1
|
Pei J, Wang Y, Zhang Q, Yu J, Sun P, Wang Y. A novel water-soluble antibacterial films of gelatin/carboxymethyl cellulose sodium incorporated with Grifola frondosa polysaccharides and pearl powder for fruit preservation. Int J Biol Macromol 2025; 311:143704. [PMID: 40316106 DOI: 10.1016/j.ijbiomac.2025.143704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Grifola frondosa polysaccharides (GFG) is a polysaccharide-protein complex, rich in hydrophilic groups, and has antioxidant and antibacterial biological activities. Nano-pearl powder (PP) with a large amount of calcium carbonate can be used as a chelating agent, antioxidant, and antibacterial agent. The incorporation of PP and GFG into gelatin/carboxymethyl cellulose sodium (G/C) is a novel approach for the development of bioactive edible films, in line with the concept of sustainability and environmental protection. The results of the multispectral analysis revealed electrostatic interactions, hydrogen bonding interactions, and chelation of calcium ions as the main driving forces to promote the self-assembly of composite films. The thermal stability, hydrophilicity, mechanical properties, and barrier properties were improved of the G/C film with the addition of PP/GFG. In particular, the G/C/PP/GFG film showed high inhibition rates of 98.52 ± 0.39% and 95.26 ± 1.18 % against Escherichia coli and Staphylococcus aureus. The loss of weight, hardness, ascorbic acid, polyphenols, solubile sugar, acidity and catalase was also clearly decreased. The addition of GFG/PP to the G/C film improved the storage quality and extended the shelf life of strawberries, which provided a novel method to improve the performance of the film for fruit preservation.
Collapse
Affiliation(s)
- Jingying Pei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yufei Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qing Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiahao Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China.
| |
Collapse
|
2
|
Zhu W, Huang L, Cheng H, Li N, Zhang B, Dai W, Wu X, Zhang D, Feng W, Li S, Xu H. GABA and its receptors' mechanisms in the treatment of insomnia. Heliyon 2024; 10:e40665. [PMID: 39654705 PMCID: PMC11626785 DOI: 10.1016/j.heliyon.2024.e40665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Insomnia has now become a major health problem of global concern, with about 1/3 of the population suffering from sleep problems, a proportion that is still rising year by year. Most of the therapeutic drugs for insomnia currently used in clinical practice are not developed in a targeted manner, but are discovered by chance, and have unavoidable side effects such as addiction. Finding a safer and more effective therapeutic drug has become an urgent need for current research. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. It can ameliorate Insomnia, Alzheimer's disease, Parkinson's disease, Epilepsy, and other neurological disorders. Various mechanisms have been reported for GABA to ameliorate insomnia, such as GABAA receptor modulation, GABAB receptor modulation, inhibition of neuroinflammatory responses, repair of oxidative damage, and inter-regulation of the circadian rhythm hormone melatonin. GABA is a potential therapeutic target in the prevention and treatment of insomnia. This paper reviews mechanisms of GABA and its receptors in insomnia diseases and the potential of GABA analogs application and discusses the research progress of GABA as a promising therapeutic drug for insomnia diseases. This will help the development of novel targeted GABA-like drugs and provide new ideas and methods for the clinical treatment of insomnia.
Collapse
Affiliation(s)
- Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanxing Cheng
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Nanxi Li
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Wu
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Dechou Zhang
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenzhan Feng
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, China
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Xie Y, Ding J, Li Y, Wei P, Liu S, Yang R. The Formation of Protein-Chitosan Complexes: Their Interaction, Applications, and Challenges. Foods 2024; 13:3572. [PMID: 39593988 PMCID: PMC11593029 DOI: 10.3390/foods13223572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Protein-polysaccharide interactions have been a subject of considerable interest in the field of food science. Chitosan is the most prominent and naturally occurring polysaccharide with a positive charge, and its hydroxyl and amino groups facilitate protein-chitosan interactions due to their diverse biochemical activities. The complexation of chitosan enables the modification of proteins, thereby enhancing their value for applications in the food and nutrition industry. This paper presents a summary of the complexes formed by chitosan and different proteins, such as lactoglobulin, egg white protein, soybean isolate protein, whey isolate protein, and myofibrillar protein, and systematically describes the modes of interaction between proteins and chitosan. The effects of protein-chitosan interactions on functional properties such as solubility, emulsification, antioxidant activity, and stability are outlined, and the potential applications of protein-chitosan complexes are discussed. In addition, the current challenges associated with the formation of protein-chitosan complexes and potential solutions to these challenges are highlighted. This paper provides an overview of the current research progress on the interaction of proteins with chitosan and its derivatives in the food industry.
Collapse
Affiliation(s)
- Yufeng Xie
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
- Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Yibin 644005, China
| | - Jiaqi Ding
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yue Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pengfei Wei
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Shiying Liu
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Rui Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Bizymis AP, Giannou V, Tzia C. Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity. Molecules 2024; 29:3754. [PMID: 39202834 PMCID: PMC11356815 DOI: 10.3390/molecules29163754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The aim of this study was to develop functional composite edible films or coatings for fruit preservation by the addition of bioactive components in combinations that have not yet been thoroughly studied, according to the relevant literature. Edible films were initially composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio), and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio). The bioactive components incorporated (5, 10 and 15% v/v) were as follows: (i) pomace oil-based nanoemulsion (NE) aiming to enhance barrier properties, and (ii) caffeine (C), aiming to enhance the antioxidant activity of films, respectively. Indeed, NE addition led to very high barrier properties (low oxygen and water vapor permeability), increased flexibility and reduced color. Furthermore, the contribution of these coatings to fresh strawberries' preservation under cold storage was investigated, with very promising results concerning weight loss, color difference, and preservation of fruit moisture and quantity of O2 and CO2 inside the packages. Additionally, C addition led to very high antioxidant activity, reduced color and improved barrier properties. Finally, the contribution of these coatings to avocado's preservation under cold storage was investigated, with very encouraging results for color difference, hardness and peroxide value of the fruit samples.
Collapse
Affiliation(s)
| | | | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Polytechnioupoli, Zografou, 15780 Athens, Greece; (A.-P.B.); (V.G.)
| |
Collapse
|
5
|
Cabrera-Barjas G, Albornoz K, Belchi MDL, Giordano A, Bravo-Arrepol G, Moya-Elizondo E, Martin JS, Valdes O, Nesic A. Influence of chitin nanofibers and gallic acid on physical-chemical and biological performances of chitosan-based films. Int J Biol Macromol 2024; 263:130159. [PMID: 38368972 DOI: 10.1016/j.ijbiomac.2024.130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
In this work, chitosan films loaded with gallic acid and different content of chitin nanofibers were prepared and subjected to different characterization techniques. The results showed that the inclusion of gallic acid to chitosan films caused moderate decrease in water vapor permeability (by 29 %) and increased tensile strength of films (by 169 %) in comparison to the neat chitosan films. Furthermore, it was found that the addition of chitin nanofibers up to 30 % into chitosan/gallic acid films additionally improved tensile strength (by 474 %) and reduced plasticity of films (by 171 %), when compared to the chitosan/gallic acid films. Increased concentration of chitin nanofibers in films reduced the overall water vapor permeability of films by 51 %. In addition, gallic acid and chitin nanofibers had synergic effect on high chitosan film's antioxidant and antifungal activity toward Botrytis cinerea (both above 95 %). Finally, chitosan/gallic acid/chitin nanofibers films reduced decay incidence of strawberries, increased total soluble solid content, and promoted high production of some polyphenols during cold storage, in comparison to the control chitosan films and uncoated strawberry samples. Hence, these results suggest that chitosan/gallic acid/chitin nanofibers can present eco-sustainable approach for preservation of strawberries, giving them additional nutritional value.
Collapse
Affiliation(s)
- Gustavo Cabrera-Barjas
- Facultad de Ciencias del Cuidado de la Salud, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepción, Chile.
| | - Karin Albornoz
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Maria Dolores Lopez Belchi
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Ady Giordano
- Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| | - Gaston Bravo-Arrepol
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción 3349001, Chile; Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7810000, Chile.
| | - Ernesto Moya-Elizondo
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Juan San Martin
- Departamento de Produccion Vegetal, Facultad de Agronomia, Universidad de Concepcion, Concepcion, Chile.
| | - Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.
| | - Aleksandra Nesic
- University of Belgrade, Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Serbia.
| |
Collapse
|
6
|
Wang K, Wang Y, Cheng M, Wang Y, Zhao P, Xi X, Lu J, Wang X, Han X, Wang J. Preparation and characterization of active films based on oregano essential oil microcapsules/soybean protein isolate/sodium carboxymethyl cellulose. Int J Biol Macromol 2024; 258:128985. [PMID: 38154359 DOI: 10.1016/j.ijbiomac.2023.128985] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
This study aimed to prepare oregano essential oil microcapsules (EOMs) by the active coalescence method using gelatin and sodium alginate as wall materials and oregano essential oil (OEO) as the core material. EOMs were added to the soybean protein isolate (SPI)/sodium carboxymethyl cellulose (CMC) matrix to prepare SPI-CMC-EOM active films, and the physical and chemical features of the active films and EOMs were characterized. The results showed that the microencapsulated OEO could protect its active ingredients. Scanning electron microscopy results showed that EOMs were highly compatible with the film matrix. The solubility of active films decreased upon adding EOMs, and their ultraviolet resistance and thermal stability also improved. When the added amount of EOMs was 5 %, the active films had the best mechanical properties and the lowest water vapor permeability. The active films prepared under this condition had excellent comprehensive performance. Also, adding EOMs considerably enhanced the antioxidant of the active films and endowed them with antibacterial properties. The application of the SPI-CMC-EOM films to A. bisporus effectively delayed senescence and maintained the freshness of the postharvest A. bisporus. This study provided a theoretical foundation for the incorporation of EOMs into active films based on biological materials.
Collapse
Affiliation(s)
- Kaiyue Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yifan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yirong Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Peixin Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiumei Xi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jinhang Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xin Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Juan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
7
|
Chang S, Guo Q, Du G, Tang J, Liu B, Shao K, Zhao X. Probiotic-loaded edible films made from proteins, polysaccharides, and prebiotics as a quality factor for minimally processed fruits and vegetables: A review. Int J Biol Macromol 2023; 253:127226. [PMID: 37802455 DOI: 10.1016/j.ijbiomac.2023.127226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Minimally processed fruits and vegetables (MPFVs) are gaining popularity in households because of their freshness, convenience, and rapid consumption, all of which align with today's busy lifestyles. However, their exposure of large surface areas during peeling and slicing can result in contamination by foodborne pathogens and spoilage bacteria, posing potential food safety concerns. In addition, enzymatic browning of MPFVs can significantly reduce their consumer appeal. Therefore, it is necessary to adopt certain methods to protect MPFVs. Recent studies have shown that utilizing biopolymer-based edible films containing probiotics is a promising approach to preserving MPFVs. These active food packaging films exhibit barrier function, antioxidant function, and antimicrobial function while protecting the viability of probiotics, which is essential to maintain the nutritional value and quality of MPFVs. This paper reviews microbial contamination in MPFVs and the preparation of probiotic-loaded edible films with common polysaccharides (alginate, gellan gum, and starch), proteins (zein, gelatin, and whey protein isolate), prebiotics (oligofructose, inulin, and fructooligosaccharides). It also explores the potential application of probiotic-loaded biopolymer films/coatings on MPFVs, and finally examines the practical application requirements from a consumer perspective.
Collapse
Affiliation(s)
- Shuaidan Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qi Guo
- Henan Agr Univ, Coll Food Sci & Technol, Zhengzhou 450002, China
| | - Gengan Du
- Henan Univ Technol, Sch Food & Strateg Reserv, Zhengzhou 450001, China
| | - Jiayao Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, Indiana 47405, United States
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
8
|
Zhao Y, Li H, Chen J, Wang Y. A novel high water-soluble antibacterial films-based guar gum incorporated with Aloe vera gel and ε-polylysine. Food Chem 2023; 427:136686. [PMID: 37385057 DOI: 10.1016/j.foodchem.2023.136686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
The high water-soluble films are commonly used in food coating and food encapsulation. In this study, the effect of Aloe vera gel (AV) and ε-polylysine (ε-PL) on the comprehensive properties of films based on guar gum (GG) were investigated. When GG to AV was 8:2, the GG:AV:ε-PL composite films (water solubility = 68.50%) had an 82.42% higher water solubility than pure guar gum (PGG) films (water solubility = 37.55%). Compared with PGG films, the composite films more transparent, better thermal stability and elongation at break. X-ray diffraction and SEM analysis showed the composite films were amorphous structures and the AV and ε-PL did not change the structure of PGG. FITR analysis confirmed the formation of hydrogen bonds within the composite films. Antibacterial properties showed the composite films had a good antibacterial effect against Escherichia coli and Staphylococcus aureus. Therefore, the composite films can be a new option of high water-soluble antibacterial food packaging materials.
Collapse
Affiliation(s)
- Yakun Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
9
|
Liu X, Sun H, Leng X. Coffee Silverskin Cellulose-Based Composite Film with Natural Pigments for Food Packaging: Physicochemical and Sensory Abilities. Foods 2023; 12:2839. [PMID: 37569108 PMCID: PMC10417091 DOI: 10.3390/foods12152839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
To promote a circular economy, the use of agricultural by-products as food packaging material has steadily increased. However, designing food packaging films that meet consumers' preferences and requirements is still a challenge. In this work, cellulose extracted from coffee silverskin (a by-product of coffee roasting) and chitosan were combined with different natural pigments (curcumin, phycocyanin, and lycopene) to generate a variety of composite films with different colors for food packaging. The physicochemical and sensory properties of the films were evaluated. The cellulose/chitosan film showed favorable mechanical properties and water sensitivity. Addition of natural pigments resulted in different film colors, and significantly affected the optical properties and improved the UV-barrier, swelling degree, and water vapor permeability (WVP), but there were also slight decreases in the mechanical properties. The various colored films can influence the perceived features and evoke different emotions from consumers, resulting in films receiving different attraction and liking scores. This work provides a comprehensive evaluation strategy for coffee silverskin cellulose-based composite films with incorporated pigments, and a new perspective on the consideration of the hedonic ratings of consumers regarding bio-based films when designing food packaging.
Collapse
Affiliation(s)
- Xinnan Liu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (H.S.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Hongbo Sun
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (H.S.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (H.S.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
10
|
Echegaray N, Goksen G, Kumar M, Sharma R, Hassoun A, Lorenzo JM, Dar BN. A critical review on protein-based smart packaging systems: Understanding the development, characteristics, innovations, and potential applications. Crit Rev Food Sci Nutr 2023; 64:8633-8648. [PMID: 37114905 DOI: 10.1080/10408398.2023.2202256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The use of packaging in the food industry is essential to protect food and improve its shelf life. However, traditional packaging, based on petroleum derivatives, presents some problems because it is non-biodegradable and is obtained from nonrenewable sources. In contrast, protein-based smart packaging is presented as an environmentally friendly strategy that also permits obtaining packaging with excellent characteristics for the formation of smart films and coatings. This review aims to summarize recent developments in smart packaging, focusing on edible films/coatings materials, originating from animal and plant protein sources. Various characteristics like mechanical, barrier, functional, sensory, and sustainability of packaging systems are discussed, and the processes used for their development are also described. Moreover, relevant examples of the application of these smart packaging technologies in muscle foods and some innovations in this area are presented. Protein-based films and coatings from plant and animal origins have great potential to enhance food safety and quality, and reduce environmental issues (e.g., plastic pollution and food waste). Some characteristics of the packages can be improved by incorporating polysaccharides, lipids, and other components as antioxidants, antimicrobials, and nanoparticles in protein-based composites. Promising results have been shown in many muscle foods, such as meat, fish, and other seafood. These innovative smart packaging systems are characterized by their renewable and biodegradable nature, and sustainability, among other features that go beyond typical protection barriers (namely, active, functional, and intelligent features). Nonetheless, the utilization of protein-based responsive films and coatings at industrial level still need optimization to be technologically and economically valid and viable.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda, Galicia n◦ 4, Parque Tecnológico de Galicia, Ourense, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Rajan Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda, Galicia n◦ 4, Parque Tecnológico de Galicia, Ourense, Spain
- Facultad de Ciencias de Ourense, University of Vigo, Area de Tecnología de los Alimentos, Ourense, Spain
| | - B N Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| |
Collapse
|
11
|
Egg-yolk-derived carbon dots@albumin bio-nanocomposite as multifunctional coating and its application in quality maintenance of fresh litchi fruit during storage. Food Chem 2023. [DOI: 10.1016/j.foodchem.2022.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Ke C, Li L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review. Carbohydr Polym 2023; 302:120430. [PMID: 36604091 DOI: 10.1016/j.carbpol.2022.120430] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Plant proteins have high nutritional value, a wide range of sources and low cost. However, it is easily affected by the environmental factors of processing and lead the problem of poor functionality. These problems of plant proteins can be improved by the polysaccharides induced Maillard reaction. The interaction between proteins and polysaccharides through Maillard reaction can change the structure of proteins as well as improve the functional properties and biological activity. The products of Maillard reaction, such as reductone intermediates, heterocyclic compounds and melanoidins have certain antioxidant, antibacterial and other biological activities. However, heterocyclic amines, acrylamide, and products generated in the advanced stage of the Maillard reaction also have a negative impact, which may increase cytotoxicity and be associated with chronic diseases. Therefore, it is necessary to effectively control the process of Maillard reaction. This review focuses on the modification of plant proteins by polysaccharide-induced Maillard reaction and the effects of Maillard reaction on protein structure, functional properties and biological activity. It also points out how to accurately reflect the changes of protein structure in Maillard reaction. In addition, it also points out the application ways of plant protein-polysaccharide complexes in the food industry, for example, emulsifiers, delivery carriers of functional substances, and natural antioxidants due to their improved solubility, emulsifying, gelling and antioxidant properties. This review provides theoretical support for controlling Maillard reaction based on protein structure.
Collapse
Affiliation(s)
- Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Jaderi Z, Tabatabaee Yazdi F, Mortazavi SA, Koocheki A. Effects of glycerol and sorbitol on a novel biodegradable edible film based on Malva sylvestris flower gum. Food Sci Nutr 2023; 11:991-1000. [PMID: 36789080 PMCID: PMC9922115 DOI: 10.1002/fsn3.3134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
There has been an increasing interest in the investigation of novel eco-friendly packaging materials. An edible film based on Malva sylvestris flower gum was fabricated with 40%, 50%, and 60% glycerol and sorbitol using casting method. FTIR analysis was applied to identify the functional groups of films with different concentrations of plasticizers. The lightness of the samples did not affect upon increasing the sorbitol and glycerol; nevertheless, the samples tended to be green and yellow. SEM images indicated that glycerol-based films enjoy heterogeneous and porous surfaces compared to the sorbitol-based samples. Although Tensile Strength and Young's Modulus characteristics declined considerably (p < .05) upon plasticizer addition, elongation at break increased by more than 10% in glycerol-based samples. A significant (p < .05) decrement was observed in the density of film strips via the addition of glycerol and sorbitol. Moisture content of films incorporated with both plasticizers saw a considerable improvement (p < .05) upon increasing the plasticizer concentration from 40% to 60% and is ascribed to the water-holding capacity of plasticizers. Water contact angle and water solubility increased via plasticizer supplementation, which is attributed to the hydrophilic characteristic of glycerol and sorbitol, are in line with SEM analysis.
Collapse
Affiliation(s)
- Zeinab Jaderi
- Department of Food Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | | | - Seyed Ali Mortazavi
- Department of Food Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Arash Koocheki
- Department of Food Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
14
|
Thermally-induced crosslinking altering the properties of chitosan films: Structure, physicochemical characteristics and antioxidant activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Akrami S, Saki M, Marashi Hossaeini SM, Sabahi S, Noori SMA. Application of soy protein-based films and coatings on the shelf life of food products: a mini-review of recent publications with emphasis on nanotechnology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Process optimization and characterization of composite biopolymer films obtained from fish scale gelatin, agar and chitosan using response surface methodology. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Dey S, Hettiarachchy N, Bisly AA, Luthra K, Atungulu GG, Ubeyitogullari A, Mozzoni LA. Physical and textural properties of functional edible protein films from soybean using an innovative 3D printing technology. J Food Sci 2022; 87:4808-4819. [PMID: 36183162 DOI: 10.1111/1750-3841.16349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
Increasing market demand for sustainable, environmentally friendly edible film materials has called for the development of new customizable production methods utilizing emerging technologies such as 3D printing. We hereby report a new method to generate functional edible soy protein isolate films prepared from three types of soybeans (AR-R11-7999, MO-S17-17168, and MO-S17-19874R) using an innovative 3D printing technology. The protein contents in AR-R11-7999, MO-S17-17168, and MO-S17-19874R soybean meals and their corresponding protein isolates were 40.0, 39.1, and 39.9; and 84.5, 84.7, and 87.3 % (w/w, dry basis), respectively. Response surface methodology was used to maximize the tensile and puncture strength and minimize the thickness of the 3D-printed edible films using protein concentration, plasticizer concentration (glycerol), and drying time as the independent variables. The optimized film production conditions were determined as soy protein concentration: 8.91%, plasticizer concentration: 3.00%, and drying time: 3.98 h with a desirability value of 0.7428. The optimized conditions were then successfully verified with the original soybean lot with a nonsignificant difference in physical properties. At the optimized conditions, the 3D-printed edible films using three soybean lots revealed: 0.108-0.114 mm thickness; 14.79-16.07 MPa tensile strength; 6.97-8.20 N puncture strength; 90.81-91.53, -1.89 to -1.31, and 14.85-17.25 were color parameters L*, a*, and b*, respectively; 1.22-1.36 g/cm3 density; and 104.4-105.7% elongation at break ratio (%). PRACTICAL APPLICATION: Edible soy protein films produced by an extrusion-based 3D printing approach are highly customizable and precise, and could be produced at an industrial scale. This newly produced environment-friendly soy protein-based edible film can serve as an alternate packaging to synthetic plastics and reduce the environmental landfill problem while adding value to soybean produced in the mid-south United States.
Collapse
Affiliation(s)
- Sriloy Dey
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Navam Hettiarachchy
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ali A Bisly
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kaushik Luthra
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | | | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Leandro Angel Mozzoni
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
18
|
Guo Q, Tang J, Li S, Qiang L, Chang S, Du G, Yue T, Yuan Y. Lactobacillus plantarum 21805 encapsulated by whey protein isolate and dextran conjugate for enhanced viability. Int J Biol Macromol 2022; 216:124-131. [DOI: 10.1016/j.ijbiomac.2022.06.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
|
19
|
Developing silk sericin-based and carbon dots reinforced bio-nanocomposite films and potential application to litchi fruit. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Pirnia M, Shirani K, Tabatabaee Yazdi F, Moratazavi SA, Mohebbi M. Characterization of antioxidant active biopolymer bilayer film based on gelatin-frankincense incorporated with ascorbic acid and Hyssopus officinalis essential oil. Food Chem X 2022; 14:100300. [PMID: 35434601 PMCID: PMC9011010 DOI: 10.1016/j.fochx.2022.100300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, a bio-based bilayer edible film based on gelatin/frankincense, with the incorporation of different concentrations of Ascorbic acid (AA) (0, 1, 2%) into the inner layer (gelatin) and Hyssopus officinalis (HO) (0, 0.75, 1.5%) essential oil in the outer layer (frankincense) was prepared. A significant increase (p < 0.05) in b* and a remarkable decrease in whiteness and lightness of the films were seen via increasing the HO ascribed to the Total Phenolic Content of HO and non-enzymatic browning. Although there was a significant decrease (p < 0.05) in Tensile Strength with the addition of HO, Elongation at Break was increased significantly as a function of HO, which is correlated with a dense and compact network in SEM images. The maximum thickness of film emulsified with 1.5%HO + 2%AA ascribed to the accumulation of solid content. The improvement in Water Contact Angle (℃) and a reduction in Water Vapor Permeability (gr/s mPa) have occurred due to the hydrophobic nature of HO.
Collapse
Affiliation(s)
- Motahare Pirnia
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khatereh Shirani
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farideh Tabatabaee Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Ali Moratazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Vieira IRS, de Carvalho APAD, Conte-Junior CA. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3673-3716. [PMID: 35713102 DOI: 10.1111/1541-4337.12990] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
Inorganic nanoparticles (NPs) and natural antioxidant compounds are an emerging trend in the food industry. Incorporating these substances in biobased and biodegradable matrices as polysaccharides (e.g., starch, cellulose, and chitosan) and proteins has highlighted the potential in active food packaging applications due to more significant antimicrobial, antioxidant, UV blocking, oxygen scavenging, water vapor permeability effects, and low environmental impact. In recent years, the migration of metal NPs and metal oxides in food contact packaging and their toxicological potential have raised concerns about the safety of the nanomaterials. In this review, we provide a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging. The intrinsic properties of NPs and natural antioxidant actives in packaging materials are evaluated to extend shelf-life, safety, and food quality. Toxicological and safety aspects of inorganic NPs are highlighted to understand the current controversy on applying some nanomaterials in food packaging. The synergism of inorganic NPs and plant-derived natural antioxidant actives (e.g., vitamins, polyphenols, and carotenoids) and essential oils (EOs) potentiated the antibacterial and antioxidant properties of biodegradable nanocomposite films. Biodegradable packaging films based on green NPs-this is biosynthesized from plant extracts-showed suitable mechanical and barrier properties and had a lower environmental impact and offered efficient food protection. Furthermore, AgNPs and TiO2 NPs released metal ions from packaging into contents insufficiently to cause harm to human cells, which could be helpful to understanding critical gaps and provide progress in the packaging field.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Anna Paula Azevedo de de Carvalho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil.,Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Yan W, Sun H, Liu W, Chen H. Preparation and Properties of Blended Composite Film Manufactured Using Walnut-Peptide-Chitosan-Sodium Alginate. Foods 2022; 11:1758. [PMID: 35741956 PMCID: PMC9223285 DOI: 10.3390/foods11121758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, layer-by-layer assembly was performed to prepare sodium alginate (SA) layer and walnut-peptide-chitosan (CS) bilayer composite films. Genipin was adopted to crosslink CS and walnut peptide. The properties of walnut peptide-CS-SA composite film were determined, and the influence of material ratio on the performance of composite film was explored. According to the results, the mechanical tensile property, oil absorption property, and water vapor barrier property of the composite film were improved with the presence of genipin. Moreover, the proportion of CS and walnut peptide had significant effects on color, transmittance, mechanical properties, barrier properties, and antioxidant properties of the composite films. Among them, the composite film containing 1% (w/v) CS, 1% (w/v) walnut peptide, and 0.01% (w/v) genipin showed the best performance, with a tensile strength of 3.65 MPa, elongation at break of 30.82%, water vapor permeability of 0.60 g·mm·m-2·h-1·kPa-1, oil absorption of 0.85%, and the three-phase electrochemistry of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate of 25.59%. Under this condition, the tensile property, barrier property, and oxidation resistance of the composite film are good, which can provide a good preservation effect for food, and has great application potential.
Collapse
Affiliation(s)
- Wenqi Yan
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Haochen Sun
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Wenxin Liu
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
| | - Hao Chen
- Marine College, Shandong University (Weihai), No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (W.Y.); (H.S.); (W.L.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
23
|
Jin B, Liu X, Liang W, Li Q, Yan J, Han Z. Preparation, physicochemical characteristics and bioactivity evaluation of pitaya peel extract/soy protein nanocomposite film containing zinc oxide nanoparticles by photocatalysis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bei Jin
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Xunqi Liu
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Wanying Liang
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Qiyong Li
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - JingKun Yan
- School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Zhiping Han
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| |
Collapse
|
24
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Nanopeptide CMCS-20H loaded by carboxymethyl chitosan remarkably enhances protective efficacy against bacterial infection in fish. Int J Biol Macromol 2022; 201:226-241. [PMID: 34995671 DOI: 10.1016/j.ijbiomac.2021.12.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Zhao M, He H, Ma A, Hou T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide covalent conjugates: a review. Crit Rev Food Sci Nutr 2022; 63:5985-6004. [PMID: 35089848 DOI: 10.1080/10408398.2022.2026872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proteins/peptides and saccharides are two kinds of bioactive substances in nature. Recently, increasing attention has been paid in understanding and utilizing covalent interactions between proteins/peptides and saccharides. The products obtained through covalent conjugation of proteins/peptides to saccharides are shown to have enhanced functional attributes, such as better gelling property, thermostability, and water-holding capacity. Additionally, food-derived protein/peptide-saccharide covalent conjugates (PSCCs) also have biological activities, such as antibacterial, antidiabetic, anti-osteoporosis, anti-inflammatory, anti-cancer, immune regulatory, and other activities that are widely used in the functional food industry. Moreover, PSCCs can be used as packaging or delivery materials to improve the bioavailability of bioactive substances, which expands the development of food-derived protein and saccharide resources. Thus, this review was aimed to first summarize the current status of sources, classification structures of natural PSCCs. Second, the methods of chemical synthesis, reaction conditions, characterization and reagent formulations that improve the desired functional characteristics of food-derived PSCCs were introduced. Third, functional properties such as emulsion, edible films/coatings, and delivery of active substance, bio-activities such as antioxidant, anti-osteoporosis, antidiabetic, antimicrobial of food-derived PSCCs were extensively discussed.
Collapse
Affiliation(s)
- Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
26
|
Oliveira NL, Oliveira ACS, Silva SH, Rodrigues AA, Borges SV, Oliveira JE, Resende JV. Development and characterization of starch‐based films added ora‐pro‐nobis mucilage and study of biodegradation and photodegradation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Guo Q, Li S, Tang J, Chang S, Qiang L, Du G, Yue T, Yuan Y. Microencapsulation of Lactobacillus plantarum by spray drying: Protective effects during simulated food processing, gastrointestinal conditions, and in kefir. Int J Biol Macromol 2022; 194:539-545. [PMID: 34808148 DOI: 10.1016/j.ijbiomac.2021.11.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Probiotics are incorporated into food products because of numerous favorable effects on human health. The viability of probiotics is often affected by unfavorable interference during processing. The encapsulation can provide protection to probiotics during mechanical processing, storage, and gastrointestinal digestion. This study aimed to evaluate the protective effect of whey protein isolate (WPI) and dextran (DX) conjugates for Lactobacillus plantarum. The WPI-DX conjugate was prepared by Maillard-based glycation and confirmed by gel electrophoresis. Extending the heating time from 1 to 5 h decreased the content of tryptophan residues and increased the amide I and amide II bands. The enhanced protective ability of Maillard reaction products (MRPs) for L. plantarum was observed under conditions of stress (pH, heat, and salt) and in vitro digestion. In situ viability tests showed that encapsulation improved the survival of bacteria in kefir during 15 days of storage at 4 °C. Overall, our results provide valuable information for the development of functional probiotic food products.
Collapse
Affiliation(s)
- Qi Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Shidong Li
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Jiaxin Tang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Shuaidan Chang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Liyue Qiang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Techonology, Northwest University, Xi'an, 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| |
Collapse
|
28
|
Integrating waste fish scale-derived gelatin and chitosan into edible nanocomposite film for perishable fruits. Int J Biol Macromol 2021; 191:1164-1174. [PMID: 34597703 DOI: 10.1016/j.ijbiomac.2021.09.171] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
Petroleum-based plastics (such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, etc.) as white waste have caused great concern in the environment. It is urgent to develop a kind of biodegradable, biocompatible and non-toxic materials to replace them. Herein, an environmental-friendly edible film for postharvest fruits refreshing application was prepared by combining the waste fish scale-derived gelatin, chitosan as well as CaCO3 nanoparticles. The as-prepared nanocomposite film showed the multifunctional features, such as UV absorption, antimicrobial, oxygen screening, excellent mechanical properties and non-toxic. In addition, the protein-polysaccharide based nanocomposite film was hydrophilic and can be easily washed away on fruits before eating. In order to inspect its preservative effect on fruits, longan and banana were chosen as the testing object. Our results showed that the edible multifunctional nanocomposite film can effectively extend the shelf life of longan by more than 3 days and banana by more than 5 days, compared with the control groups. Integrating natural biological macromolecules gelatin and chitosan into a multifunctional nanocomposite film with series of advantages of biodegradability, sustainability as well as multifunction is expected to be a potential preservative material for food packaging applications.
Collapse
|
29
|
Hua Y, Wei Z, Xue C. Chitosan and its composites-based delivery systems: advances and applications in food science and nutrition sector. Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34793271 DOI: 10.1080/10408398.2021.2004992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Natural bioactive ingredients have lower bioavailability because of their chemical instability and poor water solubility, which limits their applications in functional foods. Among diverse biopolymers that can be used to construct delivery systems of bioactives, chitosan has attracted extensive attention due to its unique cationic nature, excellent mucoadhesive properties and easy modification. In this review, chitosan and its composites-based food-grade delivery systems as well as the factors affecting their performance are summarized. Modification, crosslinking, combination with other biopolymer or utilization of coating material can effectively overcome the instability of pure chitosan-based carriers under acidic conditions, thereby constructing chitosan and its complex-based carriers with conspicuously improved performance. Furthermore, the applications of chitosan-based delivery systems in nutrition and health as well as their future development trends and challenges are discussed. Functional food ingredients, functional food packaging and biological health are potential applications of chitosan-based food-grade delivery systems. The research trends of nutraceutical delivery systems based on chitosan and its composites include co-delivery of nutrients and essential oils, targeted intestinal delivery, stimulus responsive/sustained release and their applications in real foods. In conclusion, food industry will be significantly promoted with the continuous innovation and development of chitosan-based nutraceutical delivery systems.
Collapse
Affiliation(s)
- Yijie Hua
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
30
|
Development and characterization of Caesalpinia pulcherrima seed gum-based films to determine their applicability in food packaging. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Oliveira ACS, Oliveira Begali D, Ferreira LF, Ugucioni JC, Sena Neto AR, Yoshida MI, Borges SV. Effect of whey protein isolate addition on thermoplasticized pectin packaging properties. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | | | | | - Maria Irene Yoshida
- Department of Chemistry Federal University of Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Soraia Vilela Borges
- Department of Food Science Federal University of Lavras Lavras Minas Gerais Brazil
| |
Collapse
|
32
|
Ke M, Wang Z, Dong Q, Chen F, He L, Huselstein C, Wang X, Chen Y. Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury. NANOSCALE 2021; 13:15743-15754. [PMID: 34528655 DOI: 10.1039/d1nr03430h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extensive full-thickness skin defect lacks self-healing ability. Tissue engineering wound dressing is considered as the most promising approach to promote wound healing. In this study, a series of biocompatible and hemostatic nanofiber dressings were fabricated. Soy protein isolate (SPI) and poly(L-lactic acid) (PLLA) solutions were mixed in certain proportions for high-voltage electrospinning. The obtained products were coded as SPNF-n (n = 100, 80, 60 and 40, corresponding to the weight percentage of PLLA solution). We found that SPNF-n (n = 100, 80, 60 and 40) could facilitate the adhesion and spread of L929 cells. In particular, SPNF-80 was capable of promoting fibroblast proliferation and diminishing inflammation. Compared with the neat PLLA film (SPNF-100), the biosafety and hemostatic effect of SPNF-80 got significantly improved. The hemostatic effect of SPNF-80 was comparable with that of a commercial gelatin sponge. In vivo wound healing assay demonstrated that SPNF-80 could accelerate the wound healing process by enhancing vascularization, re-epithelization and collagen formation. In conclusion, our results reveal that SPNF-n has good biocompatibility and hemostatic effect, and exhibits great application potential in wound healing.
Collapse
Affiliation(s)
- Meifang Ke
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China.
| | - Zijian Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China.
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Qi Dong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China.
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China.
| | - Liu He
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China.
| | - Céline Huselstein
- UMR 7365 CNRS, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China.
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, P. R. China.
| |
Collapse
|
33
|
Tan C, Han F, Zhang S, Li P, Shang N. Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. Int J Mol Sci 2021; 22:9663. [PMID: 34575828 PMCID: PMC8470619 DOI: 10.3390/ijms22189663] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023] Open
Abstract
Food microbial contamination not only poses the problems of food insecurity and economic loss, but also contributes to food waste, which is another global environmental problem. Therefore, effective packaging is a compelling obstacle for shielding food items from outside contaminants and maintaining its quality. Traditionally, food is packaged with plastic that is rarely recyclable, negatively impacting the environment. Bio-based materials have attracted widespread attention for food packaging applications since they are biodegradable, renewable, and have a low carbon footprint. They provide a great opportunity to reduce the extensive use of fossil fuels and develop food packaging materials with good properties, addressing environmental problems and contributing significantly to sustainable development. Presently, the developments in food chemistry, technology, and biotechnology have allowed us to fine-tune new methodologies useful for addressing major safety and environmental concerns regarding packaging materials. This review presents a comprehensive overview of the development and potential for application of new bio-based materials from different sources in antimicrobial food packaging, including carbohydrate (polysaccharide)-based materials, protein-based materials, lipid-based materials, antibacterial agents, and bio-based composites, which can solve the issues of both environmental impact and prevent foodborne pathogens and spoilage microorganisms. In addition, future trends are discussed, as well as the antimicrobial compounds incorporated in packaging materials such as nanoparticles (NPs), nanofillers (NFs), and bio-nanocomposites.
Collapse
Affiliation(s)
- Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shiqi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pinglan Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
34
|
Yuan D, Meng H, Huang Q, Li C, Fu X. Preparation and characterization of chitosan-based edible active films incorporated with Sargassum pallidum polysaccharides by ultrasound treatment. Int J Biol Macromol 2021; 183:473-480. [PMID: 33915213 DOI: 10.1016/j.ijbiomac.2021.04.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
In this study, Sargassum pallidum polysaccharides (SPPs) were incorporated into chitosan (CH) to develop a novel edible active film (CH/SPPs-US) via ultrasonication. The mechanical, water vapor permeability, surface morphology, crystallinity, antioxidant, and fruit preservation properties of CH/SPPs-US films prepared under sequences of matrix ratios and ultrasound treatment were investigated. The results revealed that the addition of SPPs combined with ultrasonic treatment could significantly enhance the transparency, elongation and tensile strength of the films whereas the water vapor permeability was decreased. Tensile strength and elongation at break of the C2/SP1.2-US film were 12.07 N and 54.18%, respectively, which were significantly higher than those for CH film. Meanwhile, the water vapor permeability value of C2/SP1.2-US was reduced by as high as 40.2% compared with that of chitosan film. In addition, antioxidant effect evaluation showed that the CH-based films added with SPPs exhibited better antioxidant activity than CH film, and ultrasonic treatment could further strengthen the antioxidant activity of the film. The CH/SPPs-US films could effectively extend the shelf life and inhibit the deterioration of the strawberry at room temperature (25 ± 1 °C) and 70% ± 5% relative humidity for 7 days. These results indicated that the CH/SPPs edible films via ultrasonication could be developed as edible packaging films for the preservation of fresh fruits.
Collapse
Affiliation(s)
- Dan Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Hecheng Meng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China.
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China.
| |
Collapse
|
35
|
Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03797-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Paidari S, Zamindar N, Tahergorabi R, Kargar M, Ezzati S, shirani N, Musavi SH. Edible coating and films as promising packaging: a mini review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00979-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Bizymis AP, Tzia C. Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 2021; 62:8777-8792. [PMID: 34098828 DOI: 10.1080/10408398.2021.1934652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Edible films and coatings, despite their practical applications, have only entered the food industry in the last decade. Their main functions are to protect the food products from mechanical damage and from physical, chemical and microbiological deteriorative changes. The ingredients used for their formation are polysaccharides, proteins and lipids, in individual or combined formulations. The edible films and coatings have already been applied on various food products, such as fruits, vegetables, meat products, seafood products, cheese, baked products and deep fat fried products. The techniques for their application on foods are of particular interest. Nowadays, composite edible films and coatings are also being studied, based on combinations of the properties of individual components. In addition to conventional materials, new ones, such as nanomaterials, are being investigated, aiming to enhance the resulting properties. However, before the incorporation of new materials to films and coatings, they must be thoroughly checked according to the legislation, to assure their lawful use. This review covers the recent developments on the edible films and coatings area in terms of the contribution of novel constituting materials to the improvement of their properties.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
38
|
Yang L, Liu Y, Wang S, Zhang X, Yang J, Du C. The relationship between amylopectin fine structure and the physicochemical properties of starch during potato growth. Int J Biol Macromol 2021; 182:1047-1055. [PMID: 33887292 DOI: 10.1016/j.ijbiomac.2021.04.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/29/2022]
Abstract
The aim of this study was to explore the relationship between the structural and functional properties of starch isolated from Atlantic potatoes at different stages of growth without the effect of varieties and growth environment. The molecular size and chain-length distribution of amylopectin significantly varied with growth. The Mw and Mn of amylopectin ranged from 2.976 × 107 to 4.512 × 107 g/mol and 1.275 × 107 to 2.295 × 107 g/mol, respectively, suggested that the polydispersity varied with growth. The average chain length of amylopectin during potato growth showed small but significant changes and ranged from DP 23.59 to 24.73. Overall, Afp chains, Acrystal chains, and B1 chains increased with growth, and B2 and B3 chains decreased with growth. There was wide variation in starch pasting, gelatinization, retrogradation, in vitro starch digestibility, swelling power, solubility, and gel stability properties. Specifically, potato starch harvested at the earliest time had the highest resistant starch content. The variation trend of swelling power and solubility was similar, reached highest value at 42 days, were 20.38 g/g and 8.83%, respectively. Correlation analysis revealed that the physicochemical properties were significantly affected by amylopectin fine structure. The results of this study enhance our understanding of the structure-function relationship of potato starch.
Collapse
Affiliation(s)
- Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China.
| | - Yong Liu
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Sunyan Wang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Xianling Zhang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Jianting Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Chuanlai Du
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| |
Collapse
|
39
|
Zhang C, Sun G, Li J, Wang L. A green strategy for maintaining intelligent response and improving antioxidant properties of κ-carrageenan-based film via cork bark extractive addition. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Anis A, Pal K, Al-Zahrani SM. Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications. Polymers (Basel) 2021; 13:575. [PMID: 33672974 PMCID: PMC7917627 DOI: 10.3390/polym13040575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The wastage of food products is a major challenge for the food industry. In this regard, the use of edible films and coatings have gained much attention due to their ability to prevent the spoilage of the food products during handling, transport, and storage. This has effectively helped in extending the shelf-life of the food products. Among the various polymers, polysaccharides have been explored to develop edible films and coatings in the last decade. Such polymeric systems have shown great promise in microbial food safety applications. The inclusion of essential oils (EOs) within the polysaccharide matrices has further improved the functional properties of the edible films and coatings. The current review will discuss the different types of polysaccharides, EOs, methods of preparing edible films and coatings, and the characterization methods for the EO-loaded polysaccharide films. The mechanism of the antimicrobial activity of the EOs has also been discussed in brief.
Collapse
Affiliation(s)
- Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Saeed M. Al-Zahrani
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
41
|
Velásquez P, Bustos D, Montenegro G, Giordano A. Ultrasound-Assisted Extraction of Anthocyanins Using Natural Deep Eutectic Solvents and Their Incorporation in Edible Films. Molecules 2021; 26:984. [PMID: 33673385 PMCID: PMC7918079 DOI: 10.3390/molecules26040984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Extracts rich in bioactive compounds added to edible films have allowed the development of active packaging that increases the shelf life of food. However, it is necessary to search for solvents that are nontoxic and not harmful to the environment, with natural deep eutectic solvents (NADES) being an attractive and easily synthesized alternative. This research aimed to design NADES by lyophilization to be used in the extraction of anthocyanins from the Chilean Luma chequen (Molina) A. Gray berry, and subsequently adding them to the matrix of edible ƙ-carrageenan films. For this purpose, ultrasound-assisted extraction (UAE) was used and the anthocyanin content was evaluated with the pH differential method. The antioxidant capacity of extracts was determined by DPPH assay and the antibacterial capacity by diffusion agar tests. The results obtained indicate that the designed NADES are efficient at extracting anthocyanins, reaching concentrations between 81.1 and 327.6 mg eq cyanidin 3-glucoside/100 g dw of L. chequen (Molina) A. Gray. The extracts reached inhibition diameters between 5 and 34 mm against Escherichia coli, Staphylococcus aureus, and Salmonella typhi strains. Once the extracts were incorporated into ƙ-carrageenan films, active edible films with antioxidant and antibacterial capacities were obtained.
Collapse
Affiliation(s)
- Patricia Velásquez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.V.); (D.B.)
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Daniela Bustos
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.V.); (D.B.)
| | - Gloria Montenegro
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Ady Giordano
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.V.); (D.B.)
| |
Collapse
|
42
|
Chitosan nanoparticles based on their derivatives as antioxidant and antibacterial additives for active bioplastic packaging. Carbohydr Polym 2021; 257:117610. [PMID: 33541641 DOI: 10.1016/j.carbpol.2020.117610] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
Chitosan nanoparticles (CSNPs) based on their different derivatives were proposed as antioxidant and antimicrobial additives for active bioplastic packaging. Chitosan was modified with polyethylene glycol methyl ether methacrylate (PEGMA), stearyl methacrylate (SMA) and deoxycholic acid (DC) using radiation-induced graft polymerization and chemical conjugation. The modified CSNPs-g-pPEGMA, CSNPs-g-pSMA and CSNPs-DC self-assembled into nanoparticles with the size in the range of 25-60 nm. The CSNPs-DC derivative has superior antioxidant activity and the CSNPs-g-pSMA derivative exhibited outstanding antibacterial activity against growth of E.coli (95.33 %). All modified CSNPs showed their capacities to inhibit S.aureus bacterial growth (>98 %). PLA packaging films containing CSNPs-g-pSMA inhibited the growth of natural microorganism on bread slices. Different chemical functions of the CSNPs derivatives provided different gas permeability and mechanical properties of the PLA films. The CSNPs derivatives would be promising antioxidant and antimicrobial additives for bioplastics to be further used as bio-based active food packaging.
Collapse
|
43
|
Hu Y, Wang Z, Zhang X, Bai X, Li X, Ren D. Development of whey protein isolate/chitosan/microcrystalline cellulose‐based bilayer films using surface‐pretreated polyethylene terephthalate substrate. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yue Hu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People's Republic of China
| | - Zichun Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People's Republic of China
| | - Xia Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People's Republic of China
| | - Xue Bai
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People's Republic of China
| | - Xue Li
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People's Republic of China
| | - Di‐Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People's Republic of China
| |
Collapse
|