1
|
Yu Y, Wang S, Chen X, Gao Z, Dai K, Wang J, Liu C. Sulfated oligosaccharide activates endothelial Notch for inducing macrophage-associated arteriogenesis to treat ischemic diseases. Proc Natl Acad Sci U S A 2023; 120:e2307480120. [PMID: 37943835 PMCID: PMC10655224 DOI: 10.1073/pnas.2307480120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
Ischemic diseases lead to considerable morbidity and mortality, yet conventional clinical treatment strategies for therapeutic angiogenesis fall short of being impactful. Despite the potential of biomaterials to deliver pro-angiogenic molecules at the infarct site to induce angiogenesis, their efficacy has been impeded by aberrant vascular activation and off-target circulation. Here, we present a semisynthetic low-molecular sulfated chitosan oligosaccharide (SCOS) that efficiently induces therapeutic arteriogenesis with a spontaneous generation of collateral circulation and blood reperfusion in rodent models of hind limb ischemia and myocardial infarction. SCOS elicits anti-inflammatory macrophages' (Mφs') differentiation into perivascular Mφs, which in turn directs artery formation via a cell-to-cell communication rather than secretory factor regulation. SCOS-mediated arteriogenesis requires a canonical Notch signaling pathway in Mφs via the glycosylation of protein O-glucosyltransferases 2, which results in promoting arterial differentiation and tissue repair in ischemia. Thus, this highly bioactive oligosaccharide can be harnessed to direct efficiently therapeutic arteriogenesis and perfusion for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shuang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Xinye Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Zehua Gao
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Kai Dai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Changsheng Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
2
|
Xu K, Cao L, Wang Z, Chen LP. Heparin-Mimetic Chitooligosaccharides-Based Monoliths Obtained from C/W Emulsions: Hemocompatibility and Toxin Removal Ability. ACS Biomater Sci Eng 2023; 9:5610-5621. [PMID: 37703897 DOI: 10.1021/acsbiomaterials.3c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Hemoperfusion (HP) is one of the most prominent therapies for treating uremia, hyperbilirubinemia, and acute drug toxicity. The comprehensive performance of currently used porous HP adsorbents needs to be improved due to the impediment to their synthesis strategy. Herein, green carbon dioxide-in-water high internal phase emulsions (C/W HIPEs) were utilized and emulsified with poly(vinyl alcohol) (PVA) for the formation of a heparin-mimetic chitosan oligosaccharides/poly(acrylamide-co-sodium 4-styrenesulfonate) [COS/P(AM-co-SSS)] monolith, which exhibited good mechanical properties, stable swelling performance, hydrophilic properties, anticoagulant effect, and low hemolysis. It showed a strong toxin adsorption capacity (415.2 mg/g for creatinine, 199.3 mg/g for urea, 279.5 mg/g for bilirubin, and 160 mg/g for tetracycline). The adsorption process of porous COS/P(AM-co-SSS) followed the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the porous materials had a strong electrostatic force on creatinine. The removal of creatinine by simulated in vitro blood perfusion was 80.2% within 30 min. This work provides a green preparation strategy for developing novel HP materials, highlighting their potential application value in blood and environmental purification.
Collapse
Affiliation(s)
- Kaibo Xu
- School of Science, Xihua University, Chengdu 610039, P. R. China
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830017 P. R. China
| | - Liqin Cao
- School of Science, Xihua University, Chengdu 610039, P. R. China
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830017 P. R. China
| | - Zhouyu Wang
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Liu-Ping Chen
- School of Chemistry, Sun Yat-sen University, Guangdong 510275, Guangzhou, China
| |
Collapse
|
3
|
Zhao XP, Liu J, Sui ZJ, Xu MJ, Zhu ZY. Preparation and antibacterial effect of chitooligosaccharides monomers with different polymerization degrees from crab shell chitosan by enzymatic hydrolysis. Biotechnol Appl Biochem 2023; 70:164-174. [PMID: 35307889 DOI: 10.1002/bab.2339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/27/2022] [Indexed: 11/08/2022]
Abstract
This study aimed to explore the structure and antibacterial properties of chitooligosaccharide monomers with different polymerization degrees and to provide a theoretical basis for inhibiting Salmonella infection. Chitosan was used as a raw material to prepare and separate low-molecular-weight chitooligosaccharides. Chitobiose, chitotriose, and chitotetraose were obtained by gradient elution with cation exchange resin. The molecular weights and acetyl groups of the three monomers were determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and nuclear magnetic resonance (NMR), respectively. Three chitooligosaccharide monomers were used to explore the antibacterial effect on Salmonella. The results showed that the degree of deacetylation of chitosan was 92.6%, and the enzyme activity of chitosanase was 102.53 U/g. Within 18 h, chitosan was enzymatically hydrolyzed to chitooligosaccharides containing chitobiose, chitotriose, and chitotetraose, which were analyzed by thin-layer chromatography (TLC) and MALDI-TOF. MALD-TOF and TLC showed that the separation of monomers with ion exchange resins was effective, and NMR showed that there was no acetyl group. Chitobiose had a poor inhibitory effect on Salmonella, and chitotriose and chitotetraose had equivalent antibacterial effects.
Collapse
Affiliation(s)
- Xin-Peng Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jie Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhu-Jun Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Meng-Jie Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Mannan Oligosaccharides Promoted Skeletal Muscle Hypertrophy through the Gut Microbiome and Microbial Metabolites in Mice. Foods 2023; 12:foods12020357. [PMID: 36673449 PMCID: PMC9858149 DOI: 10.3390/foods12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Mannan oligosaccharides (MOSs) have been implicated in the animal growth rate, health indices, and lipid oxidative stability. MOSs have been indicated to maintain intestinal health and anti-inflammatory effects via modulation of gut microbiota. Furthermore, the role of MOSs in modulating skeletal muscle function is largely unknown. Here, this study aimed to investigate the effects of MOS supplementation on muscle function and muscle mass in mice. Additionally, the possible underlying mechanisms, including the contributions of gut microbiota and microbial metabolites, were explored. In our study, 3-week-old C57BL/6J male mice (body weight of approximately 10.7 ± 1.1 g) were given pure water or pure water with 1% MOS. To study the effect of MOSs on gut-microbiota-derived metabolites, serum metabolic profiles were analyzed through untargeted metabolomic profiling. Moreover, we detected the downstream signals of differential metabolites, and decanoic acid (DA) was selected as our target spot. Then, DA was used to treat C2C12 cells, and we found that DA promotes C2C12 cell differentiation via the GPR84 and PI3K/AKT signaling pathways. In conclusion, these results showed that MOS supplementation improves muscle function and muscle mass. Additionally, gut microbiome and microbial metabolites were regulated by MOSs, and DA may be one of the most important links between the gut microbiome and skeletal muscle function regulation.
Collapse
|
5
|
Qi W, Ge Y, Wang X, Li Z, Li X, Wang N, He H, Luo X, Ma W, Chen L, Liu Y, Zhang T. Ameliorative Effect of Chitosan Oligosaccharides on Hepatic Encephalopathy by Reshaping Gut Microbiota and Gut-Liver Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13186-13199. [PMID: 36194761 DOI: 10.1021/acs.jafc.2c01330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study investigated the influence of chitosan oligosaccharides (COSs) on a thioacetamide-induced hepatic encephalopathy (HE) Wistar rat model. COS treatment statistically reduced the false neurotransmitters and blood ammonia in HE rats, along with the suppression of oxidative stress and inflammation. The disbalanced gut microbiota was detected in HE rats by 16S rDNA sequencing, but the abundance alterations of some intestinal bacteria at either the phylum or genus level were at least partly restored by COS treatment. According to metabolomics analysis of rat feces, six metabolism pathways with the greatest response to HE were screened, several of which were remarkably reversed by COS. The altered metabolites might serve as a bridge for the alleviated HE rats treated with COS and the enhanced intestinal bacterial structure. This study provides novel guidance to develop novel food or dietary supplements to improve HE diseases due to the potential beneficial effect of COS on gut-liver axis.
Collapse
Affiliation(s)
- Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yanyan Ge
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinyue Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zihan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaoxue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hongpeng He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Liehuan Chen
- New Youlan Healthy Technology Co., Ltd., Guangzhou 510530, Guangdong, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
The beneficial mechanism of chitosan and chitooligosaccharides in the intestine on different health status. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Zhu L, Chen G, Guo Y, Zheng J, Yang H, Sun X, Liu Y, Hu B, Liu H. Structural characterization of Poria cocos oligosaccharides and their effects on the hepatic metabolome in high-fat diet-fed mice. Food Funct 2022; 13:6813-6829. [PMID: 35671132 DOI: 10.1039/d2fo00638c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, novel Poria cocos oligosaccharides (PCO) were prepared by enzymatic degradation, and their polymerization degree was determined to be 2-6 by LC-MS analysis. By monosaccharide composition analysis, methylation assay, FT-IR, and NMR analysis, PCO were deduced to contain the sugar residues of (1 → 2)-β-D-Glcp, (1 → 2)-α-D-Glcp, and (1 → 4)-α-D-Glcp. Using an HFD-fed mouse model with dyslipidemia, PCO could significantly suppress lipid metabolism disorders, characterized by the reduction of lipid accumulation and inflammatory responses in the blood and liver tissues. Based on the non-targeted metabolomic analysis and Spearman's correlation analysis, we presume that the preventive effect of PCO on dyslipidemia might contribute to the reversal of changed metabolic pathways, which were related to the metabolisms of glycerophospholipids, unsaturated fatty acids, amino acids, choline, bile acids, tryptophan, sphingolipids, and glutathione. Our research shed light on the potential application of PCO for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Lin Zhu
- College of Life Science, Wuchang University of Technology, Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, Engineering Technology Research Center of Biological Peptide Antidiabetics of Hubei Province, Jiangxia Avenue 16, Wuhan 430223, P. R. China.,College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Guangming Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, P. R. China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Xiongjie Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Yang Liu
- College of Life Science, Wuchang University of Technology, Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, Engineering Technology Research Center of Biological Peptide Antidiabetics of Hubei Province, Jiangxia Avenue 16, Wuhan 430223, P. R. China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.
| |
Collapse
|
8
|
Chen G, Zeng R, Wang X, Cai H, Chen J, Zhong Y, Zhong S, Jia X. Antithrombotic Activity of Heparinoid G2 and Its Derivatives from the Clam Coelomactra antiquata. Mar Drugs 2022; 20:md20010050. [PMID: 35049905 PMCID: PMC8779706 DOI: 10.3390/md20010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Clam heparinoid G2 (60.25 kDa) and its depolymerized derivatives DG1 (24.48 kDa) and DG2 (6.75 kDa) prepared from Coelomactra antiquata have been documented to have excellent fibrinolytic and anticoagulant activity. In this study, to further explore the antithrombotic activity of G2, DG1 and DG2, azure A, sheep plasma, and clot lytic rate assays were used to determine their anticoagulant and thrombolytic activity in vitro. The results indicated that the anticoagulant titer of G2 was approximately 70% that of heparin and the thrombolytic activity of DG2 was greater than G2, DG1, and heparin activities. Moreover, in a carrageenan-induced venous thrombosis model, oral administration of G2 and DG1 each at 20 mg/kg and 40 mg/kg for 7 days significantly reduced blacktail thrombus formation, increased tissue-type plasminogen activator, fibrin degradation products, and D-dimer levels, decreased von Willebrand factor and thromboxane B2 levels, and restored phylum and genus abundance changes of intestinal bacteria. DG2 had no antithrombotic effect. At 20 mg/kg, G2, DG1, and heparin had comparable antithrombotic activities, and DG1 at 40 mg/kg had more muscular antithrombotic activity than G2. Thus, DG1 could be an antithrombotic oral agent owing to its more robust antithrombotic activity and lower molecular weight.
Collapse
Affiliation(s)
- Guanlan Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Rui Zeng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongying Cai
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingxiong Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-188-2669-9336
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
9
|
Fan D, Liu C, Guo Z, Huang K, Peng M, Li N, Luo H, Wang T, Cen Z, Cai W, Gu L, Chen S, Li Z. Resveratrol Promotes Angiogenesis in a FoxO1-Dependent Manner in Hind Limb Ischemia in Mice. Molecules 2021; 26:molecules26247528. [PMID: 34946610 PMCID: PMC8707225 DOI: 10.3390/molecules26247528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Critical limb ischemia (CLI) is a severe form of peripheral artery diseases (PAD) and seriously endangers the health of people. Therapeutic angiogenesis represents an important treatment strategy for CLI; various methods have been applied to enhance collateral circulation. However, the current development drug therapy to promote angiogenesis is limited. Resveratrol (RSV), a polyphenol compound extracted from plants, has various properties such as anti-oxidative, anti-inflammatory and anti-cancer effects. Whether RSV exerts protective effects on CLI remains elusive. In the current study, we demonstrated that oral intake of RSV significantly improved hind limb ischemia in mice, and increased the expression of phosphorylated Forkhead box class-O1 (FoxO1). RSV treatment in human umbilical vein endothelial cells (HUVECs) could increase the phosphorylation of FoxO1 and its cytoplasmic re-localization to promote angiogenesis. Then we manipulated FoxO1 in HUVECs to further verify that the effect of RSV on angiogenesis is in a FoxO1-dependent manner. Furthermore, we performed metabolomics to screen the metabolic pathways altered upon RSV intervention. We found that the pathways of pyrimidine metabolism, purine metabolism, as well as alanine, aspartate and glutamate metabolism, were highly correlated with the beneficial effects of RSV on the ischemic muscle. This study provides a novel direction for the medical therapy to CLI.
Collapse
Affiliation(s)
- Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Zeling Guo
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Meixiu Peng
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Hengli Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA;
| | - Lei Gu
- Max Planck Institute for Heart and Lung Research and Cardiopulmonary Institute (CPI), 61231 Bad Nauheim, Germany;
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Correspondence: (S.C.); (Z.L.)
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence: (S.C.); (Z.L.)
| |
Collapse
|
10
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|