1
|
Gao L, Van Bockstaele F, Haesaert G, Skirtach A, Eeckhout M. Effects of nitrogen and sulfur fertilizer treatment on the structure and physicochemical properties of resistant starch in buckwheat. Food Chem 2025; 477:143620. [PMID: 40023040 DOI: 10.1016/j.foodchem.2025.143620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
This study investigated the combined application of nitrogen and sulfur fertilizers on the structural characteristics and physicochemical properties of buckwheat resistant starch. The results showed that combined fertilization did not change the crystalline diffraction pattern of the resistant starch samples (exhibiting a B-type crystalline structure), but significantly (p < 0.05) increased the relative crystallinity (35.07-44.36 %). In addition, combined fertilization enhanced resistant starch content (28.36-35.22 %), apparent amylose content (20.50-35.06 %), particle size, pasting temperature (50.30-50.66 °C) and gelatinization enthalpy (2.77-4.65 J g-1). Conversely, higher fertilization levels were associated with lower light transmittance, water solubility, swelling power and viscosity. Pearson's correlation analysis revealed that buckwheat resistant starch and apparent amylose content were significantly (p < 0.01) positively correlated with particle size and gelatinization temperatures, while negatively correlated with viscosity. This study provides a theoretical basis for optimizing the application of nitrogen and sulfur fertilizers to improve the properties of buckwheat resistant starch.
Collapse
Affiliation(s)
- Licheng Gao
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Andre Skirtach
- Laboratory for nano-biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Jiang-Peng S, Jia-Qin F, Chuang L, Shou-Ping L, Chin-Ping T, Ping-Ping W, Xiong F, Chun C. Alleviative effects of Dendrobium officinale polysaccharide on the quality deterioration of frozen dough and corresponding bread. Int J Biol Macromol 2025; 304:140705. [PMID: 39920928 DOI: 10.1016/j.ijbiomac.2025.140705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Dendrobium officinale polysaccharide (DOP), a natural hydrocolloid derived from polysaccharides, holds significant promise for enhancing the quality of frozen dough-based products. This research systematically examined the effects of DOP on the quality attributes of both frozen dough and the resulting bread throughout the period of frozen storage. Findings demonstrated that DOP enhanced thermal stability and slowed starch retrogradation. Dough containing 1.2 % DOP showed increased water absorption (68.63 ± 0.21 %), extended development time (8.63 ± 0.25 min), and decreased stability time (9.33 ± 0.06 min), along with diminished gluten strength and gelatinization viscosity. Moreover, higher concentrations of DOP markedly inhibited water migration, curtailed the rise in freezable water content, and reduced moisture loss during frozen storage (p < 0.05). The hydrophilic groups in DOP bound to free water, forming hydrogen bonds, which prevented the formation and growth of large ice crystals, thereby reducing deterioration of the microstructure and rheological properties of the frozen dough. Bread produced from DOP-enriched frozen dough exhibited improved baking performance, including enhanced textural properties, specific volume, slice structure, and color, particularly with higher concentrations of DOP. Consequently, DOP can serve as a natural enhancer to prevent the degradation of frozen dough quality.
Collapse
Affiliation(s)
- Su Jiang-Peng
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Fang Jia-Qin
- Guangzhou Restaurant Group Likofu Food Company Ltd., Guangzhou 510640, China
| | - Liu Chuang
- Guangzhou Restaurant Group Likofu Food Company Ltd., Guangzhou 510640, China
| | - Liu Shou-Ping
- Guangzhou Restaurant Group Likofu Food Company Ltd., Guangzhou 510640, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Wang Ping-Ping
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
3
|
Ma Z, Wang C, Tian Y, Zhao D, Wang J, Ke F, Zheng J, Su J, Bian M, Ma Y, Lan H. Investigating the influence of the molecular structure and physiochemical properties of starches from glutinous and japonica sorghum on light-flavor liquor fermentation. Int J Biol Macromol 2025; 301:140353. [PMID: 39870273 DOI: 10.1016/j.ijbiomac.2025.140353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Glutinous and japonica sorghum can be applied to different production processes by their amylopectin content and starch structure. However, the differences in the fine structure and physiochemistry properties of their starches, as well as their fermentation properties remain unclear. Compared with japonica sorghum, glutinous sorghum has a higher amylopectin content, short amylose chain content, relative crystallinity, and ∆Hgel, but lower setback (SB), and starch granule size. Correlation analysis showed that the amylose content was positively correlated with the SB and final viscosity (FV) and negatively correlated with the relative crystallinity (RC), peak pasting temperature, and ∆Hgel. The short amylose content was positively correlated with RC and onset pasting temperature; and the starch granule size was positively correlated with the FV, SB, SR, and pasting time. Principal component analysis indicated that the glutinous and japonica sorghum varieties could be separated by PC1. Fermentation experiments revealed that glutinous sorghum had a higher liquor yield than japonica sorghum, the LN18 and LN22 had the highest starch utilization, and the YHN4 had the highest liquor yield. Our findings provide a theoretical basis for the development of new sorghum varieties for brewing and fermentation control, and they can assist enterprises in screening high-quality raw materials for use in the Baijiu brewing industry.
Collapse
Affiliation(s)
- Zhenbing Ma
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Chenyang Wang
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Yuanyuan Tian
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Jiaxu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Fulai Ke
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Jian Su
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Minghong Bian
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Yi Ma
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| | - Haibo Lan
- College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China
| |
Collapse
|
4
|
Wang C, Jing W, Fa X, Gu J, Wang W, Zhu K, Zhang W, Gu J, Liu L, Wang Z, Zhang J, Zhang H. Effect of nitrogen levels on grain yield and quality in improving mid-season japonica rice varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3010-3023. [PMID: 39716020 DOI: 10.1002/jsfa.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Nitrogen application is recognized as a principal factor influencing rice quality. However, there remains a paucity of research on the effects of different N levels on quality, particularly within the context of the improvement of rice varieties. RESULTS This study examined 14 mid-season japonica rice varieties cultivated in Jiangsu province over the past 80 years under five N application levels (0, 90, 180, 270, and 360 kg N ha-1). The results showed that yield increased steadily as varieties improved at all N levels. For varieties from the 1950s to the 1990s, yields initially rose and then declined as N application rates increased, peaking at 270 kg N ha-1. In contrast, modern varieties (post-2000) exhibited a consistent increase in yield with higher N application rates. Fitted equations indicated that maximum yields were achieved at optimal N levels of 237-278 kg N ha-1 for varieties from the 1950s-1990s and 229.25 kg N ha-1 for post-2000 varieties. As varieties improved, the content of brown, milled, and head milled rice, as well as albumen, gluten, and overall quality, increased. Conversely, chalkiness, protein content, gliadin and amylose content decreased, whereas gel consistency, breakdown, peak viscosity, and globulin showed no consistent pattern. Likewise, there was no consistent pattern in the tendency of starch to retrograde (as indicated by 'setback' values). Increasing N application rates enhanced the content of brown and milled rice, chalkiness, protein and its components, and the tendency of starch to retrograde (indicated by higher setback values). In contrast, amylose content, gel consistency, breakdown, peak viscosity, and overall taste quality declined with higher N levels. The study compared rice varieties with high yields (exceeding 10 t ha-1) and good comprehensive taste scores (above 52), revealing that modern varieties Wuyunjing 24, Lianjing 7, Yanjing 4038, and Nanjing 9108 performed exceptionally well with 180 kg N ha-1 and 270 kg N ha-1. CONCLUSION Modern varieties, with optimal N application and management, can achieve both high yield and good quality effectively. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Wenjiang Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaotong Fa
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jiayi Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Weilu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Wang R, Zhang M, Chen T, Shen W, Dai J, Zhang H, Zhang H. Enhanced leaf photosynthesis, grain yield, rice quality and aroma characteristics in rice grains (Oryza sativa L.) with foliar application of selenium nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109812. [PMID: 40132511 DOI: 10.1016/j.plaphy.2025.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
The potential of selenium nanoparticles application for rice with higher yield and quality, especially in great selenium bioavailability and rich aroma, is a crucial objective. In this study, a two-year field experiment was conducted to investigate the influence of selenium nanoparticles (Se NPs) foliar spraying on the grain yield, rice quality, selenium bioavailability and aroma formation. Our results demonstrated that Se NPs foliar application significantly increased the activities of peroxidase, superoxide dismutase and catalase (POD, SOD and CAT), and decreased the malondialdehyde (MDA) content to increase the SPAD value and net photosynthetic rate in flag leaves at 10-25 days after heading, which finally increased the grain yield by 1.3-3.7 % for improved grain filling, compared to CK. The increased grain filling also contributed to better rice quality, like higher taste value (2.4-6.9 %) and breakdown value (32.2-48.0 %), as well as lower amylose content (5.1-15.9 %), chalkiness grain rate (8.4-49.2 %) and degree (11.5-50.4 %). Meanwhile, Se NPs application improved the selenium bioavailability by increasing the selenium content and proportion in the rice edible parts. The further analysis indicated that the Se NPs application primarily enhanced the proline content and proline oxidase activity from heading to 10 days after heading, improving the initial synthesis of Δ1-pyrroline-5-carboxylic acid (P5C) for the vital 2-acetyl-1-pyrroline (2-AP) production during 10-25 days post-heading, which promoted the remarkable increase of the final 2-AP content (5.0-19.8 %). These findings showed that Se NPs can be practically applied as the foliar fertilizer for quality improvement, selenium bioavailability enhancement and aroma enrichment in rice grains.
Collapse
Affiliation(s)
- Rui Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Muyan Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Chen
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wanjie Shen
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiaxin Dai
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Haipeng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
6
|
Jiang H, Zhao Y, Chen L, Wan X, Yan B, Liu Y, Liu Y, Zhang W, Gao J. Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen-Phosphorus Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:432. [PMID: 39942994 PMCID: PMC11820203 DOI: 10.3390/plants14030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
To reveal the regulatory effects of nitrogen and phosphorus interactions on grain-filling- and starch-synthesis-related enzymes, and grain weight of superior grains (SGs) and inferior grains (IGs) and taste quality, the japonica rice cultivar Shennong 265 was grown under field conditions with three nitrogen levels (210, 178.5, and 147 kg N ha-1; N3, N2, and N1) and two phosphorus levels (105 and 73.5 kg P ha-1; P2 and P1). At the N3 level, the yield of P1 was significantly lower (by 19.26%) compared to P2; at the N2 and N1 levels, P1 yielded higher than P2, peaking at N2P1. Spikelets per panicle showed P2 exceeding P1 at the same nitrogen level, with the highest for both SGs and IGs observed at N2P2, followed by N2P1. Reductions in nitrogen and phosphorus decreased the grain-filling rate but prolonged the duration for grain-filling. N2P1 maintained grain weight by extending the grain-filling duration across the early, middle, and late stages of IGs, and the middle and late stages of SGs. Increased nitrogen enhanced the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE), whereas increased phosphorus inhibited these activities in SGs but enhanced them in IGs. Reduced nitrogen and phosphorus fertilizer diminished ADP glucose pyrophosphorylase (AGPP) and granule-bound starch synthase (GBSS) activities in SGs and IGs, inhibiting amylose accumulation while enhancing taste value. Compared with N3P2, the taste value of N2P1 increased significantly by 6.93%, attributed to a higher amylopectin/amylose ratio. N2P1 (178.5 kg N ha-1 and 73.5 kg P ha-1) optimized enzyme activity, starch composition, and grain filling, balancing both yield and taste, and thus demonstrated an effective fertilization strategy for stable rice production.
Collapse
Affiliation(s)
- Hongfang Jiang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (H.J.); (Y.Z.); (X.W.); (B.Y.); (Y.L.); (Y.L.)
| | - Yanze Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (H.J.); (Y.Z.); (X.W.); (B.Y.); (Y.L.); (Y.L.)
| | - Liqiang Chen
- School of Agriculture, Liaodong University, Dandong 118001, China;
| | - Xue Wan
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (H.J.); (Y.Z.); (X.W.); (B.Y.); (Y.L.); (Y.L.)
| | - Bingchun Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (H.J.); (Y.Z.); (X.W.); (B.Y.); (Y.L.); (Y.L.)
| | - Yuzhuo Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (H.J.); (Y.Z.); (X.W.); (B.Y.); (Y.L.); (Y.L.)
| | - Yuqi Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (H.J.); (Y.Z.); (X.W.); (B.Y.); (Y.L.); (Y.L.)
| | - Wenzhong Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (H.J.); (Y.Z.); (X.W.); (B.Y.); (Y.L.); (Y.L.)
| | - Jiping Gao
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (H.J.); (Y.Z.); (X.W.); (B.Y.); (Y.L.); (Y.L.)
| |
Collapse
|
7
|
Shao D, Zhang J, Shao T, Li Y, He H, Wang Y, Ma J, Cao R, Li A, Du X. Modification of Structure, Pasting, and In Vitro Digestion Properties of Glutinous Rice Starch by Different Lactic Acid Bacteria Fermentation. Foods 2025; 14:367. [PMID: 39941960 PMCID: PMC11817194 DOI: 10.3390/foods14030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
This research evaluated the effect of fermentation with Lactobacillus plantarum 11122, Lactobacillus casei 23184, and Lactobacillus lactis 1011 on structure, pasting, and in vitro digestion properties of glutinous rice starch varying in TN and HY genotype, respectively. The results showed that fermentation decreased the weight-average molecular weight and increased the radius of gyration. The short chain was increased by degrading the medium chain (B2, DP 24-35) of amorphous in starch, which directly led to the increase of branching degree and rearrangement of the starch chain. LAB fermentation increases the short-range ordered structure, helix structure, and crystallinity by polymerization or interactions of short chains between intermolecular and intramolecular. Furthermore, the pasting characteristic of the fermented starch sample obtained obvious improvement in terms of hydration capacity, including breakdown and setback value. Fermentation facilitated the forming of both slowly digestible starch (17.1-30.79%) and resistant starch (32.3-46.8%) in TN but caused a decline in the content of rapidly digestible starch (25.47-43.6% in TN, 9.36-17.8% in HY). The result of Pearson's correlation tests and PCA showed the variety of structural and physicochemical of fermentation-treated starch depend highly on the starter culture and starch resources. These results provided new data support for the potential application of modified starch by fermentation with LABs.
Collapse
Affiliation(s)
- Dongliang Shao
- College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China;
| | - Jigang Zhang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (J.Z.); (T.S.); (Y.L.)
| | - Tiantian Shao
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (J.Z.); (T.S.); (Y.L.)
| | - Yuhui Li
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (J.Z.); (T.S.); (Y.L.)
| | - Hongkui He
- Anhui Risewell Technology Limited Company, Bozhou 236800, China; (H.H.); (Y.W.); (J.M.); (R.C.)
| | - Yanli Wang
- Anhui Risewell Technology Limited Company, Bozhou 236800, China; (H.H.); (Y.W.); (J.M.); (R.C.)
| | - Jintong Ma
- Anhui Risewell Technology Limited Company, Bozhou 236800, China; (H.H.); (Y.W.); (J.M.); (R.C.)
| | - Runjie Cao
- Anhui Risewell Technology Limited Company, Bozhou 236800, China; (H.H.); (Y.W.); (J.M.); (R.C.)
| | - Anjun Li
- Anhui Risewell Technology Limited Company, Bozhou 236800, China; (H.H.); (Y.W.); (J.M.); (R.C.)
| | - Xianfeng Du
- College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China;
| |
Collapse
|
8
|
Liu C, Zhou T, Xue Z, Wei C, Zhu K, Ye M, Zhang W, Zhang H, Liu L, Wang Z, Gu J, Yang J. Combining Controlled-Release and Normal Urea Enhances Rice Grain Quality and Starch Properties by Improving Carbohydrate Supply and Grain Filling. PLANTS (BASEL, SWITZERLAND) 2025; 14:107. [PMID: 39795366 PMCID: PMC11723035 DOI: 10.3390/plants14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Controlled-release nitrogen fertilizers are gaining popularity in rice (Oryza stavia L.) cultivation for their ability to increase yields while reducing environmental impact. Grain filling is essential for both the yield and quality of rice. However, the impact of controlled-release nitrogen fertilizer on grain-filling characteristics, as well as the relationship between these characteristics and rice quality, remains unclear. This study aimed to identify key grain-filling characteristics influencing rice milling quality, appearance, cooking and eating qualities, and physicochemical properties of starch. In this study, a two-year field experiment was conducted that included four nitrogen management practices: zero nitrogen input (CK), a local high-yield practice with split urea applications (100% urea, CU), a single basal application of 100% controlled-release nitrogen fertilizer (CRNF), and a basal application blend of 70% controlled-release nitrogen fertilizer with 30% urea (CRNF-CU). The results showed that a sufficient amount of carbohydrates for the rice grain-filling process, as indicated by a higher sugar-spikelet ratio, is essential for improving grain quality. An increased sugar-spikelet ratio enhances the grain-filling process, resulting in an elevated average grain-filling rate (Gmean) and the peak grain-filling rate (Gmax), while also reducing the overall time required for grain filling (D). Compared to CU, CRNF and CRNF-CU treatments did not significantly change milling qualities, but reduced the chalky kernel rate and chalkiness, thereby enhancing the appearance quality. These treatments increased the amylose and amylopectin contents while reducing protein content, though the proportion of protein constituents remained unchanged. These treatments led to larger starch granules with notably smoother surfaces. Additionally, CRNF and CRNF-CU reduced relative crystallinity and structural order, while increasing the amorphous structure in the outer region of starch granules, which lowered rice starch crystal stability. The treatments also increased viscosity and improved the thermodynamic properties of starch, resulting in enhanced eating and cooking quality of the rice. In conclusion, the CRNF-CU is the most effective strategy in this study to enhance both grain yield and quality. This practice ensures an adequate carbohydrate supply for grain filling, which is essential for efficient grain filling and improved overall quality.
Collapse
Affiliation(s)
- Chang Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tianyang Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhangyi Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chenhua Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Miao Ye
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China; (C.L.); (T.Z.); (C.W.); (K.Z.); (M.Y.); (W.Z.); (H.Z.); (L.L.); (Z.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Liu T, Li X, Li X, Wang Z, Yin H, Ma Y, Luo Y, Liu R, Li Z, Deng P, Peng Z, Yang Z, Sun Y, Ma J, Chen Z. Utilizing machine learning to optimize agricultural inputs for improved rice production benefits. iScience 2024; 27:111407. [PMID: 39687017 PMCID: PMC11648248 DOI: 10.1016/j.isci.2024.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/15/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Lower efficiency of agricultural inputs in the four conventional rice planting methods limits productivity and environmental benefits in Southwest China. Thus, we developed a machine-learning-based decision-making system for achieving optimal comprehensive benefits during rice production. Based on conventional benefits for achieving optimal benefits, implemented strategies in these planting methods: reducing N fertilizer by 16% while increasing seed inputs by 9% in mechanical transplanting (MT) method improved yield and environmental benefits; reducing N fertilizer and seed inputs by 10-12% in mechanical direct seeding (MD) method decreased environmental impacts; increasing N-K fertilizers and seed inputs by 15-33% in manual transplanting (MAT) method improved its comprehensive benefits by 7-14%; applying N-P-K fertilizer ratio of 2:1:2 in manual direct seeding (MAD) method enhanced yield. Our study provides strategies for improving benefits in these planting methods, with MT method being more beneficial for optimizing comprehensive benefits, especially in yield and environmental impacts, in Southwest China.
Collapse
Affiliation(s)
- Tao Liu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiafei Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrui Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhonglin Wang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Huilai Yin
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yangming Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruhongji Liu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixin Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengxin Deng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenglan Peng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Li Y, Zhao J, Ma H, Pu L, Zhang J, Huang X, Yang H, Fan G. Shade tolerance in wheat is related to photosynthetic limitation and morphological and physiological acclimations. FRONTIERS IN PLANT SCIENCE 2024; 15:1465925. [PMID: 39703556 PMCID: PMC11655228 DOI: 10.3389/fpls.2024.1465925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Low solar irradiance reaching the canopy due to fog and heavy haze is a significant yield-limiting factor worldwide. However, how plants adapt to shade stress and the mechanisms underlying the reduction in leaf photosynthetic capacity and grain yield remain unclear. In this study (conducted during 2018-2021), we investigated the impact of light deprivation (60%) at the pre-anthesis and post-anthesis stages on leaf carboxylation efficiency, source-to-sink relationships, sucrose metabolism, and grain yield of wheat cultivars with contrasting shade tolerance. Shade stress decreased stomatal conductance, stomatal limitation value, intrinsic water use efficiency, rubisco activity, and carboxylation efficiency of flag leaves during grain-filling, whereas intercellular CO2 concentration increased. These findings indicate that non-stomatal limitation reduces the net photosynthesis rate in a weak-light environment. Shade-tolerant cultivars (MM-51 and CM-39) adapted to low-light conditions via a higher leaf area of flag leaves, light interception rate, and chlorophyll a and b contents; this increased non-structural carbohydrates and sucrose contents in developing grains, ultimately decreasing yield loss by shade stress. Pre-anthesis shading resulted in a greater yield loss than post-anthesis shading because of decreased plant biomass, grain number per spike and 1,000-kernel weight. This study indicates that Rubisco-mediated non-stomatal limitation reduces P N and sucrose content in plants exposed to low-light stress, contributing to decreased grain yield. Our study provides information on the mechanism underlying shade stress tolerance, which will help design future strategies for reducing yield loss in the context of global dimming.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan, China
| | - Jiarong Zhao
- Crop Eco-physiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongliang Ma
- Crop Eco-physiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixia Pu
- Crop Eco-physiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiarui Zhang
- Key Laboratory of Crop Eco-Physiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiulan Huang
- Crop Eco-physiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan, China
- Crop Eco-physiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-Physiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan, China
- Crop Eco-physiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-Physiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Wen J, Li Z, Yao J, Wang S, Liu Y, Liu Y. The combined application of organic and inorganic fertilizers improved the quality of colored wheat by physicochemical properties and rheological characteristics of starch. Int J Biol Macromol 2024; 282:137175. [PMID: 39510457 DOI: 10.1016/j.ijbiomac.2024.137175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Excessive use of nitrogen fertilizer can degrade the quality of wheat grain, while appropriate use of organic fertilizer can enhance starch quality. To clarify the effects of chemical fertilizer and organic fertilizer on wheat quality. We measured indicators such as amylose content, starch granules, starch structure, gelatinization characteristics, and rheological properties of wheat under different proportions of combined application of organic fertilizer and chemical fertilizer, revealing the effects of combined application of organic fertilizer and chemical fertilizer on the physicochemical properties and structure of starch. The results showed that compared with single application of chemical fertilizer (T1), organic fertilizer instead of 30 % fertilizer (T2) significantly increased amylose content (10.13 %), starch solubility (35.54 %, 90 °C), swelling power (7.40 %, 90 °C) and wheat yield (18.78 %), but decreased relative crystallinity (37.40 %) and order degree of starch, resulted in a decrease in gelatinization temperature (3.27 %). Meanwhile, rheological analysis also proved that the starch under T2 showed strong elasticity and hardness. This research highlights the importance of organic fertilizer for grain quality and propose that replacing 30 % of chemical fertilizer with organic fertilizer could significantly enhance the starch structure of colored wheat, providing theoretical support for the improvement of wheat quality.
Collapse
Affiliation(s)
- Jialu Wen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhiyuan Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jianfeng Yao
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shuo Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yi Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Wang J, Zhang X, Xiao Y, Chen H, Wang X, Hu Y. Effect of nitrogen fertilizer on the quality traits of Indica rice with different amylose contents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8492-8499. [PMID: 38923540 DOI: 10.1002/jsfa.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Nitrogen is a key factor affecting the quality of rice. Studying the impact of nitrogen fertilizer on the taste, physicochemical properties, and starch structure of Indica rice with different amylose contents is of great significance for scientifically fertilizing and cultivating high-quality rice varieties for consumption. RESULTS The results indicate that increasing nitrogen fertilizer application reduces the amylose content and increases the protein content, resulting in a decrease in taste quality. Simultaneously, it reduces the intergranular porosity of starch particles, improving the appearance and milling quality of rice. Compared to the N1 treatment (nitrogen fertilizer application rate of 90 kg ha-1), the taste of low-amylose rice (Yixiangyou 2115) and high-amylose rice (Byou 268) decreased by 14.24% and 19.79%, respectively, under N4 treatment (nitrogen fertilizer application rate of 270 kg ha-1). The effect of nitrogen fertilizer on low-amylose rice is mainly reflected in increased rice hardness, enthalpy value, and setback viscosity, resulting in a decline in taste. The effect of nitrogen fertilizer on high-amylose rice is mainly reflected in a decrease in peak viscosity, an increase in gelatinization temperature, and crystallinity under high nitrogen levels. CONCLUSION Increasing nitrogen fertilizer application can improve the appearance and milling quality of rice, but it also leads to an increase in protein content, hardness, gelatinization enthalpy, decrease in breakdown value, and a decline in palatability. In practical production, different production measures should be taken according to different production goals. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinhui Wang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Xiaoqiao Zhang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Yao Xiao
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Hong Chen
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Xuechun Wang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Yungao Hu
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| |
Collapse
|
13
|
Wu J, Wang Q, Zhang D, Duan X, Sun H. The Effect of Reduced Nitrogen Fertilizer Application on japonica Rice Based on Volatile Metabolomics Analysis. Foods 2024; 13:3310. [PMID: 39456372 PMCID: PMC11507305 DOI: 10.3390/foods13203310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nitrogen is critical for rice yield and quality, but its overuse can be detrimental to efficiency and the environment. To identify changes in the quality of rice in response to the reduced application of nitrogen fertilizer, we carried out a comprehensive metabolomics study of SuiJing 18 using volatile metabolomics methods. Our results showed that SuiJing 18 had a total of 358 volatile metabolites, mainly lipids (16.25%), terpenoids (15.41%), heterocyclic compounds (15.13%), and hydrocarbons (13.45%). SuiJing 18 underwent significant changes in response to the reduced application of nitrogen fertilizer. Key sweet volatile compounds such as 4-methyl-benzeneacetaldehyde, hexyl acetate, and 2-methylnaphthalene were present at significantly higher levels when nitrogen fertilizer was applied at a rate of 68 kg of pure nitrogen per hectare, and their flavor characteristics also differed significantly from the compounds resulting from the other two treatments. Focusing on 16 differential volatile metabolites, we further investigated their effects on flavor and quality, thus laying the foundation for a greater understanding of the biomarkers associated with changes in rice quality. This study contributes to a better understanding of the mechanisms underlying changes in rice quality after reduced nitrogen fertilizer application.
Collapse
Affiliation(s)
- Jiahao Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| | - Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| | - Hui Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| |
Collapse
|
14
|
Feng W, Xue W, Zhao Z, Wang H, Shi Z, Wang W, Chen B, Qiu P, Xue J, Sun M. Nitrogen Level Impacts the Dynamic Changes in Nitrogen Metabolism, and Carbohydrate and Anthocyanin Biosynthesis Improves the Kernel Nutritional Quality of Purple Waxy Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2882. [PMID: 39458829 PMCID: PMC11510902 DOI: 10.3390/plants13202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Waxy corn is a special type of maize primarily consumed as a fresh vegetable by humans. Nitrogen (N) plays an essential role in regulating the growth progression, maturation, yield, and quality of waxy maize. A reasonable N application rate is vital for boosting the accumulation of both N and carbon (C) in the grains, thereby synergistically enhancing the grain quality. However, the impact of varying N levels on the dynamic changes in N metabolism, carbohydrate formation, and anthocyanin synthesis in purple waxy corn kernels, as well as the regulatory relationships among these processes, remains unclear. To explore the effects of varying N application rates on the N metabolism, carbohydrate formation, and anthocyanin synthesis in kernels during grain filling, a two-year field experiment was carried out using the purple waxy maize variety Jinnuo20 (JN20). This study examined the different N levels, specifically 0 (N0), 120 (N1), 240 (N2), and 360 (N3) kg N ha-1. The results of the analysis revealed that, for nearly all traits measured, the N application rate of N2 was the most suitable. Compared to the N0 treatment, the accumulation and content of anthocyanins, total nitrogen, soluble sugars, amylopectin, and C/N ratio in grains increased by an average of 35.62%, 11.49%, 12.84%, 23.74%, 13.00%, and 1.87% under N2 treatment over five filling stages within two years, respectively, while the harmful compound nitrite content only increased by an average of 30.2%. Correspondingly, the activities of related enzymes also significantly increased and were maintained under N2 treatment compared to N0 treatment. Regression and correlation analysis results revealed that the amount of anthocyanin accumulation was highly positively correlated with the activities of phenylalanine ammonia-lyase (PAL) and flavanone 3-hydroxylase (F3H), but negatively correlated with anthocyanidin synthase (ANS) and UDP-glycose: flavonoid-3-O-glycosyltransferase (UFGT) activity, nitrate reductase (NR), and glutamine synthetase (GS) showed significant positive correlations with the total nitrogen content and lysine content, and a significant negative correlation with nitrite, while soluble sugars were negatively with ADP-glucose pyrophosphorylase (AGPase) activity, and amylopectin content was positively correlated with the activities of soluble starch synthase (SSS), starch branching enzyme (SBE), and starch debranching enzyme (SDBE), respectively. Furthermore, there were positive or negative correlations among the detected traits. Hence, a reasonable N application rate improves purple waxy corn kernel nutritional quality by regulating N metabolism, as well as carbohydrate and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wanjun Feng
- Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China; (W.F.); (W.W.); (P.Q.)
| | - Weiwei Xue
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (W.X.); (Z.Z.); (H.W.); (Z.S.); (B.C.)
| | - Zequn Zhao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (W.X.); (Z.Z.); (H.W.); (Z.S.); (B.C.)
| | - Haoxue Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (W.X.); (Z.Z.); (H.W.); (Z.S.); (B.C.)
| | - Zhaokang Shi
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (W.X.); (Z.Z.); (H.W.); (Z.S.); (B.C.)
| | - Weijie Wang
- Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China; (W.F.); (W.W.); (P.Q.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (W.X.); (Z.Z.); (H.W.); (Z.S.); (B.C.)
| | - Baoguo Chen
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (W.X.); (Z.Z.); (H.W.); (Z.S.); (B.C.)
| | - Peng Qiu
- Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China; (W.F.); (W.W.); (P.Q.)
| | - Jianfu Xue
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (W.X.); (Z.Z.); (H.W.); (Z.S.); (B.C.)
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (W.X.); (Z.Z.); (H.W.); (Z.S.); (B.C.)
| |
Collapse
|
15
|
Liu H, Zhou H, Li J, Peng Y, Shen Z, Luo X, Liu J, Zhang R, Zhang Z, Gao X. Effects of nitrogen fertilizer application on the physicochemical properties of foxtail millet (Setaria italica L.) starch. Int J Biol Macromol 2024; 278:134522. [PMID: 39128735 DOI: 10.1016/j.ijbiomac.2024.134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
The use of nitrogen fertilizer is a crucial agronomic practice to increase crop output and quality. This study investigated the impact of five nitrogen application levels (0, 60, 135, 210, and 285 kg N/hm2) on the physicochemical properties of foxtail millet (FM) starch. Optimal nitrogen application (210 kg N/hm2) significantly increased L*, a*, and b* values, water and oil absorption capacity, water solubility, and swelling power of starch. The number of small starch granules increased as the nitrogen application rate increased, but the granule morphology and typical A-type pattern did not change among the treatments. Nitrogen application increased the relative crystallinity and ordered structure, resulting in a higher gelatinization enthalpy. Compared to the control group (7.02 J/g), the enthalpy increased by 21.94 %, 66.38 %, 73.50 %, and 103.28 % under the nitrogen application rates, respectively. Moreover, nitrogen application greatly increased the percentage of A and B3 chains while it lowered the apparent amylose content, peak viscosity, and final viscosity. The effects of 210 and 285 kg N/hm2 treatments on the water solubility and swelling power, water and oil absorption, and light transmission of starch were greater compared to the 60 and 135 kg N/hm2 treatments. These results indicate that nitrogen fertilization significantly affects the physicochemical properties of FM starch.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Haolu Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yanli Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhaoyang Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xinyu Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jindong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruipu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhiyan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
16
|
Wu X, Guo K, Liang W, Wang Q, Zhai M, Li J, Herburger K, Wang Z, Zhong Y, Han Q. Optimizing planting density enhances the multi-scale structural characteristics and in vitro digestibility of maize starch via modulating the size distribution of granules. Int J Biol Macromol 2024; 280:136004. [PMID: 39326617 DOI: 10.1016/j.ijbiomac.2024.136004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The modification of starch through agricultural practices is becoming increasingly significant for producing healthy foodstuffs and raw materials for industrial applications, consequently gaining momentum in academic research. This study examined how three different planting densities influenced the distribution of granule sizes, multi-scale structural characteristics, and in vitro digestibility of maize starch. The results showed that planting density significantly enhanced grain yield and relative crystallinity, and significant increases were also observed in the contents of both rapidly and slowly digestible starch. The surface- and volume-weighted mean diameter of granules significantly increased under the medium level (6.75 × 104 plants ha-1), and then decreased under high planting density level. As planting density level increased, the amylose content, peak viscosity, and hardness varied from 23.3 to 26.4 %, from 1962 to 2659 mPa·s, and from 129.3 to 307.6 g, respectively. However, no change was found in crystalline structure of maize starch. These results indicated that optimizing planting density could effectively improve grain yield and starch characteristics of maize, with the best effect under the level of 6.75 × 104 plants ha-1.
Collapse
Affiliation(s)
- Xiaorong Wu
- Key Laboratory of Crop Physio-ecology and Tillage Science in North-western Loess Plateau, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Ke Guo
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Wenxin Liang
- Institute of Biological Sciences, University of Rostock, Germany
| | - Qian Wang
- Institute of Biological Sciences, University of Rostock, Germany
| | - Mingming Zhai
- Key Laboratory of Crop Physio-ecology and Tillage Science in North-western Loess Plateau, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jingyuan Li
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Klaus Herburger
- Institute of Biological Sciences, University of Rostock, Germany
| | - Zihao Wang
- Key Laboratory of Crop Physio-ecology and Tillage Science in North-western Loess Plateau, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuyue Zhong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Qingfang Han
- Key Laboratory of Crop Physio-ecology and Tillage Science in North-western Loess Plateau, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
17
|
Hu Y, Sun L, Xue J, Cai Q, Xu Y, Guo J, Wei H, Huo Z, Xu K, Zhang H. Reduced Nitrogen Application with Dense Planting Achieves High Eating Quality and Stable Yield of Rice. Foods 2024; 13:3017. [PMID: 39335945 PMCID: PMC11431551 DOI: 10.3390/foods13183017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Rational nitrogen (N) application can enhance yield and improve grain eating quality in rice. However, excessive N input can deteriorate grain eating quality and aggravate environmental pollution, while reduced N application (RN) decreases rice yield. Reduced N application with dense planting (RNDP) is recommended for maintaining rice yield and improving N use efficiency. However, the effects of RNDP on the rice grain eating quality and starch structure and properties remain unclear. A two-year field experiment was conducted to investigate the effects of RNDP on the rice yield, grain eating quality, and starch structure and properties. Compared to conventional N treatment, RN decreased significantly the rice yield, while RNDP achieved a comparable grain yield. Both the RN and RNDP treatments improved significantly the rice eating quality. The high eating quality of RNDP was attributed to increased gel consistency, pasting viscosity, and stickiness after cooking as well as decreased protein content. A further analysis of starch structure and properties revealed that RNDP decreased the relative crystallinity, lamellar intensity, gelatinization enthalpy, and retrogradation enthalpy of starch. Therefore, RNDP achieved a stable rice yield and enhanced rice eating quality. These findings provide valuable insights into obtaining optimal quality and consistent yield in rice production under reduced N conditions.
Collapse
Affiliation(s)
- Yajie Hu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Liang Sun
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jiantao Xue
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qin Cai
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yi Xu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinghao Guo
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ke Xu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Feng W, Xue W, Zhao Z, Shi Z, Wang W, Bai Y, Wang H, Qiu P, Xue J, Chen B. Nitrogen fertilizer application rate affects the dynamic metabolism of nitrogen and carbohydrates in kernels of waxy maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1416397. [PMID: 39148609 PMCID: PMC11324447 DOI: 10.3389/fpls.2024.1416397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Introduction Nitrogen (N) plays a pivotal role in the growth, development, and yield of maize. An optimal N application rate is crucial for enhancing N and carbohydrate (C) accumulation in waxy maize grains, which in turn synergistically improves grain weight. Methods A 2-year field experiment was conducted to evaluate the impact of different N application rates on two waxy maize varieties, Jinnuo20 (JN20) and Jindannuo41 (JDN41), during various grain filling stages. The applied N rates were 0 (N0), 120 (N1), 240 (N2), and 360 (N3) kg N ha-1. Results The study revealed that N application significantly influenced nitrogen accumulation, protein components (gliadin, albumin, globulin, and glutelin), carbohydrate contents (soluble sugars, amylose, and amylopectin), and activities of enzymes related to N and C metabolism in waxy maize grains. Notable varietal differences in these parameters were observed. In both varieties, the N2 treatment consistently resulted in the highest values for almost all measured traits compared to the other N treatments. Specifically, the N2 treatment yielded an average increase in grain dry matter of 21.78% for JN20 and 17.11% for JDN41 compared to N0. The application of N positively influenced the activities of enzymes involved in C and N metabolism, enhancing the biosynthesis of grain protein, amylose, and amylopectin while decreasing the accumulation of soluble sugars. This modulation of the C/N ratio in the grains directly contributed to an increase in grain dry weight. Conclusion Collectively, our findings underscore the critical role of N in regulating kernel N and C metabolism, thereby influencing dry matter accumulation in waxy maize grains during the grain filling stage.
Collapse
Affiliation(s)
- Wanjun Feng
- Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi, China
| | - Weiwei Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zequn Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhaokang Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weijie Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yu Bai
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haoxue Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peng Qiu
- Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi, China
| | - Jianfu Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Baoguo Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
19
|
Peng B, Liu Y, Qiu J, Peng J, Sun X, Tian X, Zhang Z, Huang Y, Pang R, Zhou W, Zhao J, Sun Y, Wang Q. OsG6PGH1 affects various grain quality traits and participates in the salt stress response of rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1436998. [PMID: 39049859 PMCID: PMC11267625 DOI: 10.3389/fpls.2024.1436998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Cytoplasmic 6-phosphogluconate dehydrogenase (G6PGH) is a key enzyme in the pentose phosphate pathway that is involved in regulating various biological processes such as material metabolism, and growth and development in plants. However, it was unclear if OsG6PGH1 affected rice grain quality traits. We perform yeast one-hybrid experiments and reveal that OsG6PGH1 may interact with OsAAP6. Subsequently, yeast in vivo point-to-point experiments and local surface plasmon resonance experiments verified that OsG6PGH1 can bind to OsAAP6. OsG6PGH1 in rice is a constitutive expressed gene that may be localized in the cytoplasm. OsAAP6 and protein-synthesis metabolism-related genes are significantly upregulated in OsG6PGH1 overexpressing transgenic positive endosperm, corresponding to a significant increase in the number of protein bodies II, promoting accumulation of related storage proteins, a significant increase in grain protein content (GPC), and improved rice nutritional quality. OsG6PGH1 positively regulates amylose content, negatively regulates chalkiness rate and taste value, significantly affects grain quality traits such as appearance, cooking, and eating qualities of rice, and is involved in regulating the expression of salt stress related genes, thereby enhancing the salt-stress tolerance of rice. Therefore, OsG6PGH1 represents an important genetic resource to assist in the design of high-quality and multi-resistant rice varieties.
Collapse
Affiliation(s)
- Bo Peng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yan Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jing Qiu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jing Peng
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Xiaoyu Sun
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xiayu Tian
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhiguo Zhang
- Henan Lingrui Pharmaceutical Company Limited, Xinyang, China
| | - Yaqin Huang
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Ruihua Pang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wei Zhou
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jinhui Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yanfang Sun
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Quanxiu Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
20
|
Li X, Wang H, Sun S, Ji X, Wang X, Wang Z, Shang J, Jiang Y, Gong X, Qi H. Optimization of the morphological, structural, and physicochemical properties of maize starch using straw returning and nitrogen fertilization in Northeast China. Int J Biol Macromol 2024; 265:130791. [PMID: 38479666 DOI: 10.1016/j.ijbiomac.2024.130791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
The combination of straw returning and nitrogen (N) fertilization is a popular tillage mode and essential strategy for achieving stable yield and high quality. However, the optimal combination strategy and the influence of tillage mode on the morphological, crystalline, and molecular structures of maize starch remain unclear. We conducted a long-term field experiment over 7 years in Northeast China using two tillage modes, rotary tillage with straw returning (RTS) and plow tillage with straw returning (PTS), and four N application rates. The relative crystallinity, 1045/1022 cm-1 value, and B2 and B3 chains of maize starch were higher under RTS than under PTS, resulting in increased stability of starch and improvements in gelatinization enthalpy and temperature. The surface of the starch granules induced by N fertilizer was smoother than that under the N0 (0 kg N ha-1) treatment. The proportion of amylose content, solubility, swelling power, and light transmittance increased under N2 (262 kg N ha-1) treatment, along with improvement in starch pasting properties. These results suggest that RTS combined with N2 treatment can regulate the morphological, structural, and physicochemical characteristics of maize starch, providing an essential reference for improving the quality of maize starch from an agronomic point of view.
Collapse
Affiliation(s)
- Xiangyu Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Honglu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Sitong Sun
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xinjie Ji
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xuelian Wang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Zhengyu Wang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Jiaxin Shang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Ying Jiang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xiangwei Gong
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Hua Qi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|
21
|
Liang Y, Zheng L, Yang Y, Zheng X, Xiao D, Ai B, Sheng Z. Dielectric barrier discharge cold plasma modifies the multiscale structure and functional properties of banana starch. Int J Biol Macromol 2024; 264:130462. [PMID: 38423435 DOI: 10.1016/j.ijbiomac.2024.130462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.
Collapse
Affiliation(s)
- Yonglun Liang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China.
| | - Zhanwu Sheng
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
22
|
Ouyang J, Wang C, Huang Q, Guan Y, Zhu Z, He Y, Jiang G, Xiong Y, Li X. Correlation between in vitro starch digestibility and starch structure/physicochemical properties in rice. Int J Biol Macromol 2024; 263:130316. [PMID: 38382778 DOI: 10.1016/j.ijbiomac.2024.130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Natural resistant starch (RS) in rice provides human health benefits, and its concentration in rice is influenced by the structure and physicochemical properties of starch. The native starch structures and physicochemical properties of three rice varieties, QR, BR58, and BR50, and their relationships to in vitro digestibility were studied. The starch granules in all three varieties were irregular or polyhedral in shape. There were a few oval granules and a few pinhole structures in QR, no oval granules but a higher number of pinholes in BR58, and no oval granules and pinholes in BR50. QR is a low-amylose (13.8 %), low-RS (0.2 %) variety. BR58 is a low-amylose (15.3 %), high-RS (6.5 %) variety. BR50 is a high-amylose (26.7 %), high-RS (8.3 %) variety. All three starches exhibited typical A-type diffraction patterns. Starch molecular weight, chain length distribution, starch branching degree, pasting capabilities, and thermal properties differed considerably between the rice starches. The RS contents of the rice starch varieties were positively correlated with AAC, Mw/Mn, Mz/Mn, peak 3, B, PTime, and Tp and negatively correlated with Mn, peak 2, DB, PV, and BD, according to Pearson's correlation analysis. These findings may be helpful for the breeding and development of high-RS rice varieties.
Collapse
Affiliation(s)
- Jie Ouyang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Chutao Wang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Qianlong Huang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Yusheng Guan
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Zichao Zhu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Yongxin He
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Gang Jiang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Ying Xiong
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Xianyong Li
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China.
| |
Collapse
|
23
|
Liu W, Wang K, Zhao Y, Shen Y, Zhang C, Peng Y, Ran X, Guo H, Ding Y, Tang S. Effects of nitrogen application on physicochemical properties of rice starch under elevated temperature. Food Chem 2024; 433:137303. [PMID: 37713937 DOI: 10.1016/j.foodchem.2023.137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
Nitrogen fertilization can mitigate the negative effects of high temperatures on rice. In this study, we simulated dynamic field temperature increases using a free-air temperature enhancement system. Changes in the physicochemical properties of starch were investigated under increasing nitrogen fertilization during the grain-filling stage. We observed that the application of nitrogen at elevated temperatures (ETN) did not change the chain length distribution compared with elevated temperatures (ET) alone; however, it did significantly increase the heights of the first and second amylose peaks. Specifically, ETN significantly decreased the height of fifth amylopectin and relative crystallinity, and the changes it introduced in the physicochemical properties of starch were greater than those of ET. Overall, these changes in starch properties may be associated with the ability of nitrogen to facilitate the maintenance of rice quality at high temperatures.
Collapse
Affiliation(s)
- Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kailu Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China.
| |
Collapse
|
24
|
Wang H, Zhang H, Liu J, Ma Q, Wu E, Gao J, Yang Q, Feng B. Transcriptome analysis reveals the mechanism of nitrogen fertilizers in starch synthesis and quality in waxy and non-waxy proso millet. Carbohydr Polym 2024; 323:121372. [PMID: 37940241 DOI: 10.1016/j.carbpol.2023.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 11/10/2023]
Abstract
Recent findings suggest that optimal application of nitrogen fertilizers can effectively improve the quality of proso millet (PM). Here, we aimed to investigate the pathways associated with starch synthesis and metabolism to elucidate the effect and molecular mechanisms of nitrogen fertilization in starch synthesis and properties in waxy and non-waxy PM varieties using transcriptomic techniques. Co-expression network analysis revealed that the regulation of starch synthesis and quality in PM by nitrogen fertilizer mainly occurred in the S2 and S3 stages during grain filling. Nitrogen fertilization inhibited glycolysis/gluconeogenesis and starch biosynthesis in grains, but increased starch degradation to maltose and dextrin and then to glucose. Moreover, nitrogen fertilization increased starch accumulation by upregulating the expression of SuS and malZ genes, thereby increasing the total starch content in grains. In contrast, nitrogen fertilization suppressed the expression of GBSS gene and decreased amylose content in PM grains, resulting in a relatively higher crystallinity, light transmittance, and breakdown viscosity in the two PM varieties. Overall, these results provided transcriptomics insights into the molecular mechanisms by which nitrogen fertilization regulates starch quality in PM, identified key genes that associated with the starch properties, and provided new insights into the quality cultivation of PM.
Collapse
Affiliation(s)
- Honglu Wang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Hui Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jiajia Liu
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Qian Ma
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Enguo Wu
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jinfeng Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Qinghua Yang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Baili Feng
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
25
|
Liu H, Liu B, Zhou H, Huang Y, Gao X. Nitrogen fertilizer affects the cooking quality and starch properties of proso millet ( Panicum miliaceum L.). Food Sci Nutr 2024; 12:602-614. [PMID: 38268879 PMCID: PMC10804076 DOI: 10.1002/fsn3.3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 10/07/2023] [Indexed: 01/26/2024] Open
Abstract
Nitrogen has a critical influence on the yield and quality of proso millet. However, the exact impact of nitrogen on the cooking quality of proso millet is not clear. In this study, the cooking quality and starch properties of two proso millet varieties (waxy-Shaanxi millet [wSM] variety and non-waxy-Shaanxi millet [nSM] variety) were compared and analyzed under nitrogen fertilizer treatment (N150, 150 kg/hm2) and a control group without nitrogen application (N0, 0 kg/hm2). Compared with the N0 group, the N150 treatment significantly increased protein content, amylose levels, and total yield. Employing rapid visco analyser and differential scanning calorimetry analyses, we observed that under the N150 treatment, the peak viscosity and breakdown viscosity of proso millet powder were diminished, while the setback viscosity and enthalpy values (ΔH) increased. In addition, nitrogen treatment increased the solids content in the obtained rice soup and significantly hardened the texture of the rice. At the same time, we noticed that the absorption capacity of starch in water and oil was enhanced. These results showed that nitrogen fertilizer had significant effects on the cooking quality and starch properties of proso millet.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Beibei Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
- Ankang Vocational Technical CollegeAnkangChina
| | - Haolu Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yinghui Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
26
|
Shi S, Ma Y, Zhao D, Li L, Cao C, Jiang Y. The differences in metabolites, starch structure, and physicochemical properties of rice were related to the decrease in taste quality under high nitrogen fertilizer application. Int J Biol Macromol 2023; 253:126546. [PMID: 37643670 DOI: 10.1016/j.ijbiomac.2023.126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Nitrogen fertilizer application is one of the key cultivation practices to improve rice yields. However, the application of high nitrogen fertilizers often leads to a reduction in the stickiness of the rice after cooking, thus reducing the taste quality of rice. Moreover, there are differences in taste quality among rice varieties, and the mechanism has not been studied in depth. In this study, two rice varieties (Meixiangzhan2hao and Exiang2hao) were planted under two nitrogen fertilizer levels. The physicochemical properties and taste quality of the rice were determined after maturity. Our results showed that high nitrogen fertilizer level alters tryptophan metabolism in rice, increasing most amino acid content and protein content in rice. The high content of protein and the higher short-range ordered structure of starch inhibited the gelatinization characteristics of starch and reduced the taste quality of rice. Under high nitrogen fertilizer application, Exiang2hao showed smaller increases in protein content, lower level of amylose and relative crystallinity, and higher content of lipid metabolites. These differences in chemical substances resulted in a less pronounced reduction in the taste quality of Exiang2hao. In this study, the taste quality of different rice varieties under different levels of nitrogen fertilizer application was analyzed, providing new ideas for future improvement of rice taste quality.
Collapse
Affiliation(s)
- Shijie Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yingying Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Dan Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lina Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Yang S, Chen L, Xiong R, Jiang J, Liu Y, Tan X, Liu T, Zeng Y, Pan X, Zeng Y. Long-term straw return improves cooked indica rice texture by altering starch structural, physicochemical properties in South China. Food Chem X 2023; 20:100965. [PMID: 38144815 PMCID: PMC10739843 DOI: 10.1016/j.fochx.2023.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Straw return can improve rice eating quality by modifying starch formation from long-term field trials, whereas the relevant mechanisms are still unknown. A long-term field experiment, including straw removal (CK), straw burning return (SBR), and straw return (SR) was conducted to investigate the starch structure, physicochemical properties, and cooked rice textures of indica early- and late-rice. Compared with CK, SBR and SR enhanced relative crystallinity, amylopectin long chains in both rice seasons, and gelatinization temperatures in late rice. Compared to SBR, SR decreased protein content and amylopectin short chains but increased starch branching degree, breakdown, and stickiness, ultimately contributing to improved starch thermal and pasting properties. Meanwhile, SR decreased hardness, cohesiveness, and chewiness, resulting in cooked texture meliorated, which was mainly attributed to amylopectin chain length and starch granule size. The results suggest that SR increased cooked texture of indica rice by altering starch structural and physicochemical properties.
Collapse
Affiliation(s)
- Shiqi Yang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Chen
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, 3 Fuliang Avenue, Jingdezhen 333400, Jiangxi, China
| | - Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiliang Jiang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Youqing Liu
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueming Tan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Taoju Liu
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjun Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaohua Pan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
28
|
Xiong R, Tan X, Yang T, Wang H, Pan X, Zeng Y, Zhang J, Zeng Y. Starch multiscale structure and physicochemical property alterations in high-quality indica rice quality and cooked rice texture under different nitrogen panicle fertilizer applications. Int J Biol Macromol 2023; 252:126455. [PMID: 37633549 DOI: 10.1016/j.ijbiomac.2023.126455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
The starch multiscale structure, physiochemical properties, grain quality and cooked rice texture of high-quality early and late indica were analyzed under nitrogen panicle fertilizer (low panicle fertilizer, LPF; middle panicle fertilizer, MPF; high panicle fertilizer, HPF) treatments and their internal relations were investigated. Compared to the MPF treatment, the starch granules in HPF and LPF had more surface-proteins and irregular voids for high-quality early and late indica rice cultivars, respectively. Nitrogen panicle fertilization application increased amylopectin medium and long chains as well as protein content, resulting in higher relative crystallinity and gelatinization temperatures. Moderate changes in starch multistructures and physicochemical properties such as branching degree, amylopectin medium chain, and pasting viscosities derived from MPF treatment significantly improved processing, appearance qualities and cooked rice texture. Additionally, the decrease in starch branching, gelatinization temperatures, and granule uniformity along with an increase in large granules, breakdown, and △Hgel under MPF treatment were the main reasons for improving rice textural properties.
Collapse
Affiliation(s)
- Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueming Tan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Taotao Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haixia Wang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaohua Pan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjun Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
29
|
Guo K, Liang W, Wang S, Guo D, Liu F, Persson S, Herburger K, Petersen BL, Liu X, Blennow A, Zhong Y. Strategies for starch customization: Agricultural modification. Carbohydr Polym 2023; 321:121336. [PMID: 37739487 DOI: 10.1016/j.carbpol.2023.121336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Raw starch is commonly modified to enhance its functionality for industrial applications. There is increasing demand for 'green' modified starches from both end-consumers and producers. It is well known that environmental conditions are key factors that determine plant growth and yield. An increasing number of studies suggest growth conditions can expand affect starch structure and functionality. In this review, we summarized how water, heat, high nitrogen, salinity, shading, CO2 stress affect starch biosynthesis and physicochemical properties. We define these treatments as a fifth type of starch modification method - agricultural modification - in addition to chemical, physical, enzymatic and genetic methods. In general, water stress decreases peak viscosity and gelatinization enthalpy of starch, and high temperature stress increases starch gelatinization enthalpy and temperature. High nitrogen increases total starch content and regulates starch viscosity. Salinity stress mainly regulates starch and amylose content, both of which are genotype-dependent. Shading stress and CO2 stress can both increase starch granule size, but these have different effects on amylose content and amylopectin structure. Compared with other modification methods, agricultural modification has the advantage of operating at a large scale and a low cost and can help meet the ever-rising market of clean-label foods and ingredients.
Collapse
Affiliation(s)
- Ke Guo
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Wenxin Liang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety and School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | - Bent L Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Department of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Muhlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
30
|
Zhang Y, Zhang S, Zhang J, Wei W, Zhu T, Qu H, Liu Y, Xu G. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2654-2670. [PMID: 37623700 PMCID: PMC10651157 DOI: 10.1111/pbi.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Improving rice eating and cooking quality (ECQ) is one of the primary tasks in rice production to meet the rising demands of consumers. However, improving grain ECQ without compromising yield faces a great challenge under varied nitrogen (N) supplies. Here, we report the approach to upgrade rice ECQ by native promoter-controlled high expression of a key N-dependent floral and circadian clock regulator Nhd1. The amplification of endogenous Nhd1 abundance alters rice heading date but does not affect the entire length of growth duration, N use efficiency and grain yield under both low and sufficient N conditions. Enhanced expression of Nhd1 reduces amylose content, pasting temperature and protein content while increasing gel consistence in grains. Metabolome and transcriptome analyses revealed that increased expression of Nhd1 mainly regulates the metabolism of carbohydrates and amino acids in the grain filling stage. Moreover, expression level of Nhd1 shows a positive relationship with grain ECQ in some local main cultivars. Thus, intensifying endogenous abundance of Nhd1 is a promising strategy to upgrade grain ECQ in rice production.
Collapse
Affiliation(s)
- Yuyi Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jinfei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Wei Wei
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
31
|
Guo C, Wuza R, Tao Z, Yuan X, Luo Y, Li F, Yang G, Chen Z, Yang Z, Sun Y, Ma J. Effects of elevated nitrogen fertilizer on the multi-level structure and thermal properties of rice starch granules and their relationship with chalkiness traits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7302-7313. [PMID: 37499162 DOI: 10.1002/jsfa.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 06/02/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Chalkiness in rice reduces its market value and affects consumer acceptance. Research on the mechanism of chalkiness formation has focused primarily on the activity of key enzymes of carbon metabolism and starch accumulation. The relationship between the formation of chalkiness induced by N fertilizer and rice starch's multi-level structure and thermal properties still needs to be fully elucidated. RESULTS In this study, the rates of chalky grains and degree of chalkiness decreased with the increase in N fertilizer dosage. This was attributed to an increased proportion of short chains, ordered structure carbon chains, small starch granules, and branched starches, and a higher degree of crystallinity and ΔHg in protein, and a decreased proportion of amylose, large starch granules, and weighted average diameter of starch granule surface area and volume. Application of N fertilizer promoted an increased proportion of short-branched chain amylopectin to develop a more ordered carbohydrate structure and crystalline lamella. These effects enhanced the normal development and compactness of starch granules in grains, and improved their arrangement morphology, thereby reducing the chalkiness in rice. CONCLUSION These changes in starch multi-level structure and protein improve the physicochemical characteristics of starch and enhance the fullness, crystallinity and compactness of starch granules, while synergistically increasing the regularity and homogeneity of starch granules and thus optimizing the stacking pattern of starch granules, leading to a reduction in rice chalkiness under nitrogen fertilization and thus improving the appearance of rice. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changchun Guo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Riqu Wuza
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ziling Tao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yinghan Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Feijie Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guotao Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Yuan X, Luo Y, Yang Y, Chen K, Wen Y, Luo Y, Li B, Ma Y, Guo C, Chen Z, Yang Z, Sun Y, Ma J. Effects of postponing nitrogen topdressing on starch structural properties of superior and inferior grains in hybrid indica rice cultivars with different taste values. FRONTIERS IN PLANT SCIENCE 2023; 14:1251505. [PMID: 37881615 PMCID: PMC10597642 DOI: 10.3389/fpls.2023.1251505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Introduction Nitrogen (N) fertilizer management, especially postponing N topdressing can affect rice eating quality by regulating starch quality of superior and inferior grains, but the details are unclear. This study aimed to evaluate the effects of N topdressing on starch structure and properties of superior and inferior grains in hybrid indica rice with different tastes and to clarify the relationship between starch structure, properties, and taste quality. Methods Two hybrid indica rice varieties, namely the low-taste Fyou 498 and high-taste Shuangyou 573, were used as experimental materials. Based on 150 kg·N hm-2, three N fertilizer treatments were established: zero N (N0), local farmer practice (basal fertilizer: tillering fertilizer: panicle fertilizer=7:3:0) (N1), postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) (N2). Results The starch granules of superior grains were more complete, and the decrease in small granules content and the stability of starch crystals were a certain extent less than those of inferior grains. Compared with N1, under N2, low-taste and high-taste varieties large starch granules content were significantly reduced by 6.89%, 0.74% in superior grains and 4.26%, 2.71% in inferior grains, the (B2 + B3) chains was significantly reduced by 1.61%, 0.98% in superior grains, and 1.18%, 0.97% in inferior grains, both reduced the relative crystallinity and 1045/1022 cm-1, thereby decreasing the stability of the starch crystalline region and the orderliness of starch granules. N2 treatment reduced the ΔHgel of two varieties. These changes ultimately contributed to the enhancement of the taste values in superior and inferior grains in both varieties, especially the inferior grains. Correlation analysis showed that the average starch volume diameter (D[4,3]) and relative crystallinity were significantly positively correlated with the taste value of superior and inferior sgrains, suggesting their potential use as an evaluation index for the simultaneous enhancement of the taste value of rice with superior and inferior grains. Discussion Based on 150 kg·N hm-2, postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) promotes the enhancement of the overall taste value and provides theoretical information for the production of rice with high quality.
Collapse
Affiliation(s)
- Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanfang Wen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yinghan Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yangming Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Changchun Guo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Li Z, Zhou T, Zhu K, Wang W, Zhang W, Zhang H, Liu L, Zhang Z, Wang Z, Wang B, Xu D, Gu J, Yang J. Effects of Salt Stress on Grain Yield and Quality Parameters in Rice Cultivars with Differing Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3243. [PMID: 37765407 PMCID: PMC10538069 DOI: 10.3390/plants12183243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Rice yield and grain quality are highly sensitive to salinity stress. Salt-tolerant/susceptible rice cultivars respond to salinity differently. To explore the variation in grain yield and quality to moderate/severe salinity stress, five rice cultivars differing in degrees of salt tolerance, including three salt-tolerant rice cultivars (Lianjian 5, Lianjian 6, and Lianjian 7) and two salt-susceptible rice cultivars (Wuyunjing 30 and Lianjing 7) were examined. Grain yield was significantly decreased under salinity stress, while the extent of yield loss was lesser in salt-tolerant rice cultivars due to the relatively higher grain filling ratio and grain weight. The milling quality continued to increase with increasing levels. There were genotypic differences in the responses of appearance quality to mild salinity. The appearance quality was first increased and then decreased with increasing levels of salinity stress in salt-tolerant rice but continued to decrease in salt-susceptible rice. Under severe salinity stress, the protein accumulation was increased and the starch content was decreased; the content of short branched-chain of amylopectin was decreased; the crystallinity and stability of the starch were increased, and the gelatinization temperature was increased. These changes resulted in the deterioration of cooking and eating quality of rice under severe salinity-stressed environments. However, salt-tolerant and salt-susceptible rice cultivars responded differently to moderate salinity stress in cooking and eating quality and in the physicochemical properties of the starch. For salt-tolerant rice cultivars, the chain length of amylopectin was decreased, the degrees of order of the starch structure were decreased, and pasting properties and thermal properties were increased significantly, whereas for salt-susceptible rice cultivars, cooking and eating quality was deteriorated under moderate salinity stress. In conclusion, the selection of salt-tolerant rice cultivars can effectively maintain the rice production at a relatively high level while simultaneously enhancing grain quality in moderate salinity-stressed environments. Our results demonstrate specific salinity responses among the rice genotypes and the planting of salt-tolerant rice under moderate soil salinity is a solution to ensure rice production in China.
Collapse
Affiliation(s)
- Zhikang Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tianyang Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weilu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zujian Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang 222000, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang 222000, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China (K.Z.); (W.W.); (W.Z.); (H.Z.); (L.L.); (Z.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
34
|
Tao J, Wan C, Leng J, Dai S, Wu Y, Lei X, Wang J, Yang Q, Wang P, Gao J. Effects of biochar coupled with chemical and organic fertilizer application on physicochemical properties and in vitro digestibility of common buckwheat (Fagopyrum esculentum Moench) starch. Int J Biol Macromol 2023; 246:125591. [PMID: 37385316 DOI: 10.1016/j.ijbiomac.2023.125591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Common buckwheat starch, a functional ingredient, has wide food and non-food applications. Excessive chemical fertilizer application during grain cultivation decreases quality. This study examined the effects of different combinations of chemical fertilizer, organic fertilizer, and biochar treatment on the physicochemical properties and in vitro digestibility of starch. The amendment of both organic fertilizer and biochar was observed to have a greater impact on the physicochemical properties and in vitro digestibility of common buckwheat starch in comparison to organic fertilizer amendment solely. The combined application of biochar, chemical, and organic nitrogen in an 80:10:10 ratio significantly increased the amylose content, light transmittance, solubility, resistant starch content, and swelling power of the starch. Simultaneously, the application reduced the proportion of amylopectin short chains. Additionally, this combination decreased the size of starch granules, weight-average molecular weight, polydispersity index, relative crystallinity, pasting temperature, and gelatinization enthalpy of the starch compared to the utilization of chemical fertilizer alone. The correlation between physicochemical properties and in vitro digestibility was analyzed. Four principal components were obtained, which accounted for 81.18 % of the total variance. These findings indicated that the combined application of chemical fertilizer, organic fertilizer, and biochar would improve common buckwheat grain quality.
Collapse
Affiliation(s)
- Jincai Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jiajun Leng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Shuangrong Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yixin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xinhui Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jiale Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
35
|
Zhang M, Mukhamed B, Yang Q, Luo Y, Tian L, Yuan Y, Huang Y, Feng B. Biochar and Nitrogen Fertilizer Change the Quality of Waxy and Non-Waxy Broomcorn Millet ( Panicum miliaceum L.) Starch. Foods 2023; 12:3009. [PMID: 37628008 PMCID: PMC10453922 DOI: 10.3390/foods12163009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The overuse of nitrogen fertilizers has led to environmental pollution, which has prompted the widespread adoption of biochar as a soil conditioner in agricultural production. To date, there has been a lack of research on the effects of biochar and its combination with nitrogen fertilizer on the quality of broomcorn millet (Panicum miliaceum L.) starch. Thus, this study examined the physicochemical characteristics of starch in two types of broomcorn millet (waxy and non-waxy) under four different conditions, including a control group (N0), nitrogen fertilizer treatment alone (N150), biochar treatment alone (N0+B), and a combination of biochar and nitrogen fertilizer treatments (N150+B). The results showed that, in comparison to the control, all the treatments, particularly N150+B, decreased the content of amylose and gelatinization temperature and enhanced the starch transparency gel consistency and swelling power. In addition, biochar can improve the water solubility of starch and the gelatinization enthalpy. Importantly, the combination of biochar and nitrogen fertilizer increased the proportion of A-granules, final viscosity, starch content, and the average degree of amylopectin in polymerization. Thus, this research indicates that the combinations of biochar and nitrogen fertilizer result in the most significant improvement in the quality of starch produced from broomcorn millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China (Y.Y.)
| |
Collapse
|
36
|
Bianchi A, Sanmartin C, Taglieri I, Macaluso M, Venturi F, Napoli M, Mancini M, Fabbri C, Zinnai A. Effect of Fertilization Regime of Common Wheat ( Triticum aestivum) on Flour Quality and Shelf-Life of PDO Tuscan Bread. Foods 2023; 12:2672. [PMID: 37509763 PMCID: PMC10379306 DOI: 10.3390/foods12142672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The shelf-life of bread is influenced by flour components, such as starch, composed of amylose and amylopectin. The aim was to test the effect of different balances of N (45, 90, 135 kg/ha) and P (48, 96 kg/ha) fertilizers on the flour characteristics and consequently the shelf-life of PDO Tuscan bread, stored in different modified atmosphere packaging (Ar, N2, Air). The amylose and phytochemical compounds were increased by N and decreased by the addition of P, but excessive doses of N (135 kg/ha) had a negative effect on flour quality. In the bread, the study highlighted the tendency of N2 and Ar, as storage filler gases, to reduce water loss, slow down the staling process, and prolong shelf-life. However, the most significant influence on shelf-life was related to the different fertilizations of wheat. In fact, when N was present in equal dose to P (90/96 or 45/48 kg/ha) or slightly higher (90/48 kg/ha), the bread tended to last longer over time. Instead, when these ratios were unbalanced in favor of N (135/48 or 135/96 kg/ha) and in favor of P (45/96 kg/ha), the shelf-life decreased considerably.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Napoli
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Marco Mancini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Carolina Fabbri
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
37
|
Li Y, Liang C, Liu J, Zhou C, Wu Z, Guo S, Liu J, A N, Wang S, Xin G, Henry RJ. Moderate Reduction in Nitrogen Fertilizer Results in Improved Rice Quality by Affecting Starch Properties without Causing Yield Loss. Foods 2023; 12:2601. [PMID: 37444339 DOI: 10.3390/foods12132601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The quality and starch properties of rice are significantly affected by nitrogen. The effect of the nitrogen application rate (0, 180, and 230 kg ha-1) on the texture of cooked rice and the hierarchical structure and physicochemical properties of starch was investigated over two years using two japonica cultivars, Bengal and Shendao505. Nitrogen application contributed to the hardness and stickiness of cooked rice, reducing the texture quality. The amylose content and pasting properties decreased significantly, while the relative crystallinity increased with the increasing nitrogen rates, and the starch granules became smaller with an increase in uneven and pitted surfaces. The proportion of short-chain amylopectin rose, and long-chain amylopectin declined, which increased the external short-range order by 1045/1022 cm-1. These changes in hierarchical structure and grain size, regulated by nitrogen rates, synergistically increased the setback viscosity, gelatinization enthalpy and temperature and reduced the overall viscosity and breakdown viscosity, indicating that gelatinization and pasting properties were the result of the joint action of several factors. All results showed that increasing nitrogen altered the structure and properties of starch, eventually resulting in a deterioration in eating quality and starch functional properties. A moderate reduction in nitrogen application could improve the texture and starch quality of rice while not impacting on the grain yield.
Collapse
Affiliation(s)
- Yimeng Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4067, Australia
| | - Chao Liang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Junfeng Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Chanchan Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhouzhou Wu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shimeng Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiaxin Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Na A
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Guang Xin
- College of Food Science and Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4067, Australia
| |
Collapse
|
38
|
Zhu Y, Deng K, Wu P, Feng K, Zhao S, Li L. Effects of Slow-Release Fertilizer on Lotus Rhizome Yield and Starch Quality under Different Fertilization Periods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1311. [PMID: 36986998 PMCID: PMC10053914 DOI: 10.3390/plants12061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Slow-release fertilizer is an environmentally friendly fertilizer that is widely used in crop cultivation instead of traditional nitrogen fertilizer. However, the optimal application time of slow-release fertilizer and its effect on starch accumulation and rhizome quality of lotus remains unclear. In this study, two slow-release fertilizer applications (sulfur-coated compound fertilizer, SCU, and resin-coated urea, RCU) were fertilized under three fertilization periods (the erect leaf stage, SCU1 and RCU1; the erect leaf completely covering the water stage, SCU2 and RCU2; and the swelling stage of lotus rhizomes, SCU3 and RCU3) to study the effects of different application periods. Compared with CK (0 kg∙ha-1 nitrogen fertilizer), leaf relative chlorophyll content (SPAD) and net photosynthetic rate (Pn) remained at higher levels under SCU1 and RCU1. Further studies showed that SCU1 and RCU1 increased yield, amylose content, amylopectin and total starch, and the number of starch particles in lotus, and also significantly reduced peak viscosity, final viscosity and setback viscosity of lotus rhizome starch. To account for these changes, we measured the activity of key enzymes in starch synthesis and the relative expression levels of related genes. Through analysis, we found that these parameters increased significantly under SCU and RCU treatment, especially under SCU1 and RCU1 treatment. The results of this study showed that the one-time application at the erect leaf stage (SCU1 and RCU1) could improve the physicochemical properties of starch by regulating the key enzymes and related genes of starch synthesis, thus improving the nutritional quality of lotus rhizome. These results provide a technical choice for the one-time application of slow-release fertilizer in lotus rhizome production and cultivation.
Collapse
Affiliation(s)
- Yamei Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Kangming Deng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
39
|
Yang H, Zhao J, Ma H, Shi Z, Huang X, Fan G. Shading affects the starch structure and digestibility of wheat by regulating the photosynthetic light response of flag leaves. Int J Biol Macromol 2023; 236:123972. [PMID: 36906208 DOI: 10.1016/j.ijbiomac.2023.123972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Heavy haze-induced decreases in solar radiation represent an important factor that affects the structural properties of starch macromolecules. However, the relationship between the photosynthetic light response of flag leaves and the structural properties of starch remains unclear. In this study, we investigated the impact of light deprivation (60 %) during the vegetative-growth or grain-filling stage on the leaf light response, starch structure, and biscuit-baking quality of four wheat cultivars with contrasting shade tolerance. Shading decreased the apparent quantum yield and maximum net photosynthetic rate of flag leaves, resulting in a lower grain-filling rate and starch content and higher protein content. Shading decreased the starch, amylose, and small starch granule amount and swelling power but increased the larger starch granule amount. Under shade stress, the lower amylose content decreased the resistant starch content while increasing the starch digestibility and estimated glycemic index. Shading during the vegetative-growth stage increased starch crystallinity, 1045/1022 cm-1 ratio, starch viscosity, and the biscuit spread ratio, while shading during the grain-filling stage decreased these values. Overall, this study indicated that low light affects the starch structure and biscuit spread ratio by regulating the photosynthetic light response of flag leaves.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Jiarong Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Hongliang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Zhiqiang Shi
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Xiulan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China; Key Laboratory of Crop Eco-Physiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
40
|
Nitrogen fertilizer affects starch synthesis to define non-waxy and waxy proso millet quality. Carbohydr Polym 2023; 302:120423. [PMID: 36604085 DOI: 10.1016/j.carbpol.2022.120423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Understanding the effect of nitrogen fertilization on the quality of proso millet is key to expanding the use of this crop to address water scarcity and food security. Therefore, this study determined the impact of nitrogen fertilization on the proso millet quality. Nitrogen fertilization significantly increased the NR and GS activities and decreased the GBSSase activity, resulting in an increase in protein content and reduction in amylose content and L*, which decreased the appearance quality. Nitrogen fertilization increased the proportion of short amylopectin chains, resulting in a more disordered carbohydrate structure, and decreased the proportion of hydrophilic functional groups, contributing to an increase in setback viscosity and decrease in pasting temperature in the waxy (w139) variety. In contrast, the non-waxy (n297) variety exhibited a larger proportion of long amylopectin chains, lower ordered structure and hydrophobic functional groups after nitrogen fertilization, which strengthened the inter- and intramolecular forces of starch colloids.
Collapse
|
41
|
Ding C, Xu C, Lu B, Zhu X, Luo X, He B, Elidio C, Liu Z, Ding Y, Yang J, Li G. Comprehensive Evaluation of Rice Qualities under Different Nitrogen Levels in South China. Foods 2023; 12:foods12040697. [PMID: 36832772 PMCID: PMC9956055 DOI: 10.3390/foods12040697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
There is a need to comprehensively evaluate the rice quality of different rice varieties under different nitrogen treatments. Therefore, in this study, we used twenty-one hybrid indica rice varieties and twenty-three inbred japonica rice varieties with three nitrogen fertilizer levels to investigate differences in rice qualities. As compared with hybrid indica rice, inbred japonica rice had lower coefficient of variation values for grain shape, mild rice percentage, and head rice percentage, but relatively higher coefficient of variation values for chalkiness traits, appearance, and taste value of cooked rice. A principal component analysis and membership function method were used to comprehensively evaluate the qualities of rice. The overall eating quality value by sensory evaluation and head rice percentage explained 61.3% and 67.9% of the variations in comprehensive quality of hybrid indica rice and inbred japonica rice across different nitrogen levels, respectively. We also found that rice comprehensive quality was better under low nitrogen levels for hybrid indica rice, while for inbred japonica rice, properly increasing nitrogen application could improve the comprehensive quality.
Collapse
Affiliation(s)
- Chao Ding
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Congshan Xu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Lu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuhui Zhu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Xikun Luo
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin He
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Cambula Elidio
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenghui Liu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: (J.Y.); (G.L.); Tel./Fax: +86-25-84390307 (J.Y.); +86-25-84396475 (G.L.)
| | - Ganghua Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, National Engineering and Technology Center for Information Agricultrue, Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (J.Y.); (G.L.); Tel./Fax: +86-25-84390307 (J.Y.); +86-25-84396475 (G.L.)
| |
Collapse
|
42
|
Different nitrogen fertilizer application in the field affects the morphology and structure of protein and starch in rice during cooking. Food Res Int 2023; 163:112193. [PMID: 36596133 DOI: 10.1016/j.foodres.2022.112193] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Nitrogen fertilization is one of the most important cultivation practices that affects the eating quality of rice. During the cooking process, nitrogen fertilizer application in the field changed the structure of protein and starch during cooking, which eventually reduced the rice eating quality. However, the morphology and structure of rice during cooking under high nitrogen fertilizer application in the field have not been explored. The relationship between the morphological and structural changes of rice protein and starch during cooking and the rice eating quality has not been studied. In this study, we conducted field trials at two nitrogen fertilizer levels (0 N and 350 N), and the rice was cooked after harvest. Our results showed that the peak viscosity of rice flour was 3326 cp and 2453 cp at 0 N and 350 N, respectively, and the peak viscosity of rice starch was 3424 cp and 3378 cp, respectively. Rice proteins played an important role in the starch gelatinization properties and thermodynamic properties. High nitrogen fertilizer application increased the protein content of rice from 5.97 % to 11.32 %, and more protein bodies adhered to the surface of amyloplasts eventually inhibiting starch gelatinization. The rice proteins could bind to amylose-lipid complexes during cooking, promoting the formation of V-type diffraction peaks. What is more, under high nitrogen fertilizer, rice protein had more β-sheets, which slowed the entry of water into the interior of starch molecules and prevented the destruction of the short-range ordered structure of starch. Our study provides the possibility to further improve the eating quality of rice under nitrogen fertilizer treatment.
Collapse
|
43
|
Hu T, Yang H, Zhang K, Hafsa CN, Fang X, Ma H, Liao J, Zheng S. Effects of different altitudes on the structure and properties of potato starch. FRONTIERS IN PLANT SCIENCE 2023; 14:1111843. [PMID: 37123835 PMCID: PMC10130426 DOI: 10.3389/fpls.2023.1111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The main element influencing the quality of potato starch is the environment. To investigate the effects of different altitude cultivation locations on the molecular structure and physicochemical properties of starch, two potato varieties, Jiusen No.1 B1 and Qingshu No.9 B2, were planted in three different altitude zones: A1 at low altitude (Chongzhou 450 m), A2 at middle altitude (Xichang 2800 m), and A3 at high altitude (Litang 3650 m). The results showed that the average volume, number, surface area diameter, average branched polymerization degree, crystallinity, and gelatinization temperature of two potato granules in high altitude areas were significantly lower than those in middle and low altitude areas were, and the gelatinization performance of potato starch was affected according to the correlation of starch structure characteristics. Potato starch with more short-branched chains and less long branched chains resulted in a lower gelatinization temperature in high altitude areas. The results showed that Jiusen No. 1 and Qingshu No. 9 were mainly affected by accumulated radiation and accumulated rainfall in Litang, a high altitude area, and by effective accumulated temperature in Xichang, a middle altitude area. This study quantified the influence of meteorological factors on the main starch quality of potato tubers. The results can be used as a theoretical basis for the scientific planting of high-quality potatoes.
Collapse
Affiliation(s)
- Tingyuan Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Kaiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Cheema Nazir Hafsa
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoting Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Haiyan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jiangxiu Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shunlin Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Tuber Crop Genetics and Breeding, Ministry of Agriculture, Chengdu Joyson Agricultural Technology Co., Ltd, Xingdu, China
- *Correspondence: Shunlin Zheng,
| |
Collapse
|
44
|
Wang J, Lu D. Starch Physicochemical Properties of Normal Maize under Different Fertilization Modes. Polymers (Basel) 2022; 15:polym15010083. [PMID: 36616433 PMCID: PMC9823961 DOI: 10.3390/polym15010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Improving the quality with desired functions of natural starch through agronomic practice will meet the increasing need of people for natural, functional foods. A one-off application of slow-release fertilizer is a simple and efficient practice in maize production, though its influence on the starch quality is scarce. In the present study, the structural and functional properties of the starch of normal maize under two fertilization modes (one-off application of slow-release fertilizer at the sowing time (SF), and three applications of conventional fertilizer at the sowing time, and topdressing at the jointing and flowering stages (CF)) under the same fertilization level (N/P2O5/K2O = 405/135/135 kg/ha) were studied using Jiangyu877 (JY877) and Suyu30 (SY30) as materials. The observed results indicate that the size of starch granules was enlarged by fertilization and the size was the largest under CF in both hybrids. The amylose content was unaffected by CF and reduced by SF in both hybrids. In comparison to no fertilizer (0F), the peak 1/peak 2 ratio was decreased by CF in both hybrids, whereas the ratio under SF was unaffected in JY877 and decreased in SY30. The amylopectin average chain-length was reduced by fertilization and the reduction was higher under CF in JY877. The relative crystallinity was increased by CF in both hybrids and the value under SF was unaffected in SY30 and increased in JY877. The peak, trough, and final viscosities of starch were increased by fertilization in both hybrids. The starch thermal characteristics in response to fertilization modes were dependent on hybrids. The retrogradation enthalpy and percentage were increased by CF in both hybrids, whereas those two parameters under SF were increased in SY30 and decreased in JY877. In conclusion, starch with similar granule size, higher peak 1/peak 2 ratio, and lower relative crystallinity was obtained under SF than under CF for both hybrids. Longer amylopectin chain-length was observed in JY877, which induced lower pasting viscosities in SY30 and lower retrogradation characteristics in JY877.
Collapse
Affiliation(s)
| | - Dalei Lu
- Correspondence: ; Fax: +86-514-8799-6817
| |
Collapse
|
45
|
Wang J, Leng J, Gao L, Han M, Wu Y, Lei X, Gao J. Effects of selenium solution on the crystalline structure, pasting and rheological properties of common buckwheat starch. FRONTIERS IN PLANT SCIENCE 2022; 13:1053480. [PMID: 36531376 PMCID: PMC9751854 DOI: 10.3389/fpls.2022.1053480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Selenium is an important element that affects human growth and development, and also affects the yield and quality of common buckwheat. In our study, two common buckwheat varieties were sprayed with different concentrations (0 g/hm2, 5 g/hm2, 20 g/hm2) of sodium selenite solution at the initial flowering period and the full flowering period, respectively, to determine the effects of selenium solution on the physicochemical properties of common buckwheat starch. With increasing selenium levels, the amylose content, peak viscosity, breakdown, relative crystallinity, pasting temperature and gelatinization enthalpy first decreased and then increased, while the transparency showed a trend of increasing and then decreasing. All samples exhibited a typical A-type pattern, while at high selenium level, the degree of short-range order of common buckwheat starches changed. From the rheological properties, it can be seen that the starch paste is dominated by elastic properties, while the low selenium treatment decreases the viscosity of the starch paste. These results showed that spraying different concentrations of selenium solutions at different periods significantly affected the physicochemical properties of common buckwheat starch.
Collapse
|
46
|
Nitrogenous Fertilizer Levels Affect the Physicochemical Properties of Sorghum Starch. Foods 2022; 11:foods11223690. [PMID: 36429282 PMCID: PMC9688999 DOI: 10.3390/foods11223690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Nitrogen is a key factor affecting sorghum growth and grain quality. This experiment was designed to investigate the physicochemical properties of sorghum starch in four sorghum varieties (Liaoza 10, Liaoza 19, Jinza 31, and Jinza 34) under four nitrogen levels: 0 kg/ha urea (N1), 300 kg/ha urea as base fertilizer (N2), 300 kg/ha urea as topdressing at the jointing stage (N3), and 450 kg/ha urea as topdressing at the jointing stage (N4). The results showed that grain size and amylose content increased with increasing nitrogen fertilizer level, peaking at N3. The peak viscosity, final viscosity, gelatinization temperature, initial temperature, final temperature, and enthalpy value increased with the nitrogenous fertilizer level, peaking at N3. The application of nitrogen fertilizer at the jointing period significantly increased the above indicators. However, excess nitrogen at the jointing period (N4) can significantly reduce the above indicators, thus changing the physicochemical properties and structure of sorghum starch. Overall, nitrogen significantly affects the structure and physicochemical properties of sorghum starch.
Collapse
|
47
|
Gao L, Wan C, Wang J, Wang P, Gao X, Eeckhout M, Gao J. Relationship between nitrogen fertilizer and structural, pasting and rheological properties on common buckwheat starch. Food Chem 2022; 389:132664. [PMID: 35523074 DOI: 10.1016/j.foodchem.2022.132664] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Nitrogen is an essential element for the yield and quality of grain. In this study, the structural and physicochemical properties of two common buckwheat varieties under four nitrogen levels (0, 90, 180, 270 kg N ha-1) at one location in two years were investigated. With increasing nitrogen level, the contents of moisture and amylose decreased but the contents of ash and crude protein increased. Excessive nitrogen application significantly increased the granule size, but reduced the light transmittance, water solubility, swelling power, absorption of water and oil. All the samples showed a typical A - type pattern, while high relative crystallinity and low order degree were observed under high nitrogen level. The samples under high nitrogen level had lower textural properties, pasting properties and rheological properties but higher pasting temperature and gelatinization enthalpy. These results indicated that nitrogen fertilizer significantly affected the structural and physicochemical properties of common buckwheat starch.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China; Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Jiale Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Mia Eeckhout
- Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
48
|
Interactive Effects of Nitrogen and Potassium on Grain Yield and Quality of Waxy Maize. PLANTS 2022; 11:plants11192528. [PMID: 36235394 PMCID: PMC9571907 DOI: 10.3390/plants11192528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
Reasonable fertilization of nitrogen (N) and potassium (K) had significant effects on maize growth. In this experiment, two N levels (N180 and N225 kg ha−1) and four K treatments (K0, K75, K150 and K75 + 75 kg ha−1) were set to study the effects of combined application of N and K on the grain yield and quality of waxy maize. The results showed that grain yield increased with increasing K under the same N level, and top-dressing K further increased the grain yield. K application increased starch content significantly at N180 and decreased significantly at N225, while the protein content increased significantly at the two N levels. The grain starch content with the K75 + 75 treatment increased by 5.8% and 9.0% compared with K150 at the two N levels, and the protein content decreased by 2.9% and 4.7%. Application of K increased the retrogradation enthalpy (ΔHret) and retrogradation percentage (%R) at N180. At N225, the ΔHret and %R of K75 and K150 decreased, while those of K75 + 75 increased. The ΔHret and %R under K75 + 75 at N180 were lower than N225. Under these experiment conditions, 75 kg ha−1 K2O at sowing date and top-dressed 75 kg ha−1 K2O at jointing stage (V6) under the conditions of appropriate N reduction could not only effectively improve the pasting and thermal properties of waxy maize flour, but also stabilized the grain yield.
Collapse
|
49
|
MIYAMOTO T, NISHIDA I, OHTAKE N, HIRATA D. Nitrogen fertilization of rice plants before flowering affects sake fermentation and quality. Cereal Chem 2022. [DOI: 10.1002/cche.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takuji MIYAMOTO
- Sakeology CenterNiigata UniversityIkarashi, Niigata950‐2181Japan
| | - Ikuhisa NISHIDA
- Sakeology CenterNiigata UniversityIkarashi, Niigata950‐2181Japan
| | - Norikuni OHTAKE
- Graduate School of Science and TechnologyNiigata UniversityIkarashi, Niigata950‐2181Japan
| | - Dai HIRATA
- Sakeology CenterNiigata UniversityIkarashi, Niigata950‐2181Japan
- Graduate School of Science and TechnologyNiigata UniversityIkarashi, Niigata950‐2181Japan
- Niigata Sake Brewers AssociationNiigata951‐8116Japan
| |
Collapse
|
50
|
The Starch Physicochemical Properties between Superior and Inferior Grains of Japonica Rice under Panicle Nitrogen Fertilizer Determine the Difference in Eating Quality. Foods 2022; 11:foods11162489. [PMID: 36010489 PMCID: PMC9407410 DOI: 10.3390/foods11162489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen fertilizer is essential for rice growth and development, and topdressing nitrogen fertilizer at panicle stage has a huge impact on rice grain quality. However, the effect of panicle nitrogen fertilizer (PNF) on starch physicochemical properties and fine structure remain unclear. In this study, four PNF levels (0, 60, 120, 180 kg N ha−1) were grown with the same basal and tiller fertilizer (150 kg N ha−1). The starch physicochemical properties, fine structure, texture properties and eating quality of two japonica rice were determined. We found that the content of total protein, crude fat and amylose between superior and inferior grains were significantly different. Compared with inferior grains, superior grains had low relative crystallinity, good pasting characteristics and outstanding eating quality. With the increase of nitrogen application rates, the starch volume mean diameter was lower; the average chain length of amylopectin was longer; and the relative crystallinity of starch was higher. The changes above in starch structure resulted in an increase in starch solubility, swelling power and gelatinization enthalpy, and led to a decrease in retrogradation enthalpy, retrogradation percentage and pasting viscosity, consequently contributing to the increase in hardness and stickiness of rice and the deterioration of taste value. These results indicated that topdressing PNF lengthened the amylopectin chain, decreased starch granule size, enhanced crystallization stability and increased gelatinization enthalpy, which were the direct reasons for the deterioration of cooking and eating quality.
Collapse
|