1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Muhammad U, Cao X, Zhang T, Ji W, Lv R, Chen J, Wei Y. Fabrication of highly tough, self-healing sodium alginate/polyacrylamide and copper based nanocomposite hydrogel and its application as strain and pressure sensor for human health monitoring and signature recognition. Int J Biol Macromol 2025; 311:143734. [PMID: 40318721 DOI: 10.1016/j.ijbiomac.2025.143734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Conductive hydrogel-based strain and pressure sensors have been extensively employed in various fields such as soft robotics and human-machine interaction. Nonetheless, it still remains challenging to synthesize a conductive hydrogel with exquisite mechanical properties, electrical conductivity and sensitivity. Herein, a novel double network nanocomposite conductive hydrogel was fabricated by using sodium alginate (SA), polyacrylamide (PAm) and copper metal nanoparticles (CuNPs) and further utilized to construct highly sensitive strain and pressure sensors. The optimized SA:PAm/CuNPs-18 hydrogel exhibited a tensile strength of 0.42 MPa, an elongation at break of 1448 %, a toughness of 3.90 MJ m-3 and an electrical conductivity of 2.4 S m-1. Furthermore, the SA:PAm/CuNPs-18 hydrogel-based strain sensor was successfully utilized for multi-scale sensing and monitoring of the movements of elbow joint, knee joint, wrist joints, neck muscles, facial expressions and pulse of humans. In addition, the SA:PAm/CuNPs-18 hydrogel-based pressure sensor also showed great potential to detect and differentiate handwritten letters of English even at variable applied pressures and speeds. All these results indicate that the strain and pressure sensors can be integrated in wearable electronic devices, which are useful in medical observation and accurate signature recognition of humans.
Collapse
Affiliation(s)
- Usman Muhammad
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | - Xuan Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | - Taoyi Zhang
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, PR China
| | - Wenxi Ji
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, PR China
| | - Rulong Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | - Jing Chen
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
3
|
Cheng L, Lu Y, Li P, Sun B, Wu L. Metal-Organic Framework (MOF)-Embedded Magnetic Polysaccharide Hydrogel Beads as Efficient Adsorbents for Malachite Green Removal. Molecules 2025; 30:1560. [PMID: 40286154 PMCID: PMC11990423 DOI: 10.3390/molecules30071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Sodium alginate is a polysaccharide compound extracted from natural plants that has been successfully prepared as a hydrogel for adsorbing and removing pollutants. However, the selectivity of alginate-based hydrogels to malachite green (MG) dyes and the stability of alginate-based hydrogels in air cannot meet requirements. Herein, metal-organic frameworks (MOFs) are embedded into a magnetic hydrogel to create magnetic MOF hydrogel (MMOF hydrogel) microspheres with high adsorption capacity. The morphology and physical properties of the MMOF hydrogel microspheres were characterized by scanning electron microscopy and optical microscopy. Under optimized adsorption conditions, the adsorption rate of MG reached 96.5%. The maximum adsorption capacity of the MMOF hydrogel for MG was determined to be 315 mg·g-1. This highly efficient magnetic adsorbent for dye removal has considerable potential for rapidly removing toxic contaminants from aquatic food matrices for high-throughput sampling pretreatment, which has the potential for rapid, green, large-scale environmental remediation in the future.
Collapse
Affiliation(s)
- Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.C.); (Y.L.); (B.S.)
| | - Yunzhu Lu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.C.); (Y.L.); (B.S.)
| | - Peiyi Li
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.C.); (Y.L.); (B.S.)
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China;
| |
Collapse
|
4
|
Fu Y, Okuro K, Ding J, Aida T. Clay Nanosheet-Based Nanocomposite Supramolecular Hydrogel Enabling Rapid, Reversible Phase Transition Only with Visible Light. Angew Chem Int Ed Engl 2025; 64:e202416541. [PMID: 39344351 DOI: 10.1002/anie.202416541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
High mechanical properties and rapid sol/gel phase transition are mutually exclusive in the hydrogels reported to date, most likely because the 3D crosslinked networks of mechanically robust hydrogels comprise bundled thick fibers that are not rapidly dissociable or formable. Herein, we report a visible light-responsive hydrogel that showed a rapid, reversible sol/gel phase transition despite its relatively high mechanical properties (storage modulus ~103 Pa). To construct its 3D crosslinked network, we used a design strategy analogous to that employed for our highly water-rich yet mechanically robust nanocomposite supramolecular hydrogel ("aqua material"). In this case, multiple poly(ethylene glycol) chains carrying ortho-tetramethoxyazobenzene termini (AzoPEG) were noncovalently crosslinked by clay nanosheets (CNSs) with surface-immobilized β-cyclodextrin units using their seven guanidinium ion (Gu+) pendants (GuCD) via a multivalent salt-bridge. When exposed to visible light at 625 and 450 nm, the azobenzene termini isomerized from trans-to-cis and cis-to-trans, respectively, and were detached from and attached to the surface-immobilized GuCD units. The advantage of this CNS-based nanocomposite supramolecular system is its simple 3D network structure, which forms and breaks rapidly without slow chain entangling and disentangling processes.
Collapse
Affiliation(s)
- Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Kou Okuro
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2025; 26:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
6
|
Zhang Z, Sun L, Chen F, Liu X, Huo X, Pan X, Feng C. Host-guest strategy improves rheological properties, conformational stability and oil displacement efficiency of xanthan gum. Carbohydr Polym 2024; 345:122598. [PMID: 39227088 DOI: 10.1016/j.carbpol.2024.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
The low cost and environmental advantages of Xanthan gum make its production and application scale exceed that of other polysaccharides. However, the temperature resistance of Xanthan gum limits its application. In this study, polysaccharide supramolecular Xanthan gum network (XG-β-CD/AD) based on β-cyclodextrin and adamantane was prepared for enhanced oil recovery. The structure of Xanthan gum was characterized by Fourier infrared spectroscopy, nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The rheological properties of the modified polysaccharide network in aqueous solution were systematically studied. The results showed that physical cross-linking of host-guest interacion enhanced the thickening ability of the polymer. Shear rheology, extensional rheology and dynamic modulus test proved that XG-β-CD/AD had excellent rheological properties. The micromorphology, dynamic light scattering and circular dichroism clarified the molecular conformation, the host-guest interaction can improve conformational transition temperature (Tm) and inorganic salt tolerance of Xanthan gum. Under harsh environment (90 °C, 30000 mg/L brine), the oil recovery of XG-β-CD/AD is 6 %-11 % higher than that of XG at the same conditions, showing a better ability to improve the recovery rate. This study provides a research idea for the selection, development and application of biomacromolecular materials.
Collapse
Affiliation(s)
- Zhirong Zhang
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Linghui Sun
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China.
| | - Feiyu Chen
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Xiangui Liu
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Xu Huo
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Xiuxiu Pan
- Chinese Academy of Sciences University, Beijing 101408, China; State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| | - Chun Feng
- State Key Laboratory of Enhanced Oil Recovery, China Petroleum Exploration and Development Research Institute, Beijing 100083, China
| |
Collapse
|
7
|
Zhong L, Peng K, Sun Y, Zhou J, Xiao N, Wang H, Zhang X, Cheng Z. Chitosan quaternary ammonium salt-oxidized sodium alginate-glycerol-calcium ion biobased self-healing hydrogels with excellent spontaneous repair performance. RSC Adv 2024; 14:31954-31965. [PMID: 39380645 PMCID: PMC11460592 DOI: 10.1039/d4ra05382f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Self-healing hydrogels have attracted wide attention because of their potential applications in various fields. However, the complex processes, environmental requirements, and insufficient functionality limit their practical application. Herein, we synthesized a chitosan quaternary ammonium salt-oxidized sodium alginate-glycerol-calcium ion (HACC-OSA-Gly-Ca2+) biobased hydrogel with a multi-network structure that exhibits excellent self-healing abilities. This was achieved by utilizing reversible dynamic imine bonding, electrostatic interactions, Ca2+ ions as crosslinking points, and hydrogen bonding. The oxidation of sodium alginate (SA) with sodium periodate was carried out to obtain oxidized sodium alginate (OSA) with varying oxidation degrees. The resulting OSAs were then introduced into a glycerol-water solvent system containing chitosan quaternary ammonium salt (HACC) and calcium chloride, and this reaction successfully prepared the biobased eco-friendly self-healing hydrogel. The impacts of the oxidation degree (OD) of OSA on the microscopic morphology, mechanical properties, viscoelastic properties, swelling properties, and self-healing properties of the corresponding synthetic hydrogels were investigated. The outcomes indicated that the optimal HACC-OSA-Gly-Ca2+ hydrogel possessed good mechanical properties, with a tensile stress of 0.0132 MPa and elongation at break of 551.38%. Furthermore, the multiple bond interactions led to a high self-healing ratio (100%), with an elongation at break of about 614.29%, and excellent adhesion ability (average peel strength of 6.38 kN m-1) on various substrates. Additionally, the composite hydrogels exhibited excellent water retention, thermal stability, and resilience, making them promising for various potential applications. Moreover, the properties of the composite hydrogels could be facilely and finely tuned by varying the oxidation degree of OSA and ratio of each component. Thus, the presented strategy could enrich the construction as well as application of biopolymer-based self-healing hydrogels.
Collapse
Affiliation(s)
- Le Zhong
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- College of Life Science and Technology, Huazhong Agricultural University Wuhan CN 430070 China
| | - Keli Peng
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Yunqian Sun
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Jinxian Zhou
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Naiyu Xiao
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Honglei Wang
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Xueqin Zhang
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
| | - Zheng Cheng
- College of Light Industry and Food Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering Guangzhou CN 510225 China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou CN 510640 China
| |
Collapse
|
8
|
Di Martino M, Sessa L, Panunzi B, Diana R, Piotto S, Concilio S. Cationic Azobenzenes as Light-Responsive Crosslinkers for Alginate-Based Supramolecular Hydrogels. Polymers (Basel) 2024; 16:1233. [PMID: 38732700 PMCID: PMC11085219 DOI: 10.3390/polym16091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Azobenzene photoswitches are fundamental components in contemporary approaches aimed at light-driven control of intelligent materials. Significant endeavors are directed towards enhancing the light-triggered reactivity of azobenzenes for such applications and obtaining water-soluble molecules able to act as crosslinkers in a hydrogel. Here, we report the rational design and the synthesis of azobenzene/alginate photoresponsive hydrogels endowed with fast reversible sol-gel transition. We started with the synthesis of three cationic azobenzenes (AZOs A, B, and C) and then incorporated them in sodium alginate (SA) to obtain photoresponsive supramolecular hydrogels (SMHGs). The photoresponsive properties of the azobenzenes were investigated by UV-Vis and 1H NMR spectroscopy. Upon irradiation with 365 nm UV light, the azobenzenes demonstrated efficient trans-to-cis isomerization, with complete isomerization occurring within seconds. The return to the trans form took several hours, with AZO C exhibiting the fastest return, possibly due to higher trans isomer stability. In the photoresponsive SMHGs, the minimum gelation concentration (MGC) of azobenzenes was determined for different compositions, indicating that small amounts of azobenzenes could induce gel formation, particularly in 5 wt% SA. Upon exposure to 365 nm UV light, the SMHGs exhibited reversible gel-sol transitions, underscoring their photoresponsive nature. This research offers valuable insights into the synthesis and photoresponsive properties of cationic, water-soluble azobenzenes, as well as their potential application in the development of photoresponsive hydrogels.
Collapse
Affiliation(s)
- Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.D.M.); (S.P.)
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.D.M.); (S.P.)
- BIONAM Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy; (B.P.); (R.D.)
| | - Rosita Diana
- Department of Agriculture, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy; (B.P.); (R.D.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.D.M.); (S.P.)
- BIONAM Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.D.M.); (S.P.)
- BIONAM Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
9
|
Yamamoto T, Taguchi R, Yan Z, Ejima R, Xu L, Nakahata M, Kamon Y, Hashidzume A. Interaction of Cyclodextrins with Amphiphilic Alternating Cooligomers Possessing the Dense Triazole Backbone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7178-7191. [PMID: 38506447 DOI: 10.1021/acs.langmuir.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The interaction of cyclodextrins (CDs) with structure-controlled polymers is expected to provide significant insights into macromolecular recognition. However, the interaction of CDs with structure-controlled polymers has been an underexamined issue of investigation. Herein, alternating amphiphilic cooligomers (oligoCnAH, where n denotes the carbon number of alkyl groups; n = 4, 8, and 12) were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition polymerization of heterodimers of 4-azido-5-hexynoic acid (AH) derivatives carrying N-alkylamide and t-butyl (tBu) ester side chains, followed by hydrolysis of the tBu ester, to study the interaction of CDs with oligoCnAH by 1H NMR, nuclear Overhauser effect spectroscopy, and pulse-field-gradient spin-echo NMR. These NMR studies indicated that αCD interacted with oligoC4AH, αCD and βCD interacted with oligoC8AH, and all CDs interacted with oligoC12AH. Based on the equilibrium models proposed, the binding constants were evaluated for the binary mixtures, which showed interaction. Comparing the interactions of the CDs/oligoC12AH binary mixtures with those of the binary mixtures of CDs and alternating copolymers of sodium maleate and dodecyl vinyl ether (polyC12M), it is concluded that oligoC12AH forms less stable micelles than does polyC12M presumably because of the lower molecular weight, the hydrophilic amide groups in the side chain, and the longer interval between neighboring C12 groups in oligoC12AH.
Collapse
Affiliation(s)
- Tomoaki Yamamoto
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryoichi Taguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Zijun Yan
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ryo Ejima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Linlin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
11
|
Cai R, Shan Y, Du F, Miao Z, Zhu L, Hang L, Xiao L, Wang Z. Injectable hydrogels as promising in situ therapeutic platform for cartilage tissue engineering. Int J Biol Macromol 2024; 261:129537. [PMID: 38278383 DOI: 10.1016/j.ijbiomac.2024.129537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Injectable hydrogels are gaining prominence as a biocompatible, minimally invasive, and adaptable platform for cartilage tissue engineering. Commencing with their synthesis, this review accentuates the tailored matrix formulations and cross-linking techniques essential for fostering three-dimensional cell culture and melding with complex tissue structures. Subsequently, it spotlights the hydrogels' enhanced properties, highlighting their augmented functionalities and broadened scope in cartilage tissue repair applications. Furthermore, future perspectives are advocated, urging continuous innovation and exploration to surmount existing challenges and harness the full clinical potential of hydrogels in regenerative medicine. Such advancements are crucial for validating the long-term efficacy and safety of hydrogels, positioning them as a promising direction in regenerative medicine to address cartilage-related ailments.
Collapse
Affiliation(s)
- Rong Cai
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Fengyi Du
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212013, China
| | - Zhiwei Miao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Like Zhu
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Li Hang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China.
| | - Zhirong Wang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China.
| |
Collapse
|
12
|
Prigyai N, Bunchuay T, Ruengsuk A, Yoshinari N, Manissorn J, Pumirat P, Sapudom J, Kosiyachinda P, Thongnuek P. Photo-Controlled Reversible Uptake and Release of a Modified Sulfamethoxazole Antibiotic Drug from a Pillar[5]arene Cross-Linked Gelatin Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8250-8265. [PMID: 38326106 DOI: 10.1021/acsami.3c14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pillararene cross-linked gelatin hydrogels were designed and synthesized to control the uptake and release of antibiotics using light. A suite of characterization techniques ranging from spectroscopy (FT-IR, 1H and 13C NMR, and MAS NMR), X-ray crystallographic analysis, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) was employed to investigate the physicochemical properties of hydrogels. The azobenzene-modified sulfamethoxazole (Azo-SMX) antibiotic was noncovalently incorporated into the hydrogel via supramolecular host-guest interactions to afford the A-hydrogel. While in its ground state, the Azo-SMX guest has a trans configuration structure and forms a thermodynamically stable inclusion complex with the pillar[5]arene motif in the hydrogel matrix. When the A-hydrogel was exposed to 365 nm UV light, Azo-SMX underwent a photoisomerization reaction. This changed the structure of Azo-SMX from trans to cis, and the material was released into the environment. The Azo-SMX released from the hydrogel was effective against both Gram-positive and Gram-negative bacteria. Importantly, the A-hydrogel exhibited a striking difference in antibacterial activity when applied to bacterial colonies in the presence and absence of UV light, highlighting the switchable antibacterial activity of A-hydrogel aided by light. In addition, all hydrogels containing pillar[5]arenes have demonstrated biocompatibility and effectiveness as scaffolds for biological and medical purposes.
Collapse
Affiliation(s)
- Nicha Prigyai
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Juthathip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattarapon Pumirat
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Pahol Kosiyachinda
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
14
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
15
|
Ren P, Yang L, Wei D, Liang M, Xu L, Zhang T, Hu W, Zhang Z, Zhang Q. Alginate/polyacrylamide host-guest supramolecular hydrogels with enhanced adhesion. Int J Biol Macromol 2023; 242:124885. [PMID: 37196725 DOI: 10.1016/j.ijbiomac.2023.124885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Although injectable hydrogels with minimally invasive delivery have garnered significant interest, their potential applications have been restricted by a singular property. In this study, a supramolecular hydrogel system with improved adhesion was constructed through host-guest interactions between alginate and polyacrylamide. The maximum tensile adhesion strength between the β-cyclodextrin and dopamine-grafted alginate/adamantane-grafted polyacrylamide (Alg-βCD-DA/PAAm-Ad, namely AβCDPA) hydrogels and pigskin reached 19.2 kPa, which was 76 % stronger than the non-catechol-based control hydrogel (β-cyclodextrin-grafted alginate/adamantane-grafted polyacrylamide, Alg-βCD/PAAm-Ad). Moreover, the hydrogels demonstrated excellent self-healing, shear-thinning, and injectable properties. The required pressure to extrude the AβCDPA2 hydrogel from a 16G needle at a rate of 2.0 mL/min was 67.4 N. As the polymer concentration and adamantane substitution degree increased, the hydrogels exhibited higher modulus, stronger network structure, and lower swelling ratio and degradation rate. Encapsulating and culturing cells within these hydrogels demonstrated good cytocompatibility. Therefore, this hydrogel can serve as a viscosity extender or bioadhesive, and as a carrier material to deliver encapsulated therapeutic substances into the body through minimally invasive injection methods.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liuxin Yang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dandan Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Liang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li Xu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Wanjun Hu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Sichuan Provincial Engineering Research Center of Functional Development and Application of High Performance Special Textile Materials, Chengdu Textile College, Chengdu, 611731, China
| | - Zhigang Zhang
- Department of General Surgery, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing 210009, China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
16
|
Sahu KM, Patra S, Swain SK. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int J Biol Macromol 2023; 240:124338. [PMID: 37030461 DOI: 10.1016/j.ijbiomac.2023.124338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Among different form of cyclodextrin (CD), β-CD has been taken a special attraction in pharmaceutical science due to lowest aqueous solubility and adequate cavity size. When β-CD forms inclusion complex with drugs then biopolymers such as polysaccharides in combination plays a vital role as a vehicle for safe release of drugs. It is noticed that, β-CD assisted polysaccharide-based composite achieves better drug release rate through host-guest mechanism. Present review is a critical analysis of this host-guest mechanism for release of drugs from polysaccharide supported β-CD inclusion complex. Various important polysaccharides such as cellulose, alginate, chitosan, dextran, etc. in relevant to drug delivery are logically compared in present review by their association with β-CD. Efficacy of mechanism of drug delivery by different polysaccharides with β-CD is analytically examined in schematic form. Drug release capacity at different pH conditions, mode of drug release, along with characterization techniques adopted by individual polysaccharide-based CD complexes are comparatively established in tabular form. This review may explore better visibility for researchers those are working in the area of controlled release of drugs by vehicle consist of β-CD associated polysaccharide composite through host-guest mechanism.
Collapse
Affiliation(s)
- Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
17
|
Farshidfar N, Iravani S, Varma RS. Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine. Mar Drugs 2023; 21:189. [PMID: 36976238 PMCID: PMC10056402 DOI: 10.3390/md21030189] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Today, with the salient advancements of modern and smart technologies related to tissue engineering and regenerative medicine (TE-RM), the use of sustainable and biodegradable materials with biocompatibility and cost-effective advantages have been investigated more than before. Alginate as a naturally occurring anionic polymer can be obtained from brown seaweed to develop a wide variety of composites for TE, drug delivery, wound healing, and cancer therapy. This sustainable and renewable biomaterial displays several fascinating properties such as high biocompatibility, low toxicity, cost-effectiveness, and mild gelation by inserting divalent cations (e.g., Ca2+). In this context, challenges still exist in relation to the low solubility and high viscosity of high-molecular weight alginate, high density of intra- and inter-molecular hydrogen bonding, polyelectrolyte nature of the aqueous solution, and a lack of suitable organic solvents. Herein, TE-RM applications of alginate-based materials are deliberated, focusing on current trends, important challenges, and future prospects.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
18
|
Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Carbohydr Polym 2023; 313:120760. [PMID: 37182939 DOI: 10.1016/j.carbpol.2023.120760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Cyclodextrin and its derivative (CDs) are natural building blocks for linking with other components to afford functional biomaterials. Hydrogels are polymer network systems that can form hydrophilic three-dimensional network structures through different cross-linking methods and are developing as potential materials in biomedical applications. Natural polysaccharide hydrogels (NPHs) are widely adopted in biomedical field with good biocompatibility, biodegradability, low cytotoxicity, and versatility in emulating natural tissue properties. Compared with conventional NPHs, CD regulated natural polysaccharide hydrogels (CD-NPHs) maintain good biocompatibility, while improving poor mechanical qualities and unpredictable gelation times. Recently, there has been increasing and considerable usage of CD-NPHs while there is still no review comprehensively introducing their construction, classification, and application of these hydrogels from the material point of view regarding biomedical fields. To draw a complete picture of the current and future development of CD-NPHs, we systematically overview the classification of CD-NPHs, and provide a holistic view on the role of CD-NPHs in different biomedical fields, especially in drug delivery, wound dressing, cell encapsulation, and tissue engineering. Moreover, the current challenges and prospects of CD-NPHs are discussed rationally, providing an insight into developing vibrant fields of CD-NPHs-based biomedicine, and facilitating their translation from bench to clinical medicine.
Collapse
|
19
|
Courtine C, Brient PL, Hamouda I, Pataluch N, Lavedan P, Putaux JL, Chatard C, Galès C, Mingotaud AF, Lauth de Viguerie N, Nicol E. Tetrafluorinated versus hydrogenated azobenzene polymers in water: access to visible-light stimulus at the expense of responsiveness. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
20
|
Neisi E, Tehrani AD, Shamlouei HR. Fully bio-based supramolecular gel based on cellulose nanowhisker gallate by cyclodextrin host-guest chemistry. Carbohydr Polym 2023; 299:120222. [PMID: 36876823 DOI: 10.1016/j.carbpol.2022.120222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Nowadays, supramolecular hydrogels have gained special importance and development of versatile approaches for their preparation as well as their new facile characterization strategies has elicited tremendous scientific interest. Herein, we demonstrate that modified cellulose nanowhisker with gallic acid pendant groups (CNW-GA) could effectively bind with CNW grafted with β-Cyclodextrin (CNW-g-β-CD) through HG interaction to form fully biocompatible and low-cost supramolecular hydrogel. Also, we reported an easy and efficient colorimetric characterization method for confirming HG complexation using naked eye. The possibility of this characterization strategy evaluated both experimentally and theoretically using DFT method. Also, phenolphthalein (PP) was used for visual detection of HG complexation. Interestingly, PP undergoes a rearrangement in its structure in presence of CNW-g-β-CD because of HG complexation that turns the purple molecule into a colorless compound in alkaline condition. Addition of CNW-GA to the resulting colorless solution turned the color to purple again which easily confirmed HG formation.
Collapse
Affiliation(s)
- Elham Neisi
- Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan, Iran
| | - Abbas Dadkhah Tehrani
- Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan, Iran.
| | - Hamid Reza Shamlouei
- Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan, Iran
| |
Collapse
|
21
|
A suturable biohydrogel with mechanical matched property based on coating chitosan and polyethylene glycol shell for tissue patching. Int J Biol Macromol 2022; 224:523-532. [DOI: 10.1016/j.ijbiomac.2022.10.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
22
|
Gao F, Bi Z, Wang S, Zhao Z, Dong Y, Li X. An amphiphilic azobenzene derivative as a crosslinker in the construction of smart supramacromolecular hydrogels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Tsai CF, Wen IJ. Assessment of the Thermal Hazard Characteristics of Three Low-Temperature Active Azo Initiators for Polymer Resin in Construction Industries under Adiabatic Conditions. ACS OMEGA 2022; 7:21378-21384. [PMID: 35785297 PMCID: PMC9245147 DOI: 10.1021/acsomega.1c06269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Resins continue to occupy a place in the waterproof building market. Unlike traditional concrete building materials, the polymerization of resins requires initiators to support the required energy to drive the reaction or reduce the polymerization threshold, which shows a high reaction rate and low energy consumption in the polymerization process. Azo compounds (azos) are energetic substances commonly used in polymerization, but they can cause process hazards due to the amount of heat release and accumulation of the resulting heat. To ensure that similar hazards do not occur, the emerging azo initiators 2,2'-azobis(2-methylpropionamide)dihydrochloride (AIBA), 2-cyanopropan-2-yliminourea (CABN), and 2,2'-azodi(2-methylbutyronitrile) (AMBN) are explored. Depending on the process conditions, it is critical to examine how chemical reactions from a laboratory behave at a large scale. Kinetic models can be used to estimate fundamental safety parameters suitable for assessing the reaction hazards and as control measures, such as time to the maximum reaction rate under adiabatic conditions, time to the conversion limit, and runaway determination for process operation. The structure of this study is a combination of adiabatic calorimeter data and a nonlinear adiabatic dynamics model with the goal of helping to fill the void in research on thermal hazard analysis of emerging azo initiators. The adiabatic data is used to analyze the reaction mode characteristics of the azo compounds, and combined with the external environment, the reaction and temperature parameter changes of the azo compounds due to the reaction are discussed in the actual situation.
Collapse
Affiliation(s)
- Chia-Feng Tsai
- Graduate
School of Engineering Science and Technology, National Yunlin University of Science and Technology (YunTech), 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - I-Jyh Wen
- Department
of Civil and Construction Engineering, National
Yunlin University of Science and Technology (YunTech), 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| |
Collapse
|
24
|
Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022; 10:2077-2096. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are widely employed in biomedical applications because of their unique structures. Various biomedical applications can be achieved in a spatiotemporally controlled manner by integrating the host-guest chemistry of CDs with stimuli-responsive functions. In this review, we summarize the recent advances in stimuli-responsive supramolecular assemblies based on the host-guest chemistry of CDs. The stimuli considered in this review include endogenous (pH, redox, and enzymes) and exogenous stimuli (light, temperature, and magnetic field). We mainly discuss the mechanisms of the stimuli-responsive ability and present typical designs of the corresponding supramolecular assemblies for drug delivery and other potential biomedical applications. The limitations and perspectives of CD-based stimuli-responsive supramolecular assemblies are discussed to further promote the translation of laboratory products into clinical applications.
Collapse
Affiliation(s)
- Ying Yuan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yifen Fang
- Guangzhou University of Chinese Medicine, Second Clinical School of Medicine, Guangzhou, 511436, P. R. China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
25
|
Fenyvesi É, Sohajda T. Cyclodextrin-enabled green environmental biotechnologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20085-20097. [PMID: 35064478 DOI: 10.1007/s11356-021-18176-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Most of the organic compounds contaminating the environment can form inclusion complexes with cyclodextrins resulting in enhanced solubility (a benefit in soil remediation) or just the opposite: reduced mobility by sorption (a benefit in wastewater treatment). Combining biotechnologies with cyclodextrin, a renewable and biodegradable material, green environmental technologies of high efficiency were developed. For instance, the cyclodextrin-enabled soil washing/flushing technologies combined with bioremediation have been demonstrated in full-scale field experiments. The efficiency of tertiary wastewater treatment by sorption of non-biodegradable xenobiotics, such as residual pharmaceutics, was proved. The biofilm formation in fouling processes can be prevented or reduced either by applying cyclodextrin-based coatings or by manipulation of quorum sensing (bacterial communication) via capturing signal molecules.
Collapse
Affiliation(s)
- Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd, Budapest, Hungary.
| | - Tamás Sohajda
- CycloLab Cyclodextrin R&D Laboratory Ltd, Budapest, Hungary
| |
Collapse
|
26
|
Leistner AL, Kistner DG, Fengler C, Pianowski ZL. Reversible photodissipation of composite photochromic azobenzene-alginate supramolecular hydrogels. RSC Adv 2022; 12:4771-4776. [PMID: 35425487 PMCID: PMC8981262 DOI: 10.1039/d1ra09218a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/01/2022] [Indexed: 01/01/2023] Open
Abstract
Supramolecular smart materials can quickly elicit macroscopic changes upon external stimulation. Here we report that an azobenzene-containing cyclic dipeptide can form composite supramolecular hydrogels with alginate based on the charge complementarity, at lower loading than the critical gelation concentrations of either component. The gels can reversibly dissipate to fluids with UV light. They can also encapsulate and photorelease fluorescent cargo. Upon treatment of the gels with aqueous calcium salts, the alginate component is permanently cross-linked and the photochromic component is solubilized.
Collapse
Affiliation(s)
- Anna-Lena Leistner
- Institut für Organische Chemie Karlsruher Institut für Technologie Campus Süd, Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - David Georg Kistner
- Institut für Organische Chemie Karlsruher Institut für Technologie Campus Süd, Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Christian Fengler
- Institut für Technische Chemie and Polymerchemie Karlsruher Institut für Technologie Campus Süd, Engesserstraße 18 76128 Karlsruhe Germany
| | - Zbigniew L Pianowski
- Institut für Organische Chemie Karlsruher Institut für Technologie Campus Süd, Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems - FMS Karlsruher Institut für Technologie Campus Nord, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
27
|
|
28
|
Wu K, Wu X, Zhang Y, Chen S, Qiao Z, Wei D, Sun J, Fan H. Semiconvertible Hyaluronic Hydrogel Enabled Red-Light-Responsive Reversible Mechanics, Adhesion, and Self-Healing. Biomacromolecules 2022; 23:1030-1040. [PMID: 35029368 DOI: 10.1021/acs.biomac.1c01395] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoresponsive supramolecular hydrogels based on the host-guest interaction between cyclodextrin (CD) and azobenzene (Azo) are highly favored in "on-demand" biological applications. Nevertheless, most Azo/CD-based hydrogels are UV-responsive, exhibiting poor tissue penetrability and potential cytotoxicity; more importantly, the complete gel-sol transition under irradiation makes intelligent systems unstable. Here, we report a red-light-responsive semiconvertible hydrogel based on tetra-ortho-methoxy-substituted Azo (mAzo)- and CD-functionalized hyaluronic acid (HA). By integrating red-shifted-photoisomerized mAzo with HA, a biocompatible 625 nm-light-responsive polymeric guest with strengthened hydrogen bonding and weakened photoisomerization was synthesized. Upon alternating irradiation, mAzo-HA/CD-HA hydrogels obtained here exhibited reversible mechanical and structural dynamics, while avoiding complete gel-sol transition. This improved semiconvertibility remedies the lack of macroscopic resilience for dynamic system so as to endow supramolecular hydrogels with spatial-temporal mechanics, self-healing, and adhesion. Together with excellent cytocompatibility and manufacturability, these hydrogels show potential advantages in tissue engineering, especially for the regeneration of functional multi-tissue complex.
Collapse
Affiliation(s)
- Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
29
|
Gharakhloo M, Jagleniec D, Romanski J, Karbarz M. A Novel Self-Healing Hydrogel Based on Derivatives of Natural α-Amino Acids with Potential Applications as a Strain Sensor. J Mater Chem B 2022; 10:4463-4472. [DOI: 10.1039/d2tb00534d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully synthesized a novel hydrogel based on derivatives of natural α-amino acids: ornithine and cystine. To make ornithine attachable to the polymer chain, the δ-amino group was modified with...
Collapse
|
30
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|
31
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
32
|
Zhang Z, Lin T, Li S, Chen X, Que X, Sheng L, Hu Y, Peng J, Ma H, Li J, Zhang W, Zhai M. Polyacrylamide/Copper-Alginate Double Network Hydrogel Electrolyte with Excellent Mechanical Properties and Strain-Sensitivity. Macromol Biosci 2021; 22:e2100361. [PMID: 34761522 DOI: 10.1002/mabi.202100361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/06/2021] [Indexed: 12/13/2022]
Abstract
The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper-alginate double network (PAM/Cu-alg DN) hydrogel electrolyte is successfully synthesized by radiation-induced polymerization and cross-linking process of acrylamide with N, N'-methylene-bis-acrylamide and subsequent cupric ion (Cu2+ ) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu-alg DN hydrogel electrolyte. The PAM/Cu-alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm-1 . PAM/Cu-alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu-alg DN hydrogel electrolyte exhibits excellent strain-sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties.
Collapse
Affiliation(s)
- Zeyu Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China
| | - Tingrui Lin
- Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., 518 North Liyuan Avenue, Licheng District Putian, Fujian, 351100, P. R. China
| | - Shuangxiao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibang Chen
- Institute of Chemical Defense, Beijing, 100191, P. R. China
| | - Xueyan Que
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lang Sheng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yang Hu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huiling Ma
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenjuan Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
33
|
Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar Drugs 2021; 19:md19050264. [PMID: 34068547 PMCID: PMC8150954 DOI: 10.3390/md19050264] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Alginates are naturally occurring polysaccharides extracted from brown marine algae and bacteria. Being biocompatible, biodegradable, non-toxic and easy to gel, alginates can be processed into various forms, such as hydrogels, microspheres, fibers and sponges, and have been widely applied in biomedical field. The present review provides an overview of the properties and processing methods of alginates, as well as their applications in wound healing, tissue repair and drug delivery in recent years.
Collapse
|