1
|
Zhou Y, Pei K, Guo Z. Emerging transparent conductive superhydrophobic surfaces. Adv Colloid Interface Sci 2025; 340:103443. [PMID: 39983326 DOI: 10.1016/j.cis.2025.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/27/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Transparent conductive superhydrophobic surfaces (TCSHSs) represent a novel class of multifunctional materials that concurrently exhibit high transparency, excellent electrical conductivity, and robust superhydrophobicity. These three desirable properties are synergistically combined to provide a wide variety of advantages for various optoelectronic applications with water-repelling capabilities, including solar cells, smart windows, touch screens, and automobile windshields, all of which benefit from self-cleaning, anti-icing, anti-fouling, and anti-corrosion properties. This review aims to provide an overview of recent advancements in the field of TCSHSs. It begins by revisiting the fundamental principles governing superhydrophobic behavior and delving into the underlying mechanisms of various wetting phenomena. The review also highlights the intricate balance among transparency, conductivity, and superhydrophobicity, along with the associated physical principles. Furthermore, it introduces emerging TCSHSs in terms of material types, preparation methods, evaluation criteria, and cutting-edge applications. Finally, it summarizes the critical challenges and promising future prospects for TCSHSs, which will facilitate further development in this field.
Collapse
Affiliation(s)
- Yongshen Zhou
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Ke Pei
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Wang M, Meng Y, Wang Q, Fu Q, Yu C, Zhu L, Cai L, Chen C, Xia C, Wang S. Nanocellulose Hybrid Membranes for Green Flexible Electronics: Interface Design and Functional Assemblies. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40372239 DOI: 10.1021/acsami.5c04027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Flexible electronics have garnered significant attention in recent years. The emergence of membrane electronics addresses several limitations of rigid counterparts, such as high Young's modulus, poor biocompatibility, and poor responsiveness. Nevertheless, the development of traditional polymer and semiconductor membranes faces serious limitations. Nanocellulose (NC), known for its multifunctionality, biocompatibility, biodegradability, high mechanical strength, structural flexibility, and reinforcing capabilities, presents an excellent possibility to develop flexible electronics depending on the self-assembly behavior. Meanwhile, the combination of NC and functional fillers enables the fabrication of high-performance membranes with amplification capabilities, making them suitable for application in conductive materials for sensing and energy storage applications. The creation includes preparation strategies and potential applications. Moreover, the interface reaction mechanism and micro/nano scale morphology structure of carbon-based materials, polymers, and metal oxides combined with NC hybrid membranes are summarized from a molecular perspective. We discuss the design strategies and performance trends for improving mechanical properties, thermal conductivity, heat resistance, optical performance, and electrical conductivity of NC hybrid membranes. The recent advancements in nanocellulose for flexible sensors, thermal management, supercapacitors, and solar cells are evaluated along with perspectives on the current challenges and future directions in the development of NC membrane-based multifunctional flexible electronics. It will help improve the development of green flexible electronics, thereby advancing future investigations of this field.
Collapse
Affiliation(s)
- Yuhang Li
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Min Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yuan Meng
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Quanliang Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Qiliang Fu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chenkai Yu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Longxiao Zhu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Liping Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Liu B, Li M, Li P, Zeng J, Wu C, Li J, Chen K. Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices. Int J Biol Macromol 2025; 293:139185. [PMID: 39732263 DOI: 10.1016/j.ijbiomac.2024.139185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared. This process includes non-covalent interface embedding between TCNFs and AgNWs as well as a strong capillary force between the hydrophilic TCNF substrate and AgNWs during water mist capillary force cold welding. By adding ethanolamine and employing a rapid water mist wetting-drying process (within 10 s), the performance of TCNF/AgNW FTCEs significantly improves with reduced sheet resistance (8.3 Ω sq.-1), high light transmission (84.9 %), and low surface roughness (9.9 nm). Additionally, the composite electrode exhibits excellent stability and durability under various conditions such as bending, adhesion, and tensile stress. The prepared flexible electroluminescent device achieves high luminous intensity (43.6 cd m-2) and excellent operational stability, thanks to the outstanding performance of the composite electrode. This study presents a simple strategy for fabricating FTCEs using nanocellulose combined with AgNWs offering a potential material option for key components in green flexible optoelectronic devices.
Collapse
Affiliation(s)
- Bingyang Liu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China
| | - Mengheng Li
- Guangdong Songheng Technology Co., Ltd., Rhine Science and Technology Park, Foshan 528300, PR China.
| | - Pengfei Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510640, PR China.
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.
| | - Chen Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China
| |
Collapse
|
4
|
Chen L, Khan A, Dai S, Bermak A, Li W. Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302858. [PMID: 37890452 PMCID: PMC10724424 DOI: 10.1002/advs.202302858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Soft transparent electrodes (TEs) have received tremendous interest from academia and industry due to the rapid development of lightweight, transparent soft electronics. Metallic micro-nano networks (MMNNs) are a class of promising soft TEs that exhibit excellent optical and electrical properties, including low sheet resistance and high optical transmittance, as well as superior mechanical properties such as softness, robustness, and desirable stability. They are genuinely interesting alternatives to conventional conductive metal oxides, which are expensive to fabricate and have limited flexibility on soft surfaces. This review summarizes state-of-the-art research developments in MMNN-based soft TEs in terms of performance specifications, fabrication methods, and application areas. The review describes the implementation of MMNN-based soft TEs in optoelectronics, bioelectronics, tactile sensors, energy storage devices, and other applications. Finally, it presents a perspective on the technical difficulties and potential future possibilities for MMNN-based TE development.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Department of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Arshad Khan
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Shuqin Dai
- Department School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Amine Bermak
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Wen‐Di Li
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
| |
Collapse
|
5
|
Zhao Y, Deng C, Yan B, Yang Q, Gu Y, Guo R, Lan J, Chen S. One-Step Method for Fabricating Janus Aramid Nanofiber/MXene Nanocomposite Films with Improved Joule Heating and Thermal Camouflage Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55150-55162. [PMID: 37967290 DOI: 10.1021/acsami.3c13722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The integration of ultraflexible and mechanically robust films with electric heaters and camouflage technology provides a promising platform for the development of wearable devices, especially for aerospace and military applications. Herein, we present a facile and efficient one-step vacuum-assisted filtration method for fabricating Janus films based on aramid nanofibers (ANF) and Ti3C2Tx (MXene). The ANF/MXene nanocomposite film exhibits remarkable properties, including high conductivity (23809.5 S/m), excellent mechanical strength (102.54 MPa), and outstanding thermal stability (575 °C). Most notably, the Janus ANF/MXene composite film demonstrates superior Joule heating performance with a low driving voltage (1-5 V), high heating temperature (30-276 °C), and rapid response time (within 5 s). Additionally, the film exhibits effective thermal camouflage (72 °C for objects with temperatures above 163 °C) and excellent electromagnetic interference shielding properties (SSE/t = 32475.6 dB cm2/g). These results demonstrate that Janus ANF/MXene films possess a unique combination of thermal camouflage, Joule heating, and electromagnetic interference shielding properties, making them highly promising for wearable devices, high-performance electrical heating, infrared stealth, and security protection applications.
Collapse
Affiliation(s)
- Yinghui Zhao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Cong Deng
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yingchun Gu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Ronghui Guo
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jianwu Lan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Gholami M, Tajabadi F, Taghavinia N, Moshfegh A. Chemically-stable flexible transparent electrode: gold-electrodeposited on embedded silver nanowires. Sci Rep 2023; 13:17511. [PMID: 37845253 PMCID: PMC10579339 DOI: 10.1038/s41598-023-44674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
Silver nanowires (AgNWs) with a low diameter, high aspect ratio, stable suspension, and easy synthesis have recently attracted the optoelectronic industry as a low-cost alternative to indium tin oxide transparent conductive films. However, silver nanowires are not chemically stable, and their conductivity diminishes over time due to reactions with atmospheric components. This is a bottleneck for their wide industrial applications. In this study, we aim to address this issue by synthesizing silver nanowires with an average diameter of approximately 65 nm and a length of approximately 13 µm. The prepared Ag nanowires are then applied to fabricate transparent, flexible, and chemically stable conductive films. The fabrication includes spraying of silver nanowires suspension on a glass substrate followed by Dr. blade coating of polystyrene (PS) solution and delamination of the PS-AgNWs film. The resulting film exhibits an optimum sheet resistance of 24 Ω/□ and transmittance of 84%. To further enhance the stability of the transparent conductive film, the facial and scalable double pulse electrodeposition method is used for coating of gold on the exposed surface of the AgNWs embedded in PS. The final transparent film with gold coating demonstrates a remarkable stability under harsh conditions including long exposure to UV light and nitric acid solution. After 100 min of UV/Ozone treatment, the increase in sheet resistance of the optimal PS-AgNW@Au sample is 15.6 times lower than the samples without gold coating. In addition, the change in sheet resistance after 2000 bending cycles in the optimal PS-AgNW@Au electrode is measured and it showed an increase of only 22% of its initial sheet resistance indicating its good flexibility. The proposed electrode performs an excellent chemical stability, good conductivity, transparency, and flexibility that makes it a potential candidate for various optoelectronic devices.
Collapse
Affiliation(s)
- Mostafa Gholami
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Fariba Tajabadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Nima Taghavinia
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran.
- Nano Center-Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-8969, Iran.
| | - Alireza Moshfegh
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran.
- Nano Center-Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-8969, Iran.
| |
Collapse
|
7
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
8
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
9
|
Zheng X, Ma Q, Tao Y, Huang Y, Li M, Ji H. Ultrasonic-Excited Ultrafast Seamless Integration of Heterostructured Liquid Crystalline Elastomers for Multi-responsive Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13609-13617. [PMID: 36857738 DOI: 10.1021/acsami.2c21888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multicomponent/heterostructured liquid crystalline elastomers (LCEs) have recently garnered extensive attention for the design of soft robots with high dexterity and flexibility. However, the reported integration strategies of LCEs seriously suffer from high welding temperature, long processing time, and poor joint quality. Herein, the high-efficiency seamless ultrasonic welding (UW) of reprogrammable silver nanowire-LCE composites (AgNW-LCEs) have been realized without any auxiliary reagents based on the dynamic silver-disulfide coordination interactions. The elaborate combination of silver-disulfide coordination interactions and UW technology establishes an effective double-network welding mechanism of AgNWs and dynamic LC networks due to the high-frequency vibration at the welding interface. During the UW process, monolithic AgNW-LCEs can be integrated into heterostructured actuators at room temperature for 0.68 s. Furthermore, the welded AgNW-LCEs demonstrate an exceptional strain healing efficiency of ∼100%, a stress healing efficiency of ∼85%, and a maintained orientation of the LC alignment. Taking advantage of the high-efficiency UW technology, the heterostructured AgNW-LCE actuators with different LC alignments or LC monomers have been successfully implemented for a multi-degree-of-freedom soft robotic arm and a time-modulated flower-mimic actuator. This work provides an efficient approach toward the development of multi-responsive entirely soft actuators based on smart polymers.
Collapse
Affiliation(s)
- Xiaoxiong Zheng
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Qiuchen Ma
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yuan Tao
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yan Huang
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Mingyu Li
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Hongjun Ji
- The State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| |
Collapse
|
10
|
Metal-coordination and surface adhesion-assisted molding enabled strong, water-resistant carboxymethyl cellulose films. Carbohydr Polym 2022; 298:120084. [DOI: 10.1016/j.carbpol.2022.120084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/15/2022]
|
11
|
Revin VV, Liyaskina EV, Parchaykina MV, Kuzmenko TP, Kurgaeva IV, Revin VD, Ullah MW. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers (Basel) 2022; 14:4670. [PMID: 36365662 PMCID: PMC9654748 DOI: 10.3390/polym14214670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Elena V. Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Marina V. Parchaykina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Tatyana P. Kuzmenko
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V. Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Vadim D. Revin
- Faculty of Architecture and Civil Engineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Basarir F, De S, Daghigh Shirazi H, Vapaavuori J. Ultra-long silver nanowires prepared via hydrothermal synthesis enable efficient transparent heaters. NANOSCALE ADVANCES 2022; 4:4410-4417. [PMID: 36321145 PMCID: PMC9552902 DOI: 10.1039/d2na00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Ultra-long silver nanowires (AgNWs) with an aspect ratio of >2000 were prepared by the hydrothermal synthesis method. The influence of reaction time (4-32 h), reaction temperature (150-180 °C), polyvinylpyrrolidone (PVP) molecular weight (10 000-1 300 000 g mol-1), PVP concentration (50-125 mM), glucose concentration (5.6-22.4 mM) and CuCl2 concentration (2-20 μM) on the AgNW length was investigated systematically. The optimum conditions provided nanowires with an average diameter of 207 nm, an average length of 234 μm and a maximum length of 397 μm. Finally, a AgNW electrode was prepared on a glass substrate and used in transparent heater application. The transparent heater enabled outstanding heat-generating properties, reaching >200 °C within 70 s with an applied voltage of 5 V. Our results demonstrate how increasing the aspect ratio of ultra-long AgNWs is beneficial for both optical and electronic applications in terms of increased transmission and a more efficient Joule effect in the heater application. In addition, our results show that AgNWs with different lengths can be simply obtained by tuning synthesis parameters.
Collapse
Affiliation(s)
- Fevzihan Basarir
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 FI-00076 Aalto Finland
| | - Swarnalok De
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 FI-00076 Aalto Finland
| | - Hamidreza Daghigh Shirazi
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 FI-00076 Aalto Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, Aalto University P.O. Box 16100 FI-00076 Aalto Finland
| |
Collapse
|
13
|
Improved Stretchable and Sensitive Fe Nanowire-Based Strain Sensor by Optimizing Areal Density of Nanowire Network. Molecules 2022; 27:molecules27154717. [PMID: 35897893 PMCID: PMC9331932 DOI: 10.3390/molecules27154717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Flexible strain sensors, when considering high sensitivity and a large strain range, have become a key requirement for current robotic applications. However, it is still a thorny issue to take both factors into consideration at the same time. Here, we report a sandwich-structured strain sensor based on Fe nanowires (Fe NWs) that has a high GF (37–53) while taking into account a large strain range (15–57.5%), low hysteresis (2.45%), stability, and low cost with an areal density of Fe NWs of 4.4 mg/cm2. Additionally, the relationship between the contact point of the conductive network, the output resistance, and the areal density of the sensing unit is analyzed. Microscopically, the contact points of the conductive network directly affect the sensor output resistance distribution, thereby affecting the gauge factor (GF) of the sensor. Macroscopically, the areal density and the output resistivity of the strain sensor have the opposite percolation theory, which affects its linearity performance. At the same time, there is a positive correlation between the areal density and the contact point: when the stretching amount is constant, it theoretically shows that the areal density affects the GF. When the areal density reaches this percolation threshold range, the sensing performance is the best. This will lay the foundation for rapid applications in wearable robots.
Collapse
|
14
|
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose Nanopaper: Fabrication, Functionalization, and Applications. NANO-MICRO LETTERS 2022; 14:104. [PMID: 35416525 PMCID: PMC9008119 DOI: 10.1007/s40820-022-00849-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 05/07/2023]
Abstract
Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices, food packaging, biomedical application, and so forth, owing to their various advantages such as good flexibility, tunable light transmittance, high thermal stability, low thermal expansion coefficient, and superior mechanical properties. Herein, recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies. We begin with a brief introduction of the three types of nanocellulose: cellulose nanocrystals, cellulose nanofibrils and bacterial cellulose, recapitulating their differences in preparation and properties. Then, the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared. Furthermore, the advanced applications of cellulose nanopaper including energy storage, electronic devices, water treatment, and high-performance packaging materials were highlighted. Finally, the prospects and ongoing challenges of cellulose nanopaper were summarized.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Ting Zheng
- Department of Automotive Engineering, Clemson University, Greenville, SC, 29607, USA
| | - Ning Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Bo Pang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
15
|
Hou S, Liu J, Shi F, Zhao GX, Tan JW, Wang G. Recent Advances in Silver Nanowires Electrodes for Flexible Organic/Perovskite Light-Emitting Diodes. Front Chem 2022; 10:864186. [PMID: 35360530 PMCID: PMC8960315 DOI: 10.3389/fchem.2022.864186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Flexible organic light-emitting diodes and perovskite light-emitting diodes (PeLEDs) have been investigated as an innovative category of revolutionary LED devices for next-generation flat display and lighting applications. A transparent conductive electrode is a key component in flexible OLEDs and PeLEDs, and has been the limitation of the development in this area. Silver nanowires (AgNWs) have been regarded as the most suitable alternative material in TCEs, due to the economical solution synthesis and compatibility with roll-to-roll technology. This mini-review addresses the advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes, and the relationship between electrode optimization and device performance is demonstrated. Moreover, the potential strategies and perspectives for their further development of AgNWs-based flexible OLEDs and PeLEDs are presented.
Collapse
Affiliation(s)
- Shuping Hou
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
- *Correspondence: Shuping Hou, ; Gong Wang,
| | - Jie Liu
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Feipeng Shi
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Guo-Xu Zhao
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Jia-Wei Tan
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Gong Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
- *Correspondence: Shuping Hou, ; Gong Wang,
| |
Collapse
|