1
|
He Y, Li X, Cai J, Chen S, Li X. Study of Key Factors for Efficient Coalbed Methane Extraction: Pore Structure, Desorption Rate and Seepage Characteristics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6020-6036. [PMID: 40017301 DOI: 10.1021/acs.langmuir.4c04783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Effective coalbed methane extraction is a key strategy for boosting natural gas production and storage in addition to raising the safety of the production standard of coal mines. In order to examine the effects of important variables such as pore parameters, desorption rate under temperature and pressure conditions, and seepage capacity on coalbed methane production during the coalbed methane extraction process. The low-temperature nitrogen adsorption tests (LTN2A), methane adsorption/desorption experiments at various temperatures, and the changes in the desorption rate constants, the initial desorption rate, and the desorption rate decay index with temperature and pressure were quantitatively analyzed. And COMSOL software was used to simulate the seepage characteristics of coalbed methane under various reservoir pressures. The results demonstrated that the large interior pore volumes of the samples are beneficial for gas adsorption. Because of its better pore connectivity, the QL sample had a desorption amount that was 55.65% and 48.01% higher at 313.15 and 333.15 K than the WJB sample. The three parameters of k, V1 and kt are at a high level with increasing temperature; hence, the desorption rate peaks at 333.15 K and pressures between 1 and 4 MPa. Furthermore, the WJB sample is more sensitive to the temperature than the QL sample. The COMSOL simulation shows that the methane pressure inside the reservoir can be released better when the reservoir pressure is below 10 MPa. The Darcy seepage rate is fast and stable, which is favorable for the seepage of coalbed methane. The findings show a relationship between the desorption and seepage properties of CBM and its pore structure, which may offer empirical and theoretical support for the successful development of the CBM.
Collapse
Affiliation(s)
- Yuhuan He
- College of Mining, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Center for Safe Mining Technology, Guiyang 550025, China
| | - Xijian Li
- College of Mining, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Center for Safe Mining Technology, Guiyang 550025, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Junjie Cai
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shoukun Chen
- College of Mining, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Center for Safe Mining Technology, Guiyang 550025, China
| | - Xianxian Li
- College of Mining, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Center for Safe Mining Technology, Guiyang 550025, China
| |
Collapse
|
2
|
Li X, Liu RH, Han XK, Ma XX, Zhang L, Zhu HJ, Kong XJ, Li X, Yan H, Zhou HW, Li YW, Wang SN, Zhong DC, Dai FN, Dou MY, Hao HG. Enhancing Photoreduction of Cr(VI) through a Multivalent Manganese(II)-Organic Framework Incorporating Anthracene Moieties. Inorg Chem 2024; 63:16897-16907. [PMID: 39197012 DOI: 10.1021/acs.inorgchem.4c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Exploiting a photocatalyst with high stability and excellent activity for Cr(VI) reduction under mild conditions is crucial yet challenging. Herein, the rigid aromatic multicarboxylate ligand with chromophore anthracene was selected to coordinate with multivalent metal ion manganese and to obtain a stable two-dimensional (2D) Mn-based metal-organic framework (MOF), LCUH-120, which can efficiently and quickly convert Cr(VI) into Cr(III) under light without the need for any additional photosensitizer. The efficient photosensitive anthracene group serves as a photosensitizer center and multivalent Mn(II) ion as a photocatalyst center in LCUH-120, and the conversion of Cr(VI) to Cr(III) can be realized completely in just 40 min. Specifically, the rate constant (k) and reduction rate of the Cr(VI) photocatalytic reaction can be high up to 0.134 min-1 and 2.50 mgCr(VI) g-1cata min-1 in an acidic environment (pH = 2), respectively. Compared to our previously reported three-dimensional (3D) Sm-MOF, LCUH-120 exhibits a significantly higher catalytic reaction rate, which might be ascribed to the fact that the photocatalyst center Mn node can improve the rate of electron transfer and promote the separation of holes and photogenerated electrons. In an acidic environment, the reaction mechanism can be verified through various contrast experiments and theoretical simulations.
Collapse
Affiliation(s)
- Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Rong-Hua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xue-Ke Han
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiao-Xue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hong-Jie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiang-Jin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hua-Wei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Fang-Na Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Ming-Yu Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hong-Guo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
3
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
4
|
Bao Y, Zheng X, Guo R, Wang L, Liu C, Zhang W. Biomass chitosan/sodium alginate colorimetric imprinting hydrogels with integrated capture and visualization detection for cadmium(II). Carbohydr Polym 2024; 331:121841. [PMID: 38388049 DOI: 10.1016/j.carbpol.2024.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Due to Cd(II) with highly toxic, persistent and bioaccumulative, the discharge of it into the environment brings serious pollution. Developing strategies that are efficient, low-cost, pollution-free and specific to removing Cd(II) from wastewater is therefore of great urgency and prime importance. A novel chitosan/sodium alginate ionic imprinting(IICA) hydrogels with specific adsorption capacity for Cd(II) was prepared through freeze-thaw and ion imprinting, and finally the colorimetric sensor (IICAS) was prepared via introducing Rhodamine B(RhB) and Victoria blue(VBB) by immersion to achieve visual detection of Cd(II). The IICA hydrogels with imprinted hole structure had higher adsorption capacity and better specific selectivity for Cd(II). As well as internal diffusion, coordination, ion exchange, and hydrogen bonding influenced the adsorption rate. Moreover, the IICAS exhibited good selective detection ability and linearity for Cd(II) with the fitted correlation coefficient (R2) = 0.98, limit of detection (LOD) = 35 nmol/L. Combined with the smartphone platform, portable and quantitative detection of Cd(II) can be achieved, Within the 0-100 mg/L range, R2 remained 0.94, and LOD was 75 nmol/L. This strategy of preparing a novel whole biomass IICAS integrating capture and visual detection provides a new insight into the construction of a promising candidate sensor for the removal and detection of Cd(II).
Collapse
Affiliation(s)
- Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China.
| | - Xi Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Ruyue Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Luxuan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Chao Liu
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
5
|
Cao Y, Dai Z, Zhou X, Lin Y, Hou J. Fabrication of an Fe-Doped ZIF-67 Derived Magnetic Fe/Co/C Composite for Effective Removal of Congo Red. Molecules 2024; 29:2078. [PMID: 38731571 PMCID: PMC11085441 DOI: 10.3390/molecules29092078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The dyes in printing and dyeing wastewater are harmful to the human body and the environment. It is essential to develop practical and effective adsorbents to deal with them. In this study, an Fe-doped, ZIF-67 derived Fe/Co/C composite material with strong magnetism was successfully synthesized. The effects of pH, initial concentration, and adsorption time on the properties of the adsorbent were investigated. To further improve the removal efficiency and enhance the practicality, potassium peroxymonosulfate (PMS) was added to the system due to its Fenton-like effect. Then, an Fe/Co/C composite was used with PMS to remove Congo red (CR) with a 98% removal of 250 mg·L-1. Moreover, for its high saturation magnetization of 85.4 emu·g-1, the Fe/Co/C composite can be easily recovered by applying a magnetic field, solving the problem that powdery functional materials are difficult to recover and, thus, avoiding secondary pollution. Furthermore, since the composite material was doped before carbonization, this synthetic strategy is flexible and the required metal elements can be added at will to achieve different purposes. This study demonstrates that this Fe-doped, ZIF-67 derived magnetic material has potential application prospects for dye adsorption.
Collapse
Affiliation(s)
- Yu Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China; (Z.D.); (X.Z.); (Y.L.)
| | - Zeming Dai
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China; (Z.D.); (X.Z.); (Y.L.)
| | - Xuan Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China; (Z.D.); (X.Z.); (Y.L.)
| | - Yuting Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China; (Z.D.); (X.Z.); (Y.L.)
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China; (Z.D.); (X.Z.); (Y.L.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
6
|
Ghumman ASM, Shamsuddin R, Qomariyah L, Lim JW, Sami A, Ayoub M. Heavy metal sequestration from wastewater by metal-organic frameworks: a state-of-the-art review of recent progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33317-7. [PMID: 38622423 DOI: 10.1007/s11356-024-33317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as highly promising adsorbents for removing heavy metals from wastewater due to their tunable structures, high surface areas, and exceptional adsorption capacities. This review meticulously examines and summarizes recent advancements in producing and utilizing MOF-based adsorbents for sequestering heavy metal ions from water. It begins by outlining and contrasting commonly employed methods for synthesizing MOFs, such as solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical. Rather than delving into the specifics of adsorption process parameters, the focus shifts to analyzing the adsorption capabilities and underlying mechanisms against critical metal(loid) ions like chromium, arsenic, lead, cadmium, and mercury under various environmental conditions. Additionally, this article discusses strategies to optimize MOF performance, scale-up production, and address environmental implications. The comprehensive review aims to enhance the understanding of MOF-based adsorption for heavy metal remediation and stimulate further research in this critical field. In brief, this review article presents a comprehensive overview of the contemporary information on MOFs as an effective adsorbent and the challenges being faced by these adsorbents for heavy metal mitigation (including stability, cost, environmental issues, and optimization), targeting to develop a vital reference for future MOF research.
Collapse
Affiliation(s)
- Ali Shaan Manzoor Ghumman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Rashid Shamsuddin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, 42311, Madinah, Kingdom of Saudi Arabia.
| | - Lailatul Qomariyah
- Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Surabaya, Indonesia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 , Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India
| | - Abdul Sami
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muhammad Ayoub
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
7
|
Ramírez O, Bonardd S, Saldías C, Leiva A, Díaz Díaz D. Highly efficient and reusable CuAu nanoparticles supported on crosslinked chitosan hydrogels as a plasmonic catalyst for nitroarene reduction. ENVIRONMENTAL RESEARCH 2024; 247:118204. [PMID: 38224938 DOI: 10.1016/j.envres.2024.118204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The synthesis of CuAu-based monometallic (MNPs) and bimetallic nanoparticles (BNPs) supported on chitosan-based hydrogels for their application as catalysts is presented. The hydrogels consisted of chitosan chains cross-linked with tripolyphosphate (TPP) in the form of beads with an approximate average diameter of 1.81 mm. The MNPs and BNPs were obtained by the adsorption of metallic ions and their subsequent reduction with hydrazine, achieving a metallic loading of 0.297 mmol per gram of dry sample, with average nanoparticle sizes that were found between 2.6 and 4.4 nm. Both processes, metal adsorption and the stabilization of the nanoparticles, are mainly attributed to the participation of chitosan hydroxyl, amine and amide functional groups. The materials revealed important absorption bands in the visible region of the light spectra, specifically between 520 and 590 nm, mainly attributed to LSPR given the nature of the MNPs and BNPs inside the hydrogels. Subsequently, the hydrogels were evaluated as catalysts against the reduction of 4-nitrophenol (4NP) into 4-aminophenol (4AP), followed by UV-visible spectroscopy. The kinetic advance of the reaction revealed important improvements in the catalytic activity of the materials by synergistic effect of BNPs and plasmonic enhancement under visible light irradiation, given the combination of metals and the light harvesting properties of the nanocomposites. Finally, the catalytic performance of hydrogels containing BNPs CuAu 3:1 showed an important selectivity, recyclability and reusability performance, due to the relevant interaction of the BNPs with the chitosan matrix, highlighting the potential of this nanocomposite as an effective catalyst, with a potential environmental application.
Collapse
Affiliation(s)
- Oscar Ramírez
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - Sebastián Bonardd
- Materials Physics Center, CSIC-UPV/EHU, San Sebastián, 20018, Spain; Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
| | - César Saldías
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Angel Leiva
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - David Díaz Díaz
- Departamento de Química Orgánica, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Astrofísico Francisco Sánchez 2, La Laguna 38206, Tenerife, Spain.
| |
Collapse
|
8
|
Li Y, Han Y, Li H, Niu X, Zhang D, Fan H, Wang K. Chitosan synergizes with bismuth-based metal-organic frameworks to construct double S-type heterojunctions for enhancing photocatalytic antimicrobial activity. Int J Biol Macromol 2024; 265:130797. [PMID: 38479662 DOI: 10.1016/j.ijbiomac.2024.130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
In recent years, photocatalytic technology has been introduced to develop a new kind antimicrobial agents fighting antibiotic abusing and related drug resistance. The efforts have focused on non-precious metal photocatalysts along with green additives. In the present work, a novel bis-S heterojunctions based on the coupling of polysaccharide (CS) and bismuth-based MOF (CAU-17) s synthesized through a two-step method involving amidation reaction under mild conditions. The as prepared photocatalyst literally extended the light response to the near-infrared region. Owing to its double S-type heterostructure, the lifetime of the photocarriers is significantly prolonged and the redox capacity are enhanced. As a result, the as prepared photocatalyst indicated inhibition up to 99.9 % under 20 min of light exposure against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria as well as drug-resistant bacteria (MRSA). The outstanding photocatalytic performance is attributed to the effective charge separation and migration due to the unique double S heterostructure. Such a double S heterostructure was confirmed through transient photocurrent response, electrochemical impedance spectroscopy tests and electron spin resonance measurements. The present work provides a basis for the simple synthesis of high-performance heterojunction photocatalytic inhibitors, which extends the application of CAU-17 in environmental disinfection and wastewater purification.
Collapse
Affiliation(s)
- Yanni Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yujia Han
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongxia Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiaohui Niu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Deyi Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haiyan Fan
- Chemistry Department, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kunjie Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
9
|
Patel PK, Pandey LM, Uppaluri RVS. Highly effective removal of multi-heavy metals from simulated industrial effluent through an adsorption process employing carboxymethyl-chitosan composites. ENVIRONMENTAL RESEARCH 2024; 240:117502. [PMID: 37890832 DOI: 10.1016/j.envres.2023.117502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Monochloroacetic acid precursor-based carboxymethyl chitosan resins were prepared using the chitosan with variant molecular weight. The carboxymethylation assured enhanced active sites on the resin surface, acidic media stability, and henceforth its appropriate constitution to facilitate enhanced multi-heavy metal adsorption-desorption and subsequent regeneration potential. Zn, Pb, and Fe multimetal adsorption properties were investigated. Thereby, kinetic and equilibrium models were sought for their fitness to represent heavy metal sorption data with the preferred complex adsorbate system. The adsorbate system complexity and its constituent co-existing cations significantly influence the sorption characteristics of the mentioned multi-heavy metal ions. The optimal adsorption capabilities for Zn, Pb, and Fe were 238.10 mg g-1, 4.78 mg g-1, and 147.06 mg g-1, respectively. Low-cost acid-base solutions were also considered for the effective regeneration of the resin even after three adsorption-desorption cycles. Prominent findings of the work assured excellent functionality of the carboxymethyl-chitosan resin for the simultaneous lead, iron, and zinc ion elimination from mimicking real-world effluent systems.
Collapse
Affiliation(s)
- Prabhat Kumar Patel
- Centre for the Environment, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India
| | - Lalit Mohan Pandey
- Biosciences and Bioengineering Department, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India
| | - Ramagopal V S Uppaluri
- Chemical Engineering Department, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India.
| |
Collapse
|
10
|
Meetam P, Phonlakan K, Nijpanich S, Budsombat S. Chitosan-grafted hydrogels for heavy metal ion adsorption and catalytic reduction of nitroaromatic pollutants and dyes. Int J Biol Macromol 2024; 255:128261. [PMID: 37992945 DOI: 10.1016/j.ijbiomac.2023.128261] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Chitosan-grafted-poly(acrylic acid) (CS-g-PAA) and chitosan-grafted- poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (CS-g-P(AA-co-AMPS)) hydrogels were synthesized and then employed as adsorbents for the effective removal of Cu2+ and other heavy metal ions. The effect of hydrogel's composition on the Cu2+ adsorption was explored. The CS-g-PAA hydrogel demonstrated a superior adsorption capacity compared to pristine CS, PAA hydrogel, and CS-g-P(AA-co-AMPS) hydrogels. The adsorption followed the Langmuir isotherm model, and the pseudo-second order kinetic model. Additionally, the CS-g-PAA hydrogel exhibited relatively high adsorption performances toward Cr3+, Co2+, Ni2+, Pb2+, and Zn2+. Metal ions adsorbed within CS-g-PAA hydrogels underwent reduction to their corresponding metallic states and were reutilized as catalysts for the reduction of 4-nitrophenol. The comparative catalytic performances of the metal species in the hydrogel were in the order of Cu > Ni > Co > Zn. The reduction efficiency of Cu-CS-g-PAA increased with increased catalyst dosage, NaBH4 concentration, and temperature. A very low activation energy of 3.7 kJ/mol was observed. The catalyst maintained high catalytic performance even when subjected to real water samples and proved its reusability for up to three cycles. Moreover, the catalyst could effectively reduce 2-nitrophenol and methyl orange.
Collapse
Affiliation(s)
- Panjalak Meetam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public organization), Nakhon Ratchasima 30000, Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
11
|
Chen B, Zhou X, Wang X, Zhao S, Jing Z, Jin Y, Pi X, Du Q, Chen L, Li Y. High-efficient removal of anionic dye from aqueous solution using metal-organic frameworks@chitosan aerogel rich in benzene structure. Int J Biol Macromol 2024; 256:128433. [PMID: 38008141 DOI: 10.1016/j.ijbiomac.2023.128433] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
With the exponentially increase of dye pollutants, the purification of dye wastewater has been an urgent ecological problem. As a novel type of porous adsorbent, metal-organic frameworks still face challenges in recyclability, agglomeration, and environmentally unfriendly synthesis. Herein, MOF-525 was in-situ growth onto the surface of the chitosan (CS) beads to fabricate MOF-525@CS aerogel. CS was utilized as substrate to uniformly disperse MOF-525, thereby significantly mitigating agglomeration and improving recyclability of MOF-525. The characterization results shown that MOF-525@CS aerogel had a high specific surface area of 103.0 m2·g-1, and MOF-525 was uniformly distributed in the 3D porous structure of CS, and the presence of benzoic acid was detected. The MOF-525@CS aerogel had a remarkable adsorption capacity of 1947 mg·g-1 for Congo red, which is greater than the sum of its parts. MOF-525@CS aerogel also inherited the rapid adsorption ability of MOF-525, removing 80 % of Congo red within 600 min. Such excellent adsorption performance can be attributed to the benzoic acid trapped by CS via CN band to enhance the π-π stacking interactions. Additionally, the utilization of benzoic acid makes the synthesis process of MOF-525@CS aerogel more environmentally friendly. The high-efficient MOF-525@CS aerogel is a competitive candidate for dye pollution adsorption.
Collapse
Affiliation(s)
- Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Xiaoshuang Zhou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Xinxin Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Qiuju Du
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Long Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China.
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China.
| |
Collapse
|
12
|
Zheng J, Yang Y, Dai Z, Wang J, Xia Y, Li C. Preparation of manganese dioxide/hollow mesoporous silica spheres (MnO2/HMSS) composites for removal of Sr(Ⅱ) from aqueous solution. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Hou F, Gong Z, Jia F, Cui W, Song S, Zhang J, Wang Y, Wang W. Insights into the relationships of modifying methods, structure, functional properties and applications of chitin: A review. Food Chem 2023; 409:135336. [PMID: 36586263 DOI: 10.1016/j.foodchem.2022.135336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Chitin as the second plentiful polysaccharide has arouse widely attention due to its remarkable availability and biocompatibility. While the strong inter/intra molecular hydrogen bonds and crystallinity severely restrict its applications. Recently, multiple emerging technologies are increasingly used to modify chitin structure for the sake of obtaining excellent functional properties, as well as broadening the corresponding applications. Firstly, this review systematically outlines the features of single and combined methods for chitin modification. Then, the impacts of various modifying methods on the structural characteristics of chitin, including molecular weight, degree of acetylation and functional groups, are further summarized. In addition, the effects of these structural characteristics on the functional properties as well as its potential related applications are illustrated. The conclusion of this review provides better understanding of the relationships among the modifying methods, structure, properties and applications, contributing to chitin modification for the targeted purpose in the future study.
Collapse
Affiliation(s)
- Furong Hou
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhiqing Gong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengjuan Jia
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjia Cui
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shasha Song
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jian Zhang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yansheng Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenliang Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
14
|
Preparation of metal organic frameworks modified chitosan composite with high capacity for Hg(II) adsorption. Int J Biol Macromol 2023; 232:123329. [PMID: 36669630 DOI: 10.1016/j.ijbiomac.2023.123329] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
In this study, a novel modified chitosan composite adsorbent (UNCS) was prepared by crosslinking between chitosan and metal organic frameworks (MOFs) material UiO-66-NH2 using epichlorohydrin as crosslinker. The influence of the prepared conditions was investigated. The structure and morphology of the composite were characterized by FT-IR, XRD, SEM, TGA, BET and zeta potential analysis. Effects of different variables for adsorption of Hg(II) on this adsorbent were explored. The kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic model and the adsorption equilibrium could be reached within 2 h. The adsorption was mainly controlled by chemical process. Adsorption isothermal studies illustrated that the adsorption fitted Langmuir isotherm model, implying the homogeneous adsorption on the surface of the adsorbent. The adsorbent exhibited high uptake and the maximum capacity from Langmuir model could reach 896.8 mg g-1 at pH 6. Thermodynamic studies showed the spontaneous nature and exothermic nature of the adsorption process. Additionally, the removal of Hg(II) on UNCS could achieve over 90 %. The adsorption-desorption cycled experiments indicated the appropriate reusability of the adsorbent. Hence, this adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
|
15
|
Abdel-Raouf MES, Farag RK, Farag AA, Keshawy M, Abdel-Aziz A, Hasan A. Chitosan-Based Architectures as an Effective Approach for the Removal of Some Toxic Species from Aqueous Media. ACS OMEGA 2023; 8:10086-10099. [PMID: 36969416 PMCID: PMC10035021 DOI: 10.1021/acsomega.2c07264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/24/2023] [Indexed: 05/31/2023]
Abstract
Modified uncrosslinked and crosslinked chitosan derivatives were investigated as green sorbents for the removal of copper (Cu2+) and lead (Pb2+) cations from simulated solutions. In this regard, N, O carboxymethyl chitosan (N, O CMC), chitosan beads (Cs-g-GA), chitosan crosslinked with glutaraldehyde/methylene bisacrylamide (Cs/GA/MBA), and chitosan crosslinked with GA/epichlorohydrin (Cs/GA/ECH) were prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy analyses. Atomic force microscopy investigation was carried out to compare the surface topography of the prepared samples before and after the metal uptake. The kinetics of the removal process were investigated by pseudo-first-order and -second-order models. Moreover, the adsorption isotherms were carefully studied by applying Langmuir and Freundlich models. The data reveal that upon adsorption of copper(II) metal ions, all chitosan-modified products followed the Langmuir isotherm except for Cs/GA/ECH which followed the Freundlich isotherms, and the highest adsorption capacity (q e) was obtained for Cs/GA/MBA due to the formation of stable chelate structures between the metal cation and the functional groups present on the modified chitosan product. The order of metal uptake at the optimum pH value is as follows: Cs/GA/MBA (Cu: 95.7 mg/g, Pb: 99.15 mg/g), Cs/GA/ECH (Cu: 80.4 mg/g, Pb: 93.14 mg/g), Cs-g-GA (Cu: 77 mg/g, Pb: 88.4 mg/g), and N, O CMCh (Cu: 30.2 mg/g, Pb: 44.8 mg/g). The AFM data confirmed the metal uptake process by comparing the roughness and height measurements of the free sorbents and the metal-loaded sorbents.
Collapse
|
16
|
Recent Application Prospects of Chitosan Based Composites for the Metal Contaminants Wastewater Treatment. Polymers (Basel) 2023; 15:polym15061453. [PMID: 36987232 PMCID: PMC10057141 DOI: 10.3390/polym15061453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heavy metals, known for their toxic nature and ability to accumulate and magnify in the food chain, are a major environmental concern. The use of environmentally friendly adsorbents, such as chitosan (CS)—a biodegradable cationic polysaccharide, has gained attention for removing heavy metals from water. This review discusses the physicochemical properties of CS and its composites and nanocomposites and their potential application in wastewater treatment.
Collapse
|
17
|
Guo X, Wang L, Wang L, Huang Q, Bu L, Wang Q. Metal-organic frameworks for food contaminant adsorption and detection. Front Chem 2023; 11:1116524. [PMID: 36742039 PMCID: PMC9890379 DOI: 10.3389/fchem.2023.1116524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Metal-organic framework materials (MOFs) have been widely used in food contamination adsorption and detection due to their large specific surface area, specific pore structure and flexible post-modification. MOFs with specific pore size can be targeted for selective adsorption of some contaminants and can be used as pretreatment and pre-concentration steps to purify samples and enrich target analytes for food contamination detection to improve the detection efficiency. In addition, MOFs, as a new functional material, play an important role in developing new rapid detection methods that are simple, portable, inexpensive and with high sensitivity and accuracy. The aim of this paper is to summarize the latest and insightful research results on MOFs for the adsorption and detection of food contaminants. By summarizing Zn-based, Cu-based and Zr-based MOFs with low cost, easily available raw materials and convenient synthesis conditions, we describe their principles and discuss their applications in chemical and biological contaminant adsorption and sensing detection in terms of stability, adsorption capacity and sensitivity. Finally, we present the limitations and challenges of MOFs in food detection, hoping to provide some ideas for future development.
Collapse
|
18
|
Gao Y, Yao L, Zhang S, Yue Q, Yin W. Versatile crosslinking synthesis of an EDTA-modified UiO-66-NH 2/cotton fabric composite for simultaneous capture of heavy metals and dyes and efficient degradation of organophosphate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120622. [PMID: 36370975 DOI: 10.1016/j.envpol.2022.120622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The metal-organic frameworks/cotton fabric composites (MOFs/CFCs) have emerged as a new type of prospective materials for environmental cleanup, due to their convenient recyclability and high removal efficiency towards hazardous pollutants. However, their practical applications are limited by complicated synthetic conditions, insufficient interface bonding and poor adsorption capacity. Herein, for the first time, a robust ethylenediaminetetraacetic acid (EDTA)-functionalized MOFs/CFC is prepared based on UiO-66-NH2 crystals by using EDTA dianhydride as the cross-linking agent, and applied for simultaneous removal of heavy metals and dyes, as well as degradation of chemical warfare agents. The as-prepared EDTA-UiO-66-NH2/CFC shows extraordinary monocomponent adsorption performance with maximum adsorption capacity of 158.7, 126.2, 131.5, 117.4 and 104.5 mg/g for Cd(II), Cu(II), methylene blue, crystal violet and safranin O, respectively. Interestingly, in metal-dyes binary system, the uptake of Cu(II) by EDTA-UiO-66-NH2/CFC increases significantly when co-existing high concentration of dyes. The results indicate that the synergistic and simultaneous removal of both dyes and metal from complex systems can be realized by EDTA-UiO-66-NH2/CFC via multiple mechanisms. The EDTA-UiO-66-NH2/CFC also exhibits an outstanding catalytic performance for degrading dimethyl 4-nitrophenylphosphate. Besides, it can be reused for several times without obvious decrease of its adsorption and catalysis efficiencies. More impressively, the cross-linking reaction approach can not only anchor UiO-66-NH2 crystals firmly onto cotton fabric, but also facilitate in-situ formation of abundant adsorption sties on the adsorbent surface. Therefore, this work offers a simple and versatile synthetic strategy to develop high-performance environmental material for multiple pollutants remediation.
Collapse
Affiliation(s)
- Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, China
| | - Lifeng Yao
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430073, China; School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shengzu Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, China
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430073, China.
| |
Collapse
|
19
|
Recent advances in removal of toxic elements from water using MOFs: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Tang D, Xiong Z, Lu P, Wang S, Chen X, Lou X, Zheng M, Chen S, Ye C, Chen J, Qiu T. Lacunary polyoxometalate @ ZIF for ultradeep Pb(II) adsorption. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Liu P, Wen H, Jiang Z, Peng H, Huang T, Liu H. One-step rapid synthesis of HKUST-1 and the application for europium(III) adsorbing in solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Vedula SS, Yadav GD. Synthesis and application of environment friendly membranes of chitosan and chitosan-PTA for removal of copper (II) from wastewater. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2093636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shivani S. Vedula
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
23
|
Hu SZ, Huang T, Zhang N, Lei YZ, Wang Y. Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Ma Y, You D, Fang Y, Luo J, Pan Q, Liu Y, Wang F, Yang W. Confined growth of MOF in chitosan matrix for removal of trace Pb(Ⅱ) from reclaimed water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Tan Q, Liu G, Zhao C, Gao M, Zhang X, Chen G, Li L, Huang X, Zhang Y, Lv J, Xu D. Layered Double Hydroxide@Metal-Organic Framework Hybrids for Extraction of Indole-3-Carbinol From Cruciferous Vegetables. Front Nutr 2022; 9:841257. [PMID: 35656156 PMCID: PMC9152278 DOI: 10.3389/fnut.2022.841257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cruciferous vegetables are rich in glucosinolates, which can be metabolized to produce the antitumor compound indole-3-carbinol (I3C). The conventional solvent extraction method for I3C is inefficient. To improve the extraction efficiency of I3C from cruciferous vegetables, we prepared a metal-organic framework (MOF) material (Fe3O4@Zn-Al-LDH@B-D-MIL-100). First, Fe3O4 nanoparticles were introduced to layered double hydroxides by in situ polymerization. Then, the MOF material was grown on the surface of the layered double hydroxide by co-precipitation and the layer-by-layer self-assembly method. This gave Fe3O4@Zn-Al-LDH@B-D-MIL-100, which was characterized using a variety of techniques. The results showed that Fe3O4@Zn-Al-LDH@B-D-MIL-100 had a double-layer porous structure, excellent superparamagnetism (11.54955 emu/g), a large specific surface area (174.04 m2/g), and a pore volume (0.26 cm3/g). The extraction conditions for I3C were optimized. Non-linear fitting of the static adsorption model showed that the adsorption was mainly monolayer. Fe3O4@Zn-Al-LDH@B-D-MIL-100 had fast adsorption kinetics and could extract 95% of I3C in 45 min. It is superior to the traditional solvent extraction method because of its high enrichment efficiency in a short time and environmental friendliness. The successful preparation of the new nanomaterial will provide a new reference for the enrichment and extraction of the I3C industry.
Collapse
Affiliation(s)
- Qiyue Tan
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxi Zhao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Mingkun Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuan Zhang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyun Li
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jun Lv
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
In situ growth of ZIF-8 on carboxymethyl chitosan beads for improved adsorption of lead ion from aqueous solutions. Int J Biol Macromol 2022; 205:473-482. [PMID: 35202633 DOI: 10.1016/j.ijbiomac.2022.02.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 01/13/2023]
Abstract
In this study, a method for the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on carboxymethyl chitosan beads (BCMC) to produce a composite adsorbent (BCMC@ZIF-8) for the removal of Pb2+ from water is proposed. The results revealed that the utilization of the BCMC as a framework enhanced the stability of ZIF-8, and the presence of the latter in the composite improved the removal efficiency of Pb2+ from water. Data from X-ray photoelectron spectroscopy analysis and adsorption kinetics revealed that the adsorption mechanism included diffusion and the sharing/transfer of electrons between BCMC@ZIF-8 and Pb2+. The maximum adsorption capacity of BCMC@ZIF-8 fitted using the Langmuir model was 566.09 mg/g. Results of the experiments on the regeneration of the adsorbent and its stability in water further indicated that BCMC improved the stability of ZIF-8. This study demonstrated that the stability of metal-organic framework (MOF) materials, which exhibited high efficiencies for the removal of heavy metals in water can be improved through fixation of the polymer skeleton. Thus, the present study offers practical and theoretical guidance for the application of MOF materials in water treatment.
Collapse
|