1
|
Li W, Zhang Y, Wang X, Zhang Y, Lai CJS, Xie J. Melanoidins from stir-frying Atractylodes Macrocephala: Structural characterization, molecular weight distribution, and polyphenol delivery mechanism. Food Chem 2025; 483:144238. [PMID: 40220442 DOI: 10.1016/j.foodchem.2025.144238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/25/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
This study investigates the chemical composition, structural characteristics, and functional properties of melanoidins from stir-frying Atractylodes Macrocephala. Formed through the Maillard reaction during thermal processing, melanoidins were fractionated into high molecular weight (MLD-2) and low molecular weight (MLD-1) components. The results demonstrated that MLD-2 exhibited greater browning intensity, enhanced antioxidant capacity, and improved polyphenol release in the colon, suggesting promising health benefits. Conversely, MLD-1 demonstrated higher fluorescence intensity and distinct thermal characteristics. Structural analysis using FT-IR, NMR, UV-vis, and fluorescence spectroscopy confirmed that molecular weight plays a crucial role in determining the functional properties of melanoidins. These findings underscore the potential of melanoidins as effective carriers for polyphenol delivery, providing valuable insights into their role in enhancing the bioavailability and therapeutic effects of bioactive compounds, particularly in the context of traditional herbal medicines.
Collapse
Affiliation(s)
- Wei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajie Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoxiao Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| | - Chang-Jiang-Sheng Lai
- Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Chen J, Zhang W, Fu C, Zheng X, Li M, Chen Y, Wu X, Liu C. Effects of different saccharides glycosylation modified soy protein isolate on its structure and film-forming characteristics. Int J Biol Macromol 2025; 304:140834. [PMID: 39933683 DOI: 10.1016/j.ijbiomac.2025.140834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
With the serious impact of traditional plastic packaging on the environment, the development of safe, environmentally friendly and degradable packaging materials has become a research hotspot. Glycosylation reaction has been explored by researchers because of its green, efficient and simple. In this study, the film-forming properties of soy protein isolate (SPI) were improved by glycosylation modification. Different types of saccharides (monosaccharides: glucose, fructose, xylose; oligosaccharides: maltose, fructooligosaccharide, xylooligosaccharide; polysaccharide: gum arabic) were introduced into the SPI by moist heat method. The results show that the xylose-modified SPI film has the best performance in mechanical properties and thermal stability, and its tensile strength is increased to 5.1 MPa, and its elongation reached 117.8 %. Structural analysis revealed that glycosylation resulted in a decrease in α-helix content of SPI, while β-sheets and random coils increased, forming a tighter cross-linked network, improving film density and stability. Furthermore, xylose modification significantly reduced the water vapor transmission rate to only 12.64 g/m2·24 h. These modifications significantly enhance the comprehensive properties of SPI films, especially in terms of thermal stability and moisture barrier properties. The correlation analysis between SPI film properties and internal structure shows that glycosylation can change the internal structure of protein and further affect the film properties. The research in this paper provides a theoretical basis for the glycosylation modification of SPI, and provides a new idea for the sustainable development of food packaging materials.
Collapse
Affiliation(s)
- Jinjing Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Wanting Zhang
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Chenrui Fu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Xiwen Zheng
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Meng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Yiming Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China.
| |
Collapse
|
3
|
Xu X, Gao C, Feng X, Meng L, Wang Z, Zhang Y, Tang X. Effects of keto acid crosslinking on the structure and properties of chitosan based casted and hot-pressed films. Int J Biol Macromol 2025; 308:142751. [PMID: 40180067 DOI: 10.1016/j.ijbiomac.2025.142751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Crosslinking is one of the most effective ways to enhance the performance of bio-based films, and suitable crosslinking agents are crucial for the enhancement. In this study, four α-ketoacids, namely glyoxylate, pyruvate, oxaloacetate, and α-ketoglutarate were used to crosslink chitosan at room temperature. The effects of crosslinking on the structure and properties of chitosan films were studied, and the reaction mechanism was explored. Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy indicated that ion attraction and Schiff base reactions occurred between keto acids and chitosan. Glyoxylate developed the most effective covalent crosslinking with chitosan, whereas α-ketoglutarate had the highest ionic crosslinking ratio. Keto acid crosslinking reduced the orderliness of chitosan, improved the uniformity of the film matrix and increased its UV-blocking capacity. Glyoxylate-crosslinked chitosan film demonstrated excellent tensile strength (160 MPa), water stability (water solubility about 11.71 %), and extremely low oxygen permeability (2.65 × 10-16 cm3·cm/cm-2·s-1· Pa-1). Despite the weakened thermal stability and water barrier property, glyoxylate crosslinking shows great potential for the preparation of high-strength and high‑oxygen-resistance chitosan films. Furthermore, the glyoxylate-crosslinked chitosan film could be produced by hot pressing and performed satisfactorily.
Collapse
Affiliation(s)
- Xuyue Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
4
|
Smith D, Rodriguez-Melendez D, Montemayor MD, Convento MO, Grunlan JC. Fire Resistant Adhesive from Chitosan. Biomacromolecules 2025; 26:1141-1148. [PMID: 39757427 PMCID: PMC11815856 DOI: 10.1021/acs.biomac.4c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Chitosan is one of the most abundant biopolymers on earth. It is used as a nontoxic alternative in a wide range of medicines, packaging, adhesives, and flame retardants. Chitosan is poorly soluble in neutral or alkaline solutions, but it dissolves in solutions of weak acids, such as acetic acid or citric acid, both of which occur naturally. As a replacement for formaldehyde-containing resins in engineered wood, a chitosan-acid mixture acts as a low-cost, nontoxic adhesive for natural wood that also offers fire protection by forming a char barrier. Pentaerythritol was studied as an additive due to its similarity to glycerol (a common plasticizer for chitosan) and its potential flame retardant benefit. The properties of chitosan adhesives produced with acetic acid and citric acid are compared, and moderate thermal treatment is applied to facilitate covalent bonding (e.g., Maillard reaction) that improves water resistance. Tensile shear strengths of >1 MPa are obtained on lap joints. The unique combination of fire protection and adhesion for wood makes these low cost, biobased systems very appealing.
Collapse
Affiliation(s)
- Dallin
L. Smith
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Maya D. Montemayor
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Miguel O. Convento
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Jaime C. Grunlan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Mechanical Engineering, Texas A&M
University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Jiang G, He K, Chen M, Yang Y, Tang T, Tian Y. Development of multifunctional chitosan packaging film by plasticizing novel essential oil-based hydrophobic deep eutectic solvent: Structure, properties, and application. Carbohydr Polym 2025; 347:122701. [PMID: 39486942 DOI: 10.1016/j.carbpol.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
To improve the limited mechanical and water barrier properties of chitosan film while granting extra functionalities simultaneously, present study pioneered the incorporation of chitosan film with newly developed essential oil (EO)-based hydrophobic deep eutectic solvents (HDES, EO:octanoic acid (OA), EO:menthol (ME) and OA:ME:EO). The highest tensile strength (66.22 MPa) and elongation at break (45.99 %) were obtained in OA:ME:EO-40 and OA:ME:EO-80 films, respectively. The OA:EO-based films showed excellent and stable hydrophobicity. HDESs also endowed film with additional functionalities including thermal stability, bio-compatibility, controlled release, antioxidant, and antibacterial capacity. The extension of the storage period of strawberry treated with OA:EO-containing films confirmed their preservation ability. Compared with ME:EO and OA:ME:EO, OA:EO had better compatibility with chitosan matrix and could serve as a promising plasticizer for strengthening functionalities of chitosan film. These results also promote application of HDESs as emerging plasticizers in manufacture of other polymer-based packaging film.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Kaiwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China.
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
6
|
Chuang PY, Chang SF, Lu YC, Huang KC. Chitosan-glucose derivative membrane obtained by Maillard reaction improves cartilage repair in a rabbit model. J Orthop Surg Res 2024; 19:628. [PMID: 39367411 PMCID: PMC11453087 DOI: 10.1186/s13018-024-05127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Treatment of articular cartilage injury remains a challenging clinical problem in orthopedics. Chitosan-derived biomaterial could be a potential adjuvant treatment to improve cartilage repair. In the current study, we examined the effects of two potential chitosan-derived materials on cartilage regeneration of osteochondral defects in rabbits. METHODS An osteochondral defect was created over the rabbit knee and treated using three approaches: group A received no material (n = 24), group B received chitosan membranes with glucose absorption (CGA; n = 25), and group C received chitosan-glucose derivative membranes obtained via the Maillard reaction (CGMR; n = 25). Cartilage repair over the osteochondral defect was analyzed 12 weeks post-surgery via histological analysis, immunostaining, and reverse transcription-qualitative polymerase chain reaction (RT-qPCR) for type-I and type-II collagen mRNA. RESULTS According to histological analysis, CGMR-treated defects showed significantly improved modified O'Driscoll scoring when compared with no material- and CGA-treated defects (20.9 ± 4.3 vs. 13.00 ± 2.5 and 17.7 ± 4.6, p < 0.001). Moreover, group C exhibited higher intensity of type-II collagen immunohistochemical staining over the regenerated cartilage than groups A and B, along with increased expression of type-II collagen mRNA by RT-qPCR. CONCLUSIONS CGMR might improve cartilage regeneration in osteochondral defects.
Collapse
Affiliation(s)
- Po-Yao Chuang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, No. 6, West Sec., Chia-Pu Rd., Pu-Tz City, Chiayi County, 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Chen Lu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Kuo-Chin Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, No. 6, West Sec., Chia-Pu Rd., Pu-Tz City, Chiayi County, 61363, Taiwan.
| |
Collapse
|
7
|
Ni R, Zhang L, Ma J, Zhang J, Xu X, Shi H, Deng Q, Hu W, Hu J, Ke Q, Zhao Y. Versatile Keratin Fibrous Adsorbents with Rapid-Response Shape-Memory Features for Sustainable Water Remediation. NANO LETTERS 2024. [PMID: 39365030 DOI: 10.1021/acs.nanolett.4c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Biodegradable shape-memory polymers derived from protein substrates are attractive alternatives with strong potential for valorization, although their reconstruction remains a challenge due to the poor processability and inherent instability. Herein, based on Maillard reaction and immobilization, a feather keratin fibrous adsorbent featuring dual-response shape-memory is fabricated by co-spinning with pullulan, heating, and air-assisted spraying ZIF-8-NH2. Maillard reaction between the amino group of keratin and the carbonyl group of pullulan improves the mechanics and thermal performance of the adsorbent. ZIF-8-NH2 immobilization endows the adsorbent with outstanding multipollutant removal efficiency (over 90%), water stability, and photocatalytic degradation and sterilization performance. Furthermore, the adsorbent can be folded to 1/12 of its original size to save space for transportation and allow for rapid on-demand unfolding (12 s) upon exposure to water and ultraviolet irradiation to facilitate the adsorption and photocatalytic activity with a larger water contact area. This research provides new insight for further applications of keratin-based materials with rapid shape-memory features.
Collapse
Affiliation(s)
- Ruiyan Ni
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Le Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiajia Ma
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiawen Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xiaoyun Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Huan Shi
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Hunan 410208, China
| | - Qiong Deng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenfeng Hu
- School of Textiles and Fashion Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Zhang X, Chen M, Wang N, Luo J, Li M, Li S, Hemar Y. Conjugation of chitopentaose with β-lactoglobulin using Maillard reaction, and its effect on the allergic desensitization in vivo. Int J Biol Macromol 2024; 258:128913. [PMID: 38141707 DOI: 10.1016/j.ijbiomac.2023.128913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The conjugation of chitopentaose (CHP) on β-lactoglobulin (βLg) via Maillard reaction was used to desensitize βLg. The stable βLg-CHP conjugate (βC-4) was formed at 4 h incubation, which contains 5 CHP attached molecules and a conjugated degree of 42 %. The conjugation promoted the thermal stability and emulsifying properties of βLg, and inhibited the immunoglobulin E (IgE) combining capacity by decreasing the content of β-sheet in βLg. Moreover, βLg-CHP conjugates were imparted with anti-oxidant properties and anti-inflammatory activities. Further, the combined action of inhibited IgE combining capacity and anti-inflammatory activities improved the allergy desensitization in βLg sensitized mice. The results showed that overexpressed IgE and inflammatory factors, unbalanced Th1-/Th2- immune cytokines were significantly attenuated after βLg was conjugated with CHP, avoiding the inflammatory lesions in spleen and colon. Additionally, the adverse changes in gut microbiota were alleviated in βC-4 group with a decrease of Bacteroidetes and increase of Firmicutes at phylum level and the probiotic bacteria of Lactobacillaceae was significantly improved at the family level. Thus, the conjugation of CHP can desensitize allergic reaction caused by βLg.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Meng Chen
- Center for Disease Control and Prevention of Tengzhou City, Zaozhuang 277500, China
| | - Ning Wang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Juanjuan Luo
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Meifeng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Sining Li
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Yacine Hemar
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
9
|
Kamandloo F, Salami M, Ghamari F, Ghaffari SB, EmamDjomeh Z, Ghasemi A, Kennedy JF. Development and evaluation of anti-reflux functional-oral suspension raft composed of sodium alginate-mung bean protein complex. Int J Biol Macromol 2024; 256:128490. [PMID: 38035967 DOI: 10.1016/j.ijbiomac.2023.128490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to develop a sodium alginate (Na alginate) and mung bean protein (MBP) raft complex to improve gastric reflux symptoms. Na alginate and MBP complexes with different ratios (1:1, 2:1, and 3:1, respectively) were used for raft formulations through a wet Maillard reaction. Structural properties of raft strength, reflux resistance, intrinsic fluorescence emission spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were investigated for rafts. The suspension 1:1 Na alginate/MBP with 0 h Maillard reaction time exhibited the lowest sedimentation volume among the suspensions. In contrast, 3:1 Na alginate/MBP with 6 h Maillard reaction time showed the highest sedimentation volume. Based on the results, the 3:1 Na alginate/MBP rafts had the best results, and the results were within acceptable limits. Functional properties, including antioxidant properties, the Helicobacter pylori inhibition assay, the pancreatic lipase inhibition assay, and angiotensin-converting enzyme (ACE) inhibition, were investigated for rafts. The Na alginate/MBP raft has similar characteristics to Gaviscon syrup and can be used for obesity, Helicobacter pylori infection, high blood pressure, and gastric reflux.
Collapse
Affiliation(s)
- Farzaneh Kamandloo
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Functional Food Research Core (FRC), University of Tehran, Iran.
| | - Fatemeh Ghamari
- Department of Science Payame Noor University, P.O. box 19395-4697, Tehran, Iran
| | - Seyed-Behnam Ghaffari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zahra EmamDjomeh
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Functional Food Research Core (FRC), University of Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, United Kingdom
| |
Collapse
|
10
|
Yao L, Wang Y, He Y, Wei P, Li C, Xiong X. Pickering Emulsions Stabilized by Conjugated Zein-Soybean Polysaccharides Nanoparticles: Fabrication, Characterization and Functional Performance. Polymers (Basel) 2023; 15:4474. [PMID: 38231891 PMCID: PMC10708203 DOI: 10.3390/polym15234474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study aims to fabricate zein-based colloidal nanoparticles, which were used to stabilize Pickering emulsions, by conjugation with soybean polysaccharide (SSPS) through the Maillard reaction. The physicochemical properties of the conjugated particles as well as the physical and oxidative stability of the fabricated Pickering emulsion that utilized conjugated colloidal particles with the volumetric ratio of water and oil at 50:50 were investigated. The grafting degree of zein and SSPS was verified through examination of FT-IR and fluorescence. Moreover, the conjugated Zein/SSPS nanoparticles (ZSP) that were prepared after dry heating for 48-72 h exhibit excellent colloidal stability across a range of pH values (4.0-10.0). Further, the wettability of ZSP decreased based on a contact angle analysis of θ~87°. Confocal laser scanning microscopy (CLSM) images indicated that ZSP particles were located around the oil droplets. Additionally, the ZSP effectively improved the oxidative stability of the Pickering emulsions, as demonstrated by a significant decrease in both peroxide value (PV) and thiobarbituric acid reactive substances (TBARS). The results of this study demonstrate that ZSP represents a promising food-grade Pickering emulsifier, capable of not only stabilizing emulsions but also inhibiting their oil oxidation.
Collapse
Affiliation(s)
- Lili Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Ying Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Yangyang He
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (L.Y.); (Y.W.); (Y.H.); (C.L.)
| |
Collapse
|
11
|
Liu Y, Tong F, Xu Y, Hu Y, Liu W, Yang Z, Yu Z, Xiong G, Zhou Y, Xiao Y. Development of antioxidant and smart NH 3 -sensing packaging film by incorporating bilirubin into κ-carrageenan matrix. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7030-7039. [PMID: 37337853 DOI: 10.1002/jsfa.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Active and smart food packaging based on natural polymers and pH-sensitive dyes as indicators has attracted widespread attention. In the present study, an antioxidant and amine-response color indicator film was developed by incorporating bilirubin (BIL) into the κ-carrageenan (Carr) matrix. RESULTS It was found that the introduction of BIL had no effect on the crystal/chemical structure, water sensitivity and mechanical performance of the Carr-based films. However, the barrier properties to light and the thermal stability were significantly improved after the addition BIL. The Carr/BIL composite films exhibited excellent 1,1-diphenyl-2-picryl-hydrazyl (i.e. DPPH)/2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (i.e. ABTS) free radical scavenging abilities and color responsiveness to different concentrations of ammonia. The application assay reflected that the Carr/BIL0.0075 film was effective in delaying the oxidative deterioration of shrimp during storage and realizing the color response of its freshness through the change of b* value. CONCLUSION Active and smart packaging films were successfully prepared by incorporating different contents of BIL into the Carr matrix. The present study helps to further encourage the design and development of a multi-functional packaging material. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Fei Tong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Zan Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Guoyuan Xiong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Huang CY, Liao HW, Hu TM. Chemical reactivity of the tryptophan/acetone/DMSO triad system and its potential applications in nanomaterial synthesis. RSC Adv 2023; 13:29802-29808. [PMID: 37829717 PMCID: PMC10566338 DOI: 10.1039/d3ra06596k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Previously, we reported a novel browning reaction of amino acids and proteins in an organic solvent mixture composed of dimethyl sulfoxide (DMSO) and acetone. The reaction proceeds under surprisingly mild conditions, requiring no heating or additional reactants or catalysts. This present study aimed to investigate the chemical reactivity of the triad reaction system of l-tryptophan/aectone/DMSO. We demonstrated that, in DMSO, l-tryptophan initially catalyzed the self-aldol condensation of acetone, resulting in the formation of mesityl oxide (MO). Furthermore, we showed that the three-component system evolved into a diverse chemical space, producing various indole derivatives with aldehyde or ketone functional groups that exhibited self-assembling and nanoparticle-forming capabilities. We highlight the potential applications in nanomaterial synthesis.
Collapse
Affiliation(s)
- Chun-Yi Huang
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University 112304 Taipei Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University 112304 Taipei Taiwan
| | - Teh-Min Hu
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University 112304 Taipei Taiwan
| |
Collapse
|
13
|
Zhang Q, Chen M, Emilia Coldea T, Yang H, Zhao H. Structure, chemical stability and antioxidant activity of melanoidins extracted from dark beer by acetone precipitation and macroporous resin adsorption. Food Res Int 2023; 164:112045. [PMID: 36737887 DOI: 10.1016/j.foodres.2022.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023]
Abstract
Melanoidins contribute to the sensory and functional properties of dark beers. The structure, stability, and antioxidant activity of acetone precipitation extracted melanoidins (APE-M) and macroporous resin adsorption extracted melanoidins (MAE-M) from dark beer were investigated. The structural properties of melanoidins were characterized using Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), scanning electron microscopy (SEM), and the solution storage stability, thermal behavior and antioxidant activity of melanoidins in dark beers were evaluated. MAE-M revealed more sophisticated structures than APE-M, including more concrete characteristics of Maillard reaction (MR) products in FTIR (1550-1500 cm-1), more ordered secondary structure in CD spectra, and thinner slices as well as more microspheres in SEM. The solution storage stability assay showed that certain factors, including 55 °C, 5 % v/v ethanol, UV light, and H2O2 solution, accelerated the degradation of melanoidins. The moderate extraction process of MAE-M performed a minor enthalpy change (-92.28 Jg-1) in the DSC-TG test than that of APE-M (-319.41 Jg-1). Furthermore, the ABTS and DPPH radical scavenging activities and the FRAP assay demonstrated that the antioxidant activity of MAE-M was almost twice that of APE-M. In general, MAE was more effective in extracting beer melanoidins while maintaining its accurate structure and profitable antioxidant activity than APE.
Collapse
Affiliation(s)
- Qiuhui Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
14
|
Zhang A, Han Y, Zhou Z. Characterization of citric acid crosslinked chitosan/gelatin composite film with enterocin CHQS and red cabbage pigment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Characterization of whey protein isolate-gum Arabic Maillard conjugate and evaluation of the effects of conjugate-stabilized emulsion on microbiota of human fecal cultures. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Thermally-induced crosslinking altering the properties of chitosan films: Structure, physicochemical characteristics and antioxidant activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Alvarenga VO, Brito LM, Lacerda ICA. Application of mathematical models to validate emerging processing technologies in food. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Chitosan-based Maillard self-reaction products: formation, characterization, antioxidant and antimicrobial potential. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Sun K, Dai Z, Hong W, Zhao J, Zhao H, Luo J, Xie G. Effects of Maillard Reaction on Volatile Compounds and Antioxidant Capacity of Cat Food Attractant. Molecules 2022; 27:7239. [PMID: 36364065 PMCID: PMC9658501 DOI: 10.3390/molecules27217239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 12/21/2024] Open
Abstract
In this study, self-made cat food attractant was prepared by Maillard reaction using hydrolysate of grass carp waste as raw material and glucose and cysteine hydrochloride as substrate. Its volatile compounds, antioxidant capacity, and pet palatability were investigated. The volatile compounds of attractants were analyzed using gas chromatography-mass spectrometry (GC-MS) which showed that alcohols and aldehydes were the most volatile in self-made attractants, accounting for 34.29% and 33.52%, respectively. Furthermore, Maillard reaction could significantly increase the antioxidant activity of self-made attractant, including scavenging activity on OH and DPPH free radicals as well as the chelating ability of Fe2+. The acceptance and palatability of two kinds of cat food were studied by adding 3% self-made or commercial attractants. The results of this study also found that both attractants could remarkably improve the intake rate of cat food. However, the self-made group was significantly less than the commercial group in first smell, first bite, and feeding rate, which might be because of the absence of umami ingredients and spices in self-made attractants.
Collapse
Affiliation(s)
- Kekui Sun
- College of Tourism, Huangshan University, Huangshan 245041, China
| | - Zhaoqi Dai
- Department of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Wenlong Hong
- Department of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Jianying Zhao
- Department of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Hang Zhao
- College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Ji Luo
- College of Life Science, Anhui Normal University, Wuhu 241000, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guangjie Xie
- Zhenjiang Zhinong Food Limited Company, Zhenjiang 212000, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Zhang W, Shen J, Gao P, Jiang Q, Xia W. Sustainable chitosan films containing a betaine-based deep eutectic solvent and lignin: Physicochemical, antioxidant, and antimicrobial properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
An L, Hu X, Perkins P, Ren T. A Sustainable and Antimicrobial Food Packaging Film for Potential Application in Fresh Produce Packaging. Front Nutr 2022; 9:924304. [PMID: 35873444 PMCID: PMC9301339 DOI: 10.3389/fnut.2022.924304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
N-halamines are a group of compounds containing one or more nitrogen-halogen covalent bond(s). This high-energy halide bond provides a strong oxidative state so that it is able to inactivate microorganisms effectively. In this study, a sustainable film was developed based on polylactic acid (PLA) with incorporated N-halamine compound 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (MC), as a promising antimicrobial food packaging material. Results showed that the incorporation of MC prevented the crystallization of PLA and improved the physical properties of the films. In addition, both the moisture barrier and the oxygen permeability were improved with the presence of MC. Importantly, the antimicrobial film was able to inactivate inoculated microorganisms by a factor of seven log cycles in as little as 5 min of contact. Films that contained higher levels of MC further enhanced the antimicrobial efficacy. Fresh strawberries packed with the fabricated films maintained the quality for up to 5 days. Due to the ease of fabrication and the effective biocidal property, these films have a wide range of potential applications in the field of food packaging to extend the shelf life of fresh produce.
Collapse
Affiliation(s)
- Ling An
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | | | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- *Correspondence: Tian Ren
| |
Collapse
|
22
|
Shen C, Deng Z, Rao J, Yang Z, Li Y, Wu D, Chen K. Characterization of glycosylated gelatin/pullulan nanofibers fabricated by multi-fluid mixing solution blow spinning. Int J Biol Macromol 2022; 214:512-521. [PMID: 35718154 DOI: 10.1016/j.ijbiomac.2022.06.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 01/22/2023]
Abstract
In this work, multi-fluid mixing solution blow spinning was applied to develop gelatin/pullulan composite nanofibers, and then the nanofibers were glycated to enhance the physical properties. The results show that the grafting degree of the nanofibers increased significantly from 17.5 % to 36.0 % as the glycation time increased, and the morphology results indicated that 72 h of glycation did not destroy the structure of the nanofibers. FTIR results show that the glycation consumed the the-NH2 groups, cleaved sugar units of polysaccharide, and affected the secondary structure of the protein. The glycation enhanced the thermal stability and improved the rigidity of the nanofibers. Besides, after 120 h of glycation, the water contact angle of nanofibers increased from 0° to 79.1°, and the water vapor transmission rates decreased from 12.49 to 8.97 g mm/m2 h kPa, indicating the enhanced hydrophobicity and barrier properties. In addition, the glycation improved the water stability of the nanofibers, which increased the applicability of the gelatin/pullulan nanofibers in food packaging. The present work provides a green and efficient method for improving the physical properties of gelatin/pullulan nanofibers.
Collapse
Affiliation(s)
- Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Zian Deng
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Jingshan Rao
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Zhichao Yang
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
23
|
Ye Y, Ye S, Wanyan Z, Ping H, Xu Z, He S, Cao X, Chen X, Hu W, Wei Z. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem 2022; 378:132119. [PMID: 35033715 DOI: 10.1016/j.foodchem.2022.132119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
This work investigated the effect of oxidized beef tallow on the volatile compositions and sensory properties of soybean meal-based Maillard reaction products (MRPs). Various tallow oxidation methods included thermal treatment (TT), enzymatic hydrolysis (ET) and enzymatic hydrolysis combined with mild thermal (ETT) treatment. Results showed that all these oxidized tallow contained more types of volatile compounds than those of untreated tallow. Moreover, the composition of almost all types of volatile substances was greatly increased with the addition of the oxidized beef tallow into the hydrolyzed soybean meal-based Maillard reaction system. More importantly, the composition of oxygen-containing heterocycles (63.89 μg/mL), sulfur-containing compounds (76.64 μg/mL), and nitrogen-containing heterocycles (19.81 μg/mL) that contribute positively to sensory properties in ETT-MRPs was found to be the highest among all the MRPs. Correlation assessment revealed that ETT was closely related to the most typical volatile products and sensory attributes, indicating this approach can effectively enhance the sensory and flavor of hydrolyzed soybean meal derived MRPs.
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shuangshuang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhangxiang Wanyan
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Hao Ping
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Zixun Xu
- School of Food Science and Biological Engineering, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangyang Chen
- School of Life and Environmental Sciences, Huangshan University, Huangshan 245041, China
| | - Wanwan Hu
- Huangshan Chaogang Food Co., Ltd, Huangshan 245000, China
| | - Zhaojun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
24
|
Facile fluorescent glucose detection based on the Maillard reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Zhao S, Jia R, Yang J, Dai L, Ji N, Xiong L, Sun Q. Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation. Int J Biol Macromol 2022; 205:419-429. [PMID: 35217075 DOI: 10.1016/j.ijbiomac.2022.02.101] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 01/07/2023]
Abstract
The design of intelligent films for pH-responsive actuators fully constructed from natural biopolymers remains challenging. This study used natural biopolymers to develop a new type of smart and multifunctional chitosan/tannic acid/corn starch (CHT/TA/CS) bilayer films, which can be used for pH-responsive actuators and fruit preservation. We studied the microstructural morphology, physicochemical, antioxidant, antimicrobial properties of the films. Compared with the CHT film, the water vapor permeability (WVP) values of the CHT/TA/CS bilayer films were reduced by 3.1 times, and the tensile strength was increased by 4.6 times. The CHT/TA/CS bilayer films also exhibited high 1,1-diphenyl-2-picrylhydrazyl (DPPH) (94.6%) and hydroxyl (OH) (97.5%) radical scavenging activity. The bilayer films had good antimicrobial activity. The CHT/TA/CS bilayer films exhibited different directional deformation behaviors in acid-base solutions and could be used as pH-responsive actuators. By changing the solution's pH, the bilayer films could grab and release heavy objects 21 times heavier than themselves. Furthermore, the CHT/TA/CS bilayer coating prolonged the bananas' storage time from three to six days, and its weight loss was reduced by 14%. The developed CHT/TA/CS bilayer films have potential application in degradable materials, soft robotics fields, and food packaging materials.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
26
|
Effect of starch aldehyde-catechin conjugates on the structural, physical and antioxidant properties of quaternary ammonium chitosan/polyvinyl alcohol films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Zhang W, Jiang Q, Shen J, Gao P, Yu D, Xu Y, Xia W. The role of organic acid structures in changes of physicochemical and antioxidant properties of crosslinked chitosan films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Effects of Grafting Degree on the Physicochemical Properties of Egg White Protein-Sodium Carboxymethylcellulose Conjugates and Their Aerogels. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To improve the mechanical strength and oil-loading performances of egg white protein (EWP) aerogel, the effects of different grafting degrees on the modification of EWP by sodium carboxymethylcellulose (CMC-Na) were investigated. After different dry-heat treatment durations (0, 12, 24, 36, and 48 h), the EWP/CMC-Na conjugates with different grafting degrees (noted as EC0, EC12, EC24, EC36, and EC48, respectively) were obtained. Subsequently, the physicochemical properties of the conjugates, as well as the microstructure, mechanical properties, pore parameters, emulsification properties and oil-carrying properties of the conjugated aerogels, were characterized. The results showed that EC12 (with a grafting degree of 8.35%) aerogel possessed a uniform structure, the largest specific surface area, and the best emulsification performance. This facilitated a more robust aerogel (2.05 MPa) with nearly three times the mechanical strength of EWP aerogel. Moreover, this had a positive influence on the efficient loading and stable retention of oil. EC12 aerogel thus achieved an oil absorption capacity of 5.46 g/g aerogel and an oil holding capacity of 31.95%, and both values were nearly 1.7 times higher than those of EWP aerogel. In general, the EWP-based aerogel with a grafting degree of 8.35% had the best mechanical and oil-loading properties.
Collapse
|
29
|
Liu X, Xue F, Li C, Adhikari B. Physicochemical properties of films produced using nanoemulsions stabilized by carboxymethyl chitosan-peptide conjugates and application in blueberry preservation. Int J Biol Macromol 2022; 202:26-36. [PMID: 35007633 DOI: 10.1016/j.ijbiomac.2021.12.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
Carboxymethyl chitosan (CMCh)-peptide conjugates were produced by grafting CMCh with peptides from hemp seed, maize and casein. The nanoemulsions stabilized by these conjugates had smaller droplet size and better emulsifying properties. Nanoemulsions stabilized by conjugates were used to develop active films containing Camellia essential oil and the effect of conjugation on physicochemical properties of resulting films was evaluated. Water vapor and oxygen barrier properties, tensile strength, flexibility, and temperature of endothermic peak increased 6.6-19.8% and 6.9-27.2%, 40.1-96.6%, 61.4-83.3% and 7.8-18.5%, respectively when the CMCh-peptide conjugates were used to emulsify the essential oil. The conjugation helped to form compact structure. All of the films containing essential oil emulsions stabilized by conjugates showed the ability to extend the shelf-life of blueberry by maintaining the firmness, reducing the weight loss and slowing down the formation of soluble solids.
Collapse
Affiliation(s)
- Xinye Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
30
|
Wang P, Zhang C, Zou Y, Li Y, Zhang H. Immobilization of lysozyme on layer-by-layer self-assembled electrospun nanofibers treated by post-covalent crosslinking. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Li F, Zhe T, Ma K, Li R, Li M, Liu Y, Cao Y, Wang L. A Naturally Derived Nanocomposite Film with Photodynamic Antibacterial Activity: New Prospect for Sustainable Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52998-53008. [PMID: 34723456 DOI: 10.1021/acsami.1c12243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food packaging with efficient antibacterial ability is highly desirable and challenging in facing the crisis of microbial contamination. However, most present packaging is based on metal-based antibacterial agents and requires a time-consuming antibacterial process. Here, the unique packaging (CC/BB films) featuring aggregation-induced emission behavior and photodynamic inactivation activity is prepared by dispersing self-assembled berberine-baicalin nanoparticles (BB NPs) into a mixed matrix of sodium carboxymethylcellulose-carrageenan (CC). The superiority of this design is that this packaging film can utilize sunlight to generate reactive oxygen species, thus eradicating more than 99% of E. coli and S. aureus within 60 min. Also, this film can release BB NPs to inactivate bacteria under all weather conditions. Surprisingly, the CC/BB nanocomposite film presented excellent mechanical performances (29.80 MPa and 38.65%), hydrophobicity (117.8°), and thermostability. The nanocomposite film is validated to be biocompatible and effective in protecting chicken samples, so this work will provide novel insights to explore safe and efficient antibacterial food packaging.
Collapse
Affiliation(s)
- Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaixuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruixia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
32
|
Cao J, Zhang H, Wang L, Zhang H, Chi Y, Xia N, Ma Y, Li H, Bai S, Zhang X. Effect of carvacrol on properties and release behavior of gelatin‐egg white protein/polyethylene bilayer film. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jiahui Cao
- College of Food Science Northeast Agricultural University Harbin China
| | - Hong Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Lechuan Wang
- College of Food Science Northeast Agricultural University Harbin China
| | - Huajiang Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Yujie Chi
- College of Food Science Northeast Agricultural University Harbin China
| | - Ning Xia
- College of Food Science Northeast Agricultural University Harbin China
| | - Yanqiu Ma
- College of Food Science Northeast Agricultural University Harbin China
| | - Hanyu Li
- College of Food Science Northeast Agricultural University Harbin China
| | - Songyuan Bai
- College of Food Science Northeast Agricultural University Harbin China
| | - Xinxin Zhang
- College of Food Science Northeast Agricultural University Harbin China
| |
Collapse
|
33
|
|
34
|
Li Y, Yang Y, Huang Z, Luo Z, Qian C, Li Y, Duan Y. Preparation of low molecular chitosan by microwave-induced plasma desorption/ionization technology. Int J Biol Macromol 2021; 187:441-450. [PMID: 34324902 DOI: 10.1016/j.ijbiomac.2021.07.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
Compared with high molecular weight chitosan (HMWC), low molecular weight chitosan (LMWC) has better solubility and biological activity. However, there is no quick and environmentally friendly to prepare low molecular chitosan. In this study, microwave induced plasma desorption/ionization (MIPDI) was used for the first time to prepare LMWC through the degradation processes of HMWC. The results showed that MIPDI has the most abundant ∙OH content at the gas-liquid interface, and the active particles represented by ∙OH can degrade chitosan with a molecular weight of 540 KDa into soluble chitosan (≤ 10 KDa), and the yield of soluble chitosan can reach 61% in 60 min. Moreover, a series of characterization results showed that the chain structure and crystal structure gradually degraded as the treatment time increased while the chemical structure of chitosan did not change significantly. Antibacterial experiments also indicated that the antimicrobial property of LMWC obtained by MIPDI degradation was improved. In short, this method has proven to be a new, fast and green processing method for the preparation of low molecular chitosan.
Collapse
Affiliation(s)
- Yuting Li
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yuhan Yang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cheng Qian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yinjun Li
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
35
|
Affes S, Maalej H, Li S, Abdelhedi R, Nasri R, Nasri M. Effect of glucose substitution by low-molecular weight chitosan-derivatives on functional, structural and antioxidant properties of maillard reaction-crosslinked chitosan-based films. Food Chem 2021; 366:130530. [PMID: 34303204 DOI: 10.1016/j.foodchem.2021.130530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 01/18/2023]
Abstract
In this study, the effects of different temperatures, incubation times and types of reducing sugars, including glucose and different low molecular weight (Mw) chito-oligosaccharides (COS) with varying acetylation degree (AD), on the extent of Maillard reaction (MR) on chitosan-based films were studied. Interestingly, an improvement of structural and functional properties of all MR-crosslinked films was noted, which is more pronounced by heating at higher temperature and exposure time. These findings were proved through Fourier-transform infrared and X-ray diffraction analyses. In addition, color change and Ultraviolet spectra demonstrate that glucose addition provides the high extent of MR, followed by COS1 (Mw < 4.4 kDa; AD, 18.20%) and COS2 (Mw < 4.4 kDa; AD, 10.63%). These results were confirmed by enhanced water resistance and thermal properties. Moreover, MR-chitosan/COS films showed the highest mechanical properties, whereas, glucose-loaded films were brittle, as demonstrated by scanning electron microscopy micrographs. Furthermore, MR-chitosan/COS1 films exhibited the better antioxidant behavior followed by chitosan/glucose and chitosan/COS2 films, mainly at higher heating-conditions. Thereby, MR-crosslinked chitosan/COS based films were attractive to be applied as functional and active coating-materials in various fields.
Collapse
Affiliation(s)
- Sawsan Affes
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Hana Maalej
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; Department of Life Sciences, Faculty of Science of Gabes, Omar Ibn Khattab Street, Gabes 6029, Tunisia.
| | - Suming Li
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, ENSCM, CNRS, 34095 Montpellier, France
| | - Rania Abdelhedi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, Po Box 1177, 3018 Sfax, Tunisia
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, Rue Taher Haddad, Monastir 5000, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| |
Collapse
|
36
|
Affes S, Aranaz I, Acosta N, Heras Á, Nasri M, Maalej H. Chitosan derivatives-based films as pH-sensitive drug delivery systems with enhanced antioxidant and antibacterial properties. Int J Biol Macromol 2021; 182:730-742. [PMID: 33836191 DOI: 10.1016/j.ijbiomac.2021.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to develop and characterize chitosan (Ch)-based films incorporated with varying molecular weight (Mw) and acetylation degree (AD) chitosan-depolymerization-products (CDP), to be applied as drug delivery materials. As compared to Ch-film, optical and antioxidant potentials of Ch/CDP-based films were improved, particularly using low Mw and AD-CDP. Whereas, films water resistance, mechanical and antibacterial properties increased as CDP-Mw increased and AD decreased. For the thermal and swelling behaviors, better values were obtained using higher Mw and AD-CDP. Further, to assess their in vitro ciprofloxacin (CFX)-release behavior, loaded-CFX Ch/CDP-based films, crosslinked using glutaraldehyde, were prepared. Expect of elongation at break, crosslinked CFX-loaded films showed increased optical, water resistance, tensile strength and thermal properties, as compared to unloaded films. The CFX-release profiles indicated that a slower and sustained release was observed, particularly when using lower Mw and AD-CDP, and mainly for the crosslinked films during 48 h. These films can release CFX for up to 54% in 6 and 24 h, at pH 1.2 and 7.4, respectively. Through this study, novel biodegradable, swellable and pH-sensitive crosslinked Ch/CDP-based films may be considered as suitable and promising drug delivery systems.
Collapse
Affiliation(s)
- Sawsan Affes
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Inmaculada Aranaz
- Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Pluridisciplinar Institute, Complutense University of Madrid, 28040 Madrid, Spain
| | - Niuris Acosta
- Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Pluridisciplinar Institute, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ángeles Heras
- Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Pluridisciplinar Institute, Complutense University of Madrid, 28040 Madrid, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Hana Maalej
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; Department of Life Sciences, Faculty of Science of Gabes, University of Gabes, Omar Ibn Khattab Street, Gabes 6029, Tunisia.
| |
Collapse
|
37
|
Development of Chitosan/Peptide Films: Physical, Antibacterial and Antioxidant Properties. COATINGS 2020. [DOI: 10.3390/coatings10121193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chitosan/peptide films were prepared by incorporating peptides (0.4%, w/v) from soy, corn and caseins into chitosan films. The presence of peptides significantly affected the physical, antibacterial and antioxidative properties of chitosan films. Among these films, those containing corn peptide showed the best water vapor barrier properties, and the tensile strength and elongation at break increased to 24.80 Mpa and 23.94%, respectively. Characterization of surface hydrophobicity and thermal stability suggested the strongest intermolecular interactions between corn peptides and chitosan. Moreover, films containing casein peptides showed the highest antibacterial activity and radical scavenging activity. The DPPH scavenging rate of films containing casein peptides reached 46.11%, and ABTS scavenging rate reached 66.79%. These results indicate the chitosan/peptide films may be promising food packaging materials.
Collapse
|