMC10048581 DOI: 10.3390/gels9030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Konjac glucomannan (KGM) can be degraded by colon-specific enzymes in the colonic environment, making it one of the materials for treating colonic diseases, which has attracted more and more attention. However, during drug administration, especially in the gastric environment and due to its easy swelling, the structure of KGM is usually destroyed and the drug is released, thereby reducing the bioavailability of the drug. To solve this problem, the easy swelling and drug release properties of KGM hydrogels are avoided by creating interpenetrating polymer network hydrogels. In this study, N-isopropylacrylamide (NIPAM) is first formed into a hydrogel framework under the action of a cross-linking agent to stabilize the gel shape before the gel is heated under alkaline conditions to make KGM molecules wrap around the NIPAM framework. The structure of the IPN(KGM/NIPAM) gel was confirmed using Fourier transform infrared spectroscopy (FT-IR) and x-ray diffractometer (XRD). In the stomach and small intestine, it was found that the release rate and swelling rate of the gel were 30% and 100%, which were lower than 60% and 180% of KGM gel. The experimental results showed that this double network hydrogel has a good colon-directed release profile and fine drug carrier ability. This provides a new idea for the development of konjac glucomannan colon-targeting hydrogel.
Collapse
Affiliation(s)
- Renhua Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiaoqin Yu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Rui Deng
- Hubei Hongyu New Packing Material Co., Ltd., 1 Juxiang Avenue, Jiaqueling Town, Yiling District, Yichang 443000, China
| | - Huarong Zou
- Hubei Hongyu New Packing Material Co., Ltd., 1 Juxiang Avenue, Jiaqueling Town, Yiling District, Yichang 443000, China
| | - Qingwen He
- Hubei Hongyu New Packing Material Co., Ltd., 1 Juxiang Avenue, Jiaqueling Town, Yiling District, Yichang 443000, China
| | - Wenfeng Huang
- School of Health Care and Nursing, Hubei Three Gorges Polytechnic, Yichang 443000, China
| | - Chunxiao Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Correspondence: (C.L.); (K.Z.)
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Correspondence: (C.L.); (K.Z.)
| |
Collapse
|
21
|
Structure, Merits, Gel Formation, Gel Preparation and Functions of Konjac Glucomannan and Its Application in Aquatic Food Preservation. Foods 2023; 12:foods12061215. [PMID: 36981142 PMCID: PMC10048453 DOI: 10.3390/foods12061215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Konjac glucomannan (KGM) is a natural polysaccharide extracted from konjac tubers that has a topological structure composed of glucose and mannose. KGM can be used as a gel carrier to load active molecules in food preservation. The three-dimensional gel network structure based on KGM provides good protection for the loaded active molecules and allows for sustained release, thus enhancing the antioxidant and antimicrobial activities of these molecules. KGM loaded with various active molecules has been used in aquatic foods preservation, with great potential for different food preservation applications. This review summarizes recent advances in KGM, including: (i) structural characterization, (ii) the formation mechanism, (iii) preparation methods, (iv) functional properties and (v) the preservation of aquatic food.
Collapse
|
22
|
Su R, Li P, Zhang Y, Lv Y, Wen F, Su W. Polydopamine/tannic acid/chitosan/poloxamer 407/188 thermosensitive hydrogel for antibacterial and wound healing. Carbohydr Polym 2023; 302:120349. [PMID: 36604043 DOI: 10.1016/j.carbpol.2022.120349] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The design and development of smart shape-adaptable wound dressings with superior antimicrobial ability remain a challenge in therapeutic and clinical application. Herein, polydopamine/tannic acid/chitosan/poloxamer 407/188 hydrogel (PTCPP) was prepared with the aim of developing an in situ-formed antibacterial wound dressing with temperature stimulation and near-infrared radiation (NIR) responsive ability. PTCPP possessed injectability, photothermal stability, sustained release properties and cytocompatibility. In vitro antibacterial results showed that the bactericidal rates of PTCPP against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) under NIR irradiation were 99.994 % and 99.91 %, respectively. In vivo experiments, PTCPP can adapt to shape of the wound, showing good adhesion, while promoting wound healing in bacterial infections. Therefore, PTCPP has potential application in the treatment of infectious wounds, and provides a strategic choice for developing antibacterial wound dressing combined with photothermal therapy.
Collapse
Affiliation(s)
- Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
23
|
Xu Y, Liu K, Yang Y, Kim MS, Lee CH, Zhang R, Xu T, Choi SE, Si C. Hemicellulose-based hydrogels for advanced applications. Front Bioeng Biotechnol 2023; 10:1110004. [PMID: 36698644 PMCID: PMC9868175 DOI: 10.3389/fbioe.2022.1110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
Hemicellulose-based hydrogels are three-dimensional networked hydrophilic polymer with high water retention, good biocompatibility, and mechanical properties, which have attracted much attention in the field of soft materials. Herein, recent advances and developments in hemicellulose-based hydrogels were reviewed. The preparation method, formation mechanism and properties of hemicellulose-based hydrogels were introduced from the aspects of chemical cross-linking and physical cross-linking. The differences of different initiation systems such as light, enzymes, microwave radiation, and glow discharge electrolytic plasma were summarized. The advanced applications and developments of hemicellulose-based hydrogels in the fields of controlled drug release, wound dressings, high-efficiency adsorption, and sensors were summarized. Finally, the challenges faced in the field of hemicellulose-based hydrogels were summarized and prospected.
Collapse
Affiliation(s)
- Ying Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Yanfan Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Min-Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Chan-Ho Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Rui Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,Department of Finance, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| |
Collapse
|
24
|
Han W, Wang S. Advances in Hemostatic Hydrogels That Can Adhere to Wet Surfaces. Gels 2022; 9:2. [PMID: 36661770 PMCID: PMC9858274 DOI: 10.3390/gels9010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, uncontrolled bleeding remains a serious problem in emergency, surgical and battlefield environments. Despite the specific properties of available hemostatic agents, sealants, and adhesives, effective hemostasis under wet and dynamic conditions remains a challenge. In recent years, polymeric hydrogels with excellent hemostatic properties have received much attention because of their adjustable mechanical properties, high porosity, and biocompatibility. In this review, to investigate the role of hydrogels in hemostasis, the mechanisms of hydrogel hemostasis and adhesion are firstly elucidated, the adhesion design strategies of hemostatic hydrogels in wet environments are briefly introduced, and then, based on a comprehensive literature review, the studies and in vivo applications of wet-adhesive hemostatic hydrogels in different environments are summarized, and the improvement directions of such hydrogels in future studies are proposed.
Collapse
Affiliation(s)
| | - Shige Wang
- School of Materials and Chemistry, The University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
25
|
Chen T, Guo X, Huang Y, Hao W, Deng S, Xu G, Bao J, Xiong Q, Yang W. Bletilla Striata polysaccharide - Waterborne polyurethane hydrogel as a wound dressing. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022:1-14. [DOI: 10.1080/09205063.2022.2157673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tianyu Chen
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Xiaoyan Guo
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Yiping Huang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Wentao Hao
- Anhui Key Laboratory of advanced catalytic materials and reaction engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China, 230009
| | - Sunyan Deng
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Gewen Xu
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Junjie Bao
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Qiansheng Xiong
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Wen Yang
- Anhui Key Laboratory of advanced catalytic materials and reaction engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China, 230009
| |
Collapse
|
26
|
Bu N, Huang L, Cao G, Pang J, Mu R. Stable O/W emulsions and oleogels with amphiphilic konjac glucomannan network: preparation, characterization, and application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6555-6565. [PMID: 35587687 DOI: 10.1002/jsfa.12021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The stabilization of oil-in-water (O/W) emulsions has long been explored. Assembly of polymer networks is an effective method for stabilizing O/W emulsions. Konjac glucomannan (KGM) is a plant polysaccharide and the network of KGM gel is a good candidate for stabilizing O/W emulsions based on its high viscosity and thickening properties. However, natural KGM has strong hydrophilicity and is not able to offer interfacial activity. Octenyl succinic anhydride (OSA) is a hydrophobic molecule, which is widely used as thickener and stabilizer in food emulsions. In this work, the amphiphilic biopolymer (OSA-KGM) was fabricated by modifying the KGM with OSA. Furthermore, OSA-KGM biopolymer was used to prepare O/W emulsions, which were then freeze-dried and used to prepare oleogels as fat substitute for bakery products. RESULTS OSA-KGM had advanced hydrophobicity with water contact angle 81.13° and adsorption behavior at the oil-water interface, with interfacial tension decreasing from 18.52 to 13.57 mN m-1 within 1 h. The emulsification of OSA-KGM remarkably improved the stability of emulsions without phase separation during storage for 31 days. Oleogels with OSA-KGM showed good thixotropic and structure recovery properties (approximately 100%) and low oil loss (from 69.5% to 50.4%). Cakes made from oleogels had a softer texture than cakes made from peanut oil and margarine. CONCLUSION Amphiphilic biopolymer OSA-KGM shows advanced interfacial activity and hydrophobicity. This paper provides an insight into preparing stable O/W emulsions with a new biopolymer and oleogels potentially applied as fat substitute in bakery products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nitong Bu
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Huang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoyu Cao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Pang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruojun Mu
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Hong X, Mu R, Lin T, Dao L, Wu S, Yan Z, Pang J. Preparation of konjac glucomannan/ZIF-67 hybrid aerogel and its adsorption properties for malachite green. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Zhu Y, Han Y, Peng S, Chen X, Xie Y, Liang R, Zou L. Hydrogels assembled from hybrid of whey protein amyloid fibrils and gliadin nanoparticles for curcumin loading: Microstructure, tunable viscoelasticity, and stability. Front Nutr 2022; 9:994740. [PMID: 36091248 PMCID: PMC9462383 DOI: 10.3389/fnut.2022.994740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Food grade hydrogel has become an ideal delivery system for bioactive substances and attracted wide attention. Hybrids of whey protein isolate amyloid fibrils (WPF) and gliadin nanoparticles (GNP) were able to assemble into WPF-GNP hydrogel at a low protein concentration of 2 wt%, among which WPF and GNP were fabricated from the hydrolysis of whey protein isolate under 85°C water bath (pH 2.0) and antisolvent precipitation, respectively. Atomic force microscope (AFM) images indicated that the ordered nanofibrillar network of WPF was formed at pH 2.0 with a thickness of about 10 nm. Cryo-SEM suggested that WPF-GNP hydrogel could arrest GNP within the fibrous reticular structure of the partially deformed WPF, while the hybrids of native whey protein isolate (WPI) and GNP (WPI-GNP hybrids) only led to protein aggregates. WPF-GNP hydrogel formed at pH 4.0 (85°C, 3 h, WPF:GNP = 4:1) possessed the largest elastic modulus (G’ = 419 Pa), which far exceeded the elastic modulus of the WPI-GNP hybrids (G’ = 16.3 Pa). The presence of NaCl could enhance the strength of WPF-GNP hydrogel and the largest value was achieved at 100 mM NaCl (∼105 mPa) in the range of 0∼500 mM due to electrostatic screening. Moreover, WPF-GNP hydrogel showed a high encapsulation efficiency for curcumin, 89.76, 89.26, 89.02, 85.87, and 79.24% for pH 2.0, 3.0, 4.0, 5.0, and 6.0, respectively, which suggested that the formed hydrogel possess good potential as a delivery system. WPF-GNP hydrogel also exhibited a good protection effect on the photodegradation stability of the loaded curcumin with the retention of up to 75.18% after hydrogel was exposed to ultraviolet radiation for 7 days. These results suggested that the viscoelasticity of WPF-GNP hydrogel was tunable via pH-, ion-, or composition-adjustment and the hydrogel showed excellent protection on the thermal and photodegradation stability of curcumin.
Collapse
Affiliation(s)
- Yuqing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yalan Han
- Library of Nanchang University, Nanchang, China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Xing Chen,
| | - Youfa Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangzhong Pharmaceutical Co. Ltd., Nanchang, China
- *Correspondence: Xing Chen,
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Zeng B, Pan Z, Shen L, Zhao D, Teng J, Hong H, Lin H. Effects of polysaccharides' molecular structure on membrane fouling and the related mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155579. [PMID: 35508249 DOI: 10.1016/j.scitotenv.2022.155579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Fouling behaviors of polysaccharides vary with their structure, while the mechanisms underlying this phenomenon remain unexplored. This work was carried out to explore the thermodynamic fouling mechanisms of polysaccharides with different structure. Carrageenan and xanthan gum were selected as the model polysaccharides with structure of straight and branch chains, respectively. Batch filtration experiments showed that xanthan gum solution corresponded to a more rapid flux decline trend, and specific filtration resistance (SFR) of xanthan gum (2.32 × 1015 m-1 kg-1) was over 10 times than that of carrageenan (2.21 × 1014 m-1 kg-1). It was found that, xanthan gum possessed a more disordered structure and a rather higher viscosity (15.03 mPa·s V.S. 1.98 mPa·s for carrageenan). Calculation of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory showed higher adhesion energy of xanthan gum (-42.82 my m-2 V.S. -23.26 mJ m-2 for carrageenan). Scanning electron microscopy (SEM) analyses showed that xanthan gum gel layer had a more homogenous structure and rigid polymer backbone, indicating better mixing with water to form a gel. As verified by heating experiments, such a structure tended to contain more bound water. According to this information, Flory-Huggins lattice theory was introduced to build a bridge between polymeric structure and SFR. It was revealed that branch structure corresponded to higher chemical potential change during gel layer formation, and higher ability to carry bound water, resulting in higher filtration resistance during filtration process. This work revealed the fundamental thermodynamic mechanism of membrane fouling caused by polysaccharides with different structure, deepening understanding of membrane fouling.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
31
|
Development of pH-responsive konjac glucomannan/pullulan films incorporated with acai berry extract to monitor fish freshness. Int J Biol Macromol 2022; 219:897-906. [PMID: 35963350 DOI: 10.1016/j.ijbiomac.2022.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022]
Abstract
In this work, konjac glucomannan (KGM)-based film reinforced with pullulan (PL) and acai berry extract (ABE) was developed by solvent casting method. The as-prepared films performed pH-sensitive properties, which can be potentially applied for fish freshness detection. Rheology, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to characterize chemical structure and morphology of ABE-loaded KGM/PL (KP) films (KP-ABE). FT-IR spectrum indicated that hydrogen bond dominated the formation of KP-ABE films. Adding PL contributed to enhanced mechanical properties of KGM film with increased tensile strength (TS) from 21.25 to 50.27 MPa and elongation at break (EAB) from 10.64 to 19.19 %. Incorporating ABE upgraded flexibility, UV-shielding, thermostability, water barrier (decreased Water vapor permeability (WVP) from 2.07 to 1.67 g·mm/m2·day kPa), antioxidant, and antibacterial ability of KP films, but weakened TS. In addition, KP-ABE films can reflect fish freshness in real time through color variability. Therefore, KP-ABE films exhibited potential applications in intelligent food packaging materials.
Collapse
|
32
|
Bacterial responsive hydrogels based on quaternized chitosan and GQDs-ε-PL for chemo-photothermal synergistic anti-infection in diabetic wounds. Int J Biol Macromol 2022; 210:377-393. [PMID: 35526764 DOI: 10.1016/j.ijbiomac.2022.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023]
Abstract
Clinically, systemic antibiotic therapy and traditional dressings care are not satisfactory in treating chronic diabetic ulcers (DU). Therefore, we presented sprayable antibacterial hydrogel for effective treatment of DU by using antibacterial macromolecules (quaternized chitosan, QCS, Mn ≈ 1.5 × 105), photothermal antibacterial nanoparticles (ε-poly-l-lysine grafted graphene quantum dots, GQDs-ε-PL) and miocompatible macromolecules (benzaldehyde-terminated four-arm poly(ethylene glycol), 4 arm PEG-BA) as materials. The results revealed that the hydrogel could be in situ formed in 70-89 s through dynamic imine bonds crosslinking and exhibited a pH-dependent swelling ability and degradability. The hydrogel could respond to bacterial triggered acidic environment to play a synergistic effect of chemotherapy and xenon light irradiated PTT, leading to the rupture of the bacterial membrane and the inactivation of bacteria, promoting the migration and proliferation of fibroblast cell, enhancing the adhesion of platelet endothelial cell, and finally accelerating the healing of infected diabetic wound. Moreover, the hydrogel displayed self-healing, hemostatic, and biocompatible abilities, which could provide a better healing environment for wound and further promote wound healing. Hence, the multifunctional hydrogel is expected to be a potential dressing for the clinical treatment of DU.
Collapse
|
33
|
Ma Z, Li Y, Lv J, Ma J, Jia S, Ma H, Ye G, Zeng R. Construction and assessment of carboxymethyl Bletilla striata polysaccharide/Polyvinyl alcohol wet-spun fibers load with Polydopamine@Metformin microcapsules. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
|
35
|
Mo C, Luo R, Chen Y. Advances in the stimuli-responsive injectable hydrogel for controlled release of drugs. Macromol Rapid Commun 2022; 43:e2200007. [PMID: 35344233 DOI: 10.1002/marc.202200007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Indexed: 11/11/2022]
Abstract
The stimuli-responsiveness of injectable hydrogel has been drastically developed for the controlled release of drugs and achieved encouraging curative effects in a variety of diseases including wounds, cardiovascular diseases and tumors. The gelation, swelling and degradation of such hydrogels respond to endogenous biochemical factors (such as pH, reactive oxygen species, glutathione, enzymes, glucose) and/or to exogenous physical stimulations (like light, magnetism, electricity and ultrasound), thereby accurately releasing loaded drugs in response to specifically pathological status and as desired for treatment plan and thus improving therapeutic efficacy effectively. In this paper, we give a detailed introduction of recent progresses in responsive injectable hydrogels and focus on the design strategy of various stimuli-sensitivities and their resultant alteration of gel dissociation and drug liberation behaviour. Their application in disease treatment is also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunxiang Mo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| | - Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| |
Collapse
|
36
|
Wu H, Bu N, Chen J, Chen Y, Sun R, Wu C, Pang J. Construction of Konjac Glucomannan/Oxidized Hyaluronic Acid Hydrogels for Controlled Drug Release. Polymers (Basel) 2022; 14:polym14050927. [PMID: 35267750 PMCID: PMC8912606 DOI: 10.3390/polym14050927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Konjac glucomannan (KGM) hydrogel has favorable gel-forming abilities, but its insufficient swelling capacity and poor control release characteristics limit its application. Therefore, in this study, oxidized hyaluronic acid (OHA) was used to improve the properties of KGM hydrogel. The influence of OHA on the structure and properties of KGM hydrogels was evaluated. The results show that the swelling capacity and rheological properties of the composite hydrogels increased with OHA concentration, which might be attributed to the hydrogen bond between the KGM and OHA, resulting in a compact three-dimensional gel network structure. Furthermore, epigallocatechin gallate (EGCG) was efficiently loaded into the KGM/OHA composite hydrogels and liberated in a sustained pattern. The cumulative EGCG release rate of the KGM/OHA hydrogels was enhanced by the increasing addition of OHA. The results show that the release rate of composite hydrogel can be controlled by the content of OHA. These results suggest that OHA has the potential to improve the properties and control release characteristics of KGM hydrogels.
Collapse
|
37
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
38
|
Zhou N, Zheng S, Xie W, Cao G, Wang L, Pang J. Konjac glucomannan: A review of structure, physicochemical properties, and wound dressing applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhou
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Shengxuan Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Wanzhen Xie
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Guoyu Cao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Lin Wang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Jie Pang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
39
|
Guyot C, Adoungotchodo A, Taillades W, Cerruti M, Lerouge S. A catechol-chitosan-based adhesive and injectable hydrogel resistant to oxidation and compatible with cell therapy. J Mater Chem B 2021; 9:8406-8416. [PMID: 34676861 DOI: 10.1039/d1tb00807b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Injectable hydrogels designed for cell therapy need to be adhesive to the surrounding tissues to maximize their retention and the communication between the host and the encapsulated cells. Catechol grafting is an efficient and well-known strategy to improve the adhesive properties of various polymers, including chitosan. However, catechol groups are also known to be cytotoxic as they oxidize into quinones in alkaline environments. Usually, hydrogels made from catechol-grafted chitosan (cat-CH) oxidize quickly, which tends to limit adhesion and prevent cell encapsulation. In this work, we limited oxidation and improved the cytocompatibility of cat-CH hydrogels by grafting chitosan with dihydroxybenzoic acid (DHBA), a small cat-bearing molecule known to have a high resistance to oxidation. We show that DHBA-grafted CH (dhba-CH) oxidized significantly slower and to a lesser extent that cat-CH made with hydrocaffeic acid (hca-CH). By combining dhba-CH with sodium bicarbonate and phosphate buffer, we fabricated thermosensitive injectable hydrogels with higher mechanical properties, quicker gelation and significantly lower oxidation than previously designed cat-CH systems. The resulting gels are highly adhesive on inorganic substrates and support L929 fibroblast encapsulation with high viability (≥90% after 24 hours), something that was not possible in any previously designed cat-CH gel system. These properties make the dhba-CH hydrogels excellent candidates for minimally invasive and targeted cell therapy in applications that require high adhesive strength.
Collapse
Affiliation(s)
- Capucine Guyot
- Department of Mechanical Engineering, Ecole de technologie superieure (ETS), 1100 Notre-Dame W Street, Montreal, QC H3C 1K3, Canada. .,Centre de Recherche du CHUM, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| | - Atma Adoungotchodo
- Department of Mechanical Engineering, Ecole de technologie superieure (ETS), 1100 Notre-Dame W Street, Montreal, QC H3C 1K3, Canada. .,Centre de Recherche du CHUM, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| | - Werner Taillades
- Centre de Recherche du CHUM, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, QC H3A 0C5, Canada
| | - Sophie Lerouge
- Department of Mechanical Engineering, Ecole de technologie superieure (ETS), 1100 Notre-Dame W Street, Montreal, QC H3C 1K3, Canada. .,Centre de Recherche du CHUM, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
40
|
Ma Z, Yang X, Ma J, Lv J, He J, Jia D, Qu Y, Chen G, Yan H, Zeng R. Development of the mussel-inspired pH-responsive hydrogel based on Bletilla striata polysaccharide with enhanced adhesiveness and antioxidant properties. Colloids Surf B Biointerfaces 2021; 208:112066. [PMID: 34455316 DOI: 10.1016/j.colsurfb.2021.112066] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Recently, smart hydrogels have attracted much attention for their abilities to respond to subtle changes in external and internal stimuli. Also, natural polysaccharide-based biomaterials are more appealing for their biocompatibility and biodegradability. However, limitations owing to their complex compositions and mechanisms, cumbersome synthetic routes, and single function call for a simple and effective strategy to develop novel multifunctional smart hydrogels. Herein, this developed work was achieved based on Bletilla striata polysaccharide (BSP), a kind of natural glucomannan with diverse bioactivities and biocompatibility, we fabricated a low-cost multifunctional hydrogel by oxidizing the catechol groups of carboxymethylated BSP(CBSP)-dopamine(DA) conjugate with adhesion, antioxidant, and pH-responsive properties. In this hydrogel system, CBSP as the backbone material, was negatively charged and conferred the hydrogel with pH sensitivity. The presence of catechol groups greatly enhanced the tissue adhesion and antioxidant capacities of the hydrogel. Meanwhile, the highly porous structure of hydrogel allowed berberine to be encapsulated and released to exhibit excellent and long-lasting antibacterial activity. In summary, the adhesion, antioxidant, pH-sensitive, and antibacterial multifunctional hydrogel showed massive potential in the biomedical field.
Collapse
Affiliation(s)
- Zihao Ma
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Xiao Yang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Jie Ma
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Jinying Lv
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Juan He
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Duowuni Jia
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gongzheng Chen
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646100, China
| | - Hengxiu Yan
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Chengdu, 610041, China; Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission, China.
| |
Collapse
|
41
|
Li N, Sun D, Su Z, Hao X, Li M, Ren J, Peng F. Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe 3+ plant catechol system. Carbohydr Polym 2021; 269:118306. [PMID: 34294323 DOI: 10.1016/j.carbpol.2021.118306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass.
Collapse
Affiliation(s)
- Nan Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Dan Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhenhua Su
- China National Pulp and Paper Research Institute, Beijing 100102, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
42
|
Chu W, Nie M, Ke X, Luo J, Li J. Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. Macromol Biosci 2021; 21:e2100109. [PMID: 33908175 DOI: 10.1002/mabi.202100109] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Injectable dual crosslinking hydrogels hold great promise to improve therapeutic efficacy in minimally invasive surgery. Compared with prefabricated hydrogels, injectable hydrogels can be implanted more accurately into deeply enclosed sites and repair irregularly shaped lesions, showing great applicable potential. Here, the current fabrication considerations of injectable dual crosslinking hydrogels are reviewed. Besides, the progress of the hydrogels used in corresponding applications and emerging challenges are discussed, with detailed emphasis in the fields of bone and cartilage regeneration, wound dressings, sensors and other less mentioned applications for their more hopeful employments in clinic. It is envisioned that the further development of the injectable dual crosslinking hydrogels will catalyze their innovation and transformation in the biomedical field.
Collapse
Affiliation(s)
- Wenlin Chu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingxi Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
43
|
Kim MH, Lee J, Lee JN, Lee H, Park WH. Mussel-inspired poly(γ-gl utamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration. Acta Biomater 2021; 123:254-262. [PMID: 33465509 DOI: 10.1016/j.actbio.2021.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
It was demonstrated herein that the adhesive property of catechol-functionalized nanocomposite hydrogel can be enhanced by tuning the cohesive strength due to the secondary crosslinking between catechol and synthetic bioactive nanosilicate, viz. Laponite (LP). The nanocomposite hydrogel consists of the natural anionic poly(γ-glutamic acid) (γ-PGA), which was functionalized with catechol moiety, and incorporated with disk-structured LP. The dual-crosslinked hydrogel was fabricated by enzymatic chemical crosslinking of catechol in the presence of horseradish peroxidase (HRP) and H2O2, and physical crosslinking between γ-PGA-catechol conjugate and LP. The PGADA/LP nanocomposite hydrogels with catechol moieties showed strong adhesiveness to various tissue layers and demonstrated an excellent hemostatic properties. These PGADA/LP nanocomposite hydrogels are potentially applied for injectable tissue engineering hydrogels, tissue adhesives, and hemostatic materials. STATEMENT OF SIGNIFICANCE: Recently, many attempts have been performed to manufacture high-performance tissue adhesives using synthetic and natural polymer-based materials. In order to apply in various biological substrates, commercially available tissue adhesives should have an improved adhesive property in wet conditions. Here, we designed a mussel-inspired dual crosslinked tissue adhesive that meets most of conditions as an ideal tissue adhesive. The designed tissue adhesive is composed of poly(γ-glutamic acid)-dopamine conjugate (PGADA)-gluing macromer, horseradish peroxidase (HRP)/hydrogen peroxide (H2O2)-enzymatic crosslinker, and Laponite (LP)-additional physical crosslinking nanomaterial. The PGADA hydrogel has tunable physicochemical properties by controlling the LP concentration. Furthermore, this dual crosslinked hydrogel shows strong tissue adhesive property, regardless of the tissue types. Specially the PGADA hydrogel has tissue adhesive strength four times higher than commercial bioadhesive. This dual crosslinked PGADA hydrogel with improved tissue adhesion property is a promising biological tissue adhesive for various tissue type in surgical operation.
Collapse
|
44
|
|