1
|
Levick SP. IgE and cardiac disease. Acta Physiol (Oxf) 2025; 241:e14281. [PMID: 39803722 DOI: 10.1111/apha.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/02/2024] [Accepted: 01/01/2025] [Indexed: 05/02/2025]
Abstract
IgE acts primarily via the high affinity IgE receptor (FcεRI) and is central to immediate hypersensitivity reactions (anaphylaxis). However, IgE is also important in the development of chronic hypersensitivity reactions (allergy). In the cardiovascular system, numerous clinical studies have investigated serum IgE levels, mainly in the context of myocardial infarction, and have established a clear association between IgE and ischemic cardiac events. While animal studies demonstrate that IgE can cause atherosclerotic plaque formation, this is complicated by clinical reports that IgE is associated with non-fatal ischemic events and not with fatal events, raising the possibility that IgE could be protective in this setting. In terms of non-ischemic cardiac disease, little information is available clinically for IgE; however, animal models also indicate that IgE promotes adverse effects in this setting as well. This review article will present the clinical studies that have established a relationship between serum IgE levels and cardiac disease, particularly myocardial infarction. This review article will also discuss animal studies that provide mechanistic understanding of how IgE can exert chronic effects in the heart. This article also attempts to address the question of whether IgE is causative of cardiac disease or is a response to cardiac disease.
Collapse
Affiliation(s)
- Scott P Levick
- Department of Physiology, Pharmacology and Toxicology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Beslika E, Leite-Moreira A, De Windt LJ, da Costa Martins PA. Large animal models of pressure overload-induced cardiac left ventricular hypertrophy to study remodelling of the human heart with aortic stenosis. Cardiovasc Res 2024; 120:461-475. [PMID: 38428029 PMCID: PMC11060489 DOI: 10.1093/cvr/cvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 03/03/2024] Open
Abstract
Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.
Collapse
Affiliation(s)
- Evangelia Beslika
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Leon J De Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| | - Paula A da Costa Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| |
Collapse
|
3
|
Agoston-Coldea L, Negru A. Myocardial fibrosis in right heart dysfunction. Adv Clin Chem 2024; 119:71-116. [PMID: 38514212 DOI: 10.1016/bs.acc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Cardiac fibrosis, associated with right heart dysfunction, results in significant morbidity and mortality. Stimulated by various cellular and humoral stimuli, cardiac fibroblasts, macrophages, CD4+ and CD8+ T cells, mast and endothelial cells promote fibrogenesis directly and indirectly by synthesizing numerous profibrotic factors. Several systems, including the transforming growth factor-beta and the renin-angiotensin system, produce type I and III collagen, fibronectin and α-smooth muscle actin, thus modifying the extracellular matrix. Although magnetic resonance imaging with gadolinium enhancement remains the gold standard, the use of circulating biomarkers represents an inexpensive and attractive means to facilitate detection and monitor cardiovascular fibrosis. This review explores the use of protein and nucleic acid (miRNAs) markers to better understand underlying pathophysiology as well as their role in the development of therapeutics to inhibit and potentially reverse cardiac fibrosis.
Collapse
Affiliation(s)
- Lucia Agoston-Coldea
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Andra Negru
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Xiong X, Li J, Zhang S, Jia X, Xiao C. Involvement of Polyamines From Cardiac Mast Cells in Myocardial Remodeling Induced by Pressure Overload Through Mitochondrial Permeability Transition Pore Opening. Front Cardiovasc Med 2022; 9:850688. [PMID: 35479269 PMCID: PMC9035547 DOI: 10.3389/fcvm.2022.850688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Polyamines mainly contain spermine (SPM), spermidine (SPD), and putrescine (PUT). Many research results suggest that polyamines participate in cell proliferation, differentiation, and the regulation of gene expression, and have a close relationship with the occurrence and development of many diseases. However, the role and possible mechanisms of action of polyamines from cardiac mast cells in myocardial remodeling induced by pressure overload remain to be elucidated. Methods Pressure overload was induced by abdominal aortic constriction (AAC). Toluidine blue staining was used to visualize mast cells in cardiac tissue. The polyamine content of cardiac tissue was analyzed using high-performance liquid chromatography. Opening of the mitochondrial permeability transition pore (MPTP) was determined by the Ca2+-induced swelling of isolated cardiac mitochondria, measured as a reduction in A520. Results Compared with sham rats, the cardiac mast cell density, the polyamine content (PUT, SPB, and SPM), and myocardial MPTP opening in rats with AAC were significantly increased (P < 0.05), and were accompanied by increased myocardial fibrosis and heart weight/body weight ratio. Intraperitoneal injection of polyamines mimicked these results, and these effects were reversed by cromolyn sodium, a mast cell stabilizer (P < 0.05). Myocardial MPTP opening increased in rats with AAC (P < 0.05), and the three polyamines also increased myocardial MPTP opening (P < 0.05). Conclusion Mast cell-derived polyamines are involved in pressure overload-induced myocardial remodeling by increasing opening of the MPTP.
Collapse
Affiliation(s)
- Xiaolan Xiong
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
- The Second People’s Hospital of Yichang, Yichang, China
| | - Junming Li
- The First People’s Hospital of Yichang, Yichang, China
| | - Shizhong Zhang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
- *Correspondence: Shizhong Zhang,
| | - Xiaoli Jia
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
| | - Chao Xiao
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
5
|
Neumann J, Kirchhefer U, Dhein S, Hofmann B, Gergs U. The Roles of Cardiovascular H 2-Histamine Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2022; 12:732842. [PMID: 34987383 PMCID: PMC8720924 DOI: 10.3389/fphar.2021.732842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses pharmacological, structural and functional relationships among H2-histamine receptors and H1-histamine receptors in the mammalian heart. The role of both receptors in the regulation of force and rhythm, including their electrophysiological effects on the mammalian heart, will then be discussed in context. The potential clinical role of cardiac H2-histamine-receptors in cardiac diseases will be examined. The use of H2-histamine receptor agonists to acutely increase the force of contraction will be discussed. Special attention will be paid to the potential role of cardiac H2-histamine receptors in the genesis of cardiac arrhythmias. Moreover, novel findings on the putative role of H2-histamine receptor antagonists in treating chronic heart failure in animal models and patients will be reviewed. Some limitations in our biochemical understanding of the cardiac role of H2-histamine receptors will be discussed. Recommendations for further basic and translational research on cardiac H2-histamine receptors will be offered. We will speculate whether new knowledge might lead to novel roles of H2-histamine receptors in cardiac disease and whether cardiomyocyte specific H2-histamine receptor agonists and antagonists should be developed.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Dhein
- Landratsamt Altenburger Land, Altenburg, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
6
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Levick SP. Histamine receptors in heart failure. Heart Fail Rev 2021; 27:1355-1372. [PMID: 34622365 DOI: 10.1007/s10741-021-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
The biogenic amine, histamine, is found predominantly in mast cells, as well as specific histaminergic neurons. Histamine exerts its many and varied actions via four G-protein-coupled receptors numbered one through four. Histamine has multiple effects on cardiac physiology, mainly via the histamine 1 and 2 receptors, which on a simplified level have opposing effects on heart rate, force of contraction, and coronary vasculature function. In heart failure, the actions of the histamine receptors are complex, the histamine 1 receptor appears to have detrimental actions predominantly in the coronary vasculature, while the histamine 2 receptor mediates adverse effects on cardiac remodeling via actions on cardiomyocytes, fibroblasts, and even endothelial cells. Conversely, there is growing evidence that the histamine 3 receptor exerts protective actions when activated. Little is known about the histamine 4 receptor in heart failure. Targeting histamine receptors as a therapeutic approach for heart failure is an important area of investigation given the over-the-counter access to many compounds targeting these receptors, and thus the relatively straight forward possibility of drug repurposing. In this review, we briefly describe histamine receptor signaling and the actions of each histamine receptor in normal cardiac physiology, before describing in more detail the known role of each histamine receptor in adverse cardiac remodeling and heart failure. This includes information from both clinical studies and experimental animal models. It is the goal of this review article to bring more focus to the possibility of targeting histamine receptors as therapy for heart failure.
Collapse
Affiliation(s)
- Scott P Levick
- Kolling Institute, St Leonards, Australia.
- Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2006, Australia.
| |
Collapse
|
8
|
Li H, Chen C, Wang DW. Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure. Front Physiol 2021; 12:695047. [PMID: 34276413 PMCID: PMC8281681 DOI: 10.3389/fphys.2021.695047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Despite mounting evidence demonstrating the significance of inflammation in the pathophysiological mechanisms of heart failure (HF), most large clinical trials that target the inflammatory responses in HF yielded neutral or even worsening outcomes. Further in-depth understanding about the roles of inflammation in the pathogenesis of HF is eagerly needed. This review summarizes cytokines, cardiac infiltrating immune cells, and extracardiac organs that orchestrate the complex inflammatory responses in HF and highlights emerging therapeutic targets.
Collapse
Affiliation(s)
- Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Increased Risk of Atrial Fibrillation in Patients with Atopic Triad: A Nationwide Population-Based Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3422-3430.e5. [PMID: 33965590 DOI: 10.1016/j.jaip.2021.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Despite a sharp increase in the global prevalence of allergy over the past decade, the relation between multiple atopic conditions and atrial fibrillation (AF) has not been fully elucidated. OBJECTIVE To determine whether there is an association between atopic diseases and AF and to examine the effect of multiple atopic diseases on the incidence of AF. METHODS This retrospective population-based study used the database from the 2009 National Health Insurance Services-Health Screening Cohort in Korea. A total of 6,748,564 subjects without a previous history of AF were included in the final analysis and observed until 2017. The atopic triad included asthma, allergic rhinitis, and atopic dermatitis. A total of 1,168,196 subjects (17.3%) with at least one atopic disease were classified as the atopic group. The primary outcome was new-onset AF. RESULTS During a median 7.2 ± 1.0 years of follow-up, 136,253 subjects were given the new diagnosis of AF (30,300 in the atopic group and 105,953 in the nonatopic group). The incidence of AF was 3.63/1000 person-years in the atopic group and 2.64/1000 person-years in the nonatopic group. The risk for AF showed a positive correlation with the number of diseases in the atopic triad (adjusted hazard ratio [aHR], 95% confidence interval [CI]: one disease: aHR = 1.15, CI, 1.14-1.17; two diseases: aHR = 1.34, CI, 1.31-1.38; and three diseases: aHR = 1.35, CI, 1.11-1.66; P for trend < .001). CONCLUSIONS The atopic triad of asthma, allergic rhinitis, and atopic dermatitis was associated with an increased risk for AF. Moreover, multiple atopic conditions have a higher risk for AF.
Collapse
|
10
|
Sun K, Li YY, Jin J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct Target Ther 2021; 6:79. [PMID: 33612829 PMCID: PMC7897720 DOI: 10.1038/s41392-020-00455-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The response of immune cells in cardiac injury is divided into three continuous phases: inflammation, proliferation and maturation. The kinetics of the inflammatory and proliferation phases directly influence the tissue repair. In cardiac homeostasis, cardiac tissue resident macrophages (cTMs) phagocytose bacteria and apoptotic cells. Meanwhile, NK cells prevent the maturation and transport of inflammatory cells. After cardiac injury, cTMs phagocytose the dead cardiomyocytes (CMs), regulate the proliferation and angiogenesis of cardiac progenitor cells. NK cells prevent the cardiac fibrosis, and promote vascularization and angiogenesis. Type 1 macrophages trigger the cardioprotective responses and promote tissue fibrosis in the early stage. Reversely, type 2 macrophages promote cardiac remodeling and angiogenesis in the late stage. Circulating macrophages and neutrophils firstly lead to chronic inflammation by secreting proinflammatory cytokines, and then release anti-inflammatory cytokines and growth factors, which regulate cardiac remodeling. In this process, dendritic cells (DCs) mediate the regulation of monocyte and macrophage recruitment. Recruited eosinophils and Mast cells (MCs) release some mediators which contribute to coronary vasoconstriction, leukocyte recruitment, formation of new blood vessels, scar formation. In adaptive immunity, effector T cells, especially Th17 cells, lead to the pathogenesis of cardiac fibrosis, including the distal fibrosis and scar formation. CMs protectors, Treg cells, inhibit reduce the inflammatory response, then directly trigger the regeneration of local progenitor cell via IL-10. B cells reduce myocardial injury by preserving cardiac function during the resolution of inflammation.
Collapse
Affiliation(s)
- Kang Sun
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
11
|
Pastwińska J, Żelechowska P, Walczak-Drzewiecka A, Brzezińska-Błaszczyk E, Dastych J. The Art of Mast Cell Adhesion. Cells 2020; 9:E2664. [PMID: 33322506 PMCID: PMC7764012 DOI: 10.3390/cells9122664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cell adhesion is one of the basic phenomena occurring in a living organism, affecting many other processes such as proliferation, differentiation, migration, or cell viability. Mast cells (MCs) are important elements involved in defending the host against various pathogens and regulating inflammatory processes. Due to numerous mediators, they are contributing to the modulation of many basic cellular processes in a variety of cells, including the expression and functioning of different adhesive molecules. They also express themselves many adhesive proteins, including ICAM-1, ICAM-3, VCAM-1, integrins, L-selectin, E-cadherin, and N-cadherin. These molecules enable MCs to interact with other cells and components of the extracellular matrix (ECM), creating structures such as adherens junctions and focal adhesion sites, and triggering a signaling cascade. A thorough understanding of these cellular mechanisms can create a better understanding of MC biology and reveal new goals for MC targeted therapy. This review will focus on the current knowledge of adhesion mechanisms with the involvement of MCs. It also provides insight into the influence of MCs or MC-derived mediators on the adhesion molecule expression in different cells.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Paulina Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
| |
Collapse
|
12
|
Martins FA, Dos Santos MA, Santos JDG, da Silva AA, Borges BC, da Costa MS, Tavares PCB, Teixeira SC, Brígido RTES, Teixeira TL, Rodrigues CC, Silva NSDL, de Oliveira RC, de Faria LC, Lemes MR, Zanon RG, Tomiosso TC, Machado JR, da Silva MV, Oliveira CJF, da Silva CV. The Recombinant Form of Trypanosoma cruzi P21 Controls Infection by Modulating Host Immune Response. Front Immunol 2020; 11:1010. [PMID: 32655546 PMCID: PMC7325895 DOI: 10.3389/fimmu.2020.01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.
Collapse
Affiliation(s)
- Flávia Alves Martins
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Marlus Alves Dos Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Júlia de Gouveia Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Aline Alves da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bruna Cristina Borges
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Mylla Spirandelli da Costa
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paula Cristina Brígido Tavares
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Samuel Cota Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rebecca Tavares E Silva Brígido
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Thaise Lara Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cassiano Costa Rodrigues
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Rayane Cristina de Oliveira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Laura Caroline de Faria
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Marcela Rezende Lemes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Renata Graciele Zanon
- Departamento de Anatomia Humana, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Tatiana Carla Tomiosso
- Setor de Histologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
13
|
Liu HF, Hu CL, Li YB. Neurogenic inflammation in fulminant myocarditis: May be a trigger. Med Hypotheses 2020; 139:109563. [DOI: 10.1016/j.mehy.2020.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
14
|
Abstract
The observation that heart failure with reduced ejection fraction is associated with elevated circulating levels of pro-inflammatory cytokines opened a new area of research that has revealed a potentially important role for the immune system in the pathogenesis of heart failure. However, until the publication in 2019 of the CANTOS trial findings on heart failure outcomes, all attempts to target inflammation in the heart failure setting in phase III clinical trials resulted in neutral effects or worsening of clinical outcomes. This lack of positive results in turn prompted questions on whether inflammation is a cause or consequence of heart failure. This Review summarizes the latest developments in our understanding of the role of the innate and adaptive immune systems in the pathogenesis of heart failure, and highlights the results of phase III clinical trials of therapies targeting inflammatory processes in the heart failure setting, such as anti-inflammatory and immunomodulatory strategies. The most recent of these studies, the CANTOS trial, raises the exciting possibility that, in the foreseeable future, we might be able to identify those patients with heart failure who have a cardio-inflammatory phenotype and will thus benefit from therapies targeting inflammation.
Collapse
|
15
|
Levick SP, Brower GL, Janicki JS. Substance P-mediated cardiac mast cell activation: An in vitro study. Neuropeptides 2019; 74:52-59. [PMID: 30660328 PMCID: PMC7207245 DOI: 10.1016/j.npep.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 01/07/2023]
Abstract
The neuropeptide substance P can induce degranulation of cardiac mast cells at high concentrations. Herein, we seek to further understand substance P activation of cardiac mast cells in the context of other neuropeptides as well as modulation by non-neuropeptides. This is important given the increasingly recognized role of both cardiac mast cells and substance P in adverse cardiac remodeling. To address this, we isolated cardiac mast cells and compared their response to substance P as well as other members from the tachykinin family of peptides, including neurokinin A and hemokinin-1. We also tested the ability of other factors to manipulate the cardiac mast cell response to substance P. We found that while neurokinin A did not induce cardiac mast cell degranulation, both substance P and hemokinin-1 induced a concentration-dependent release of histamine; the maximal response to hemokinin-1 was greater than to substance P. Neurokinin-1 receptor blockade prevented substance P-induced histamine release, while only partially attenuating hemokinin-1-induced histamine release. The antioxidant N-acetylcysteine attenuated histamine release in response to hemokinin-1 and had no effect on substance P-induced histamine release. Selective PPAR-γ agonists attenuated histamine release in response to substance P. These data indicate that substance P activates cardiac mast cells via the neurokinin-1 receptor, and that the activation response is different to other tachykinins. That the response to substance P is receptor mediated and can be modulated by activation of other receptors (PPAR-γ), argues that substance P activation of cardiac mast cells has potential biological significance.
Collapse
Affiliation(s)
- Scott P Levick
- Kolling Institute for Medical Research, Royal North Shore Hospital, Australia; Faculty of Medicine and Health, The University of Sydney, Australia.
| | - Gregory L Brower
- Department of Medical Education, School of Medicine, Texas Tech University Health Sciences Center, United States
| | - Joseph S Janicki
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, United States
| |
Collapse
|
16
|
Role of cardiac mast cells in exercise training-mediated cardiac remodeling in angiotensin II-infused ovariectomized rats. Life Sci 2019; 219:209-218. [PMID: 30658099 DOI: 10.1016/j.lfs.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 01/03/2023]
Abstract
AIMS Regular exercise is recommended in postmenopausal women to prevent the development of heart disease, but mechanism underlying the protection is not completely understood. Many studies have suggested that exercise training notably mediated whole body immune and inflammatory functions. Whether exercise training prevents cardiac dysfunction after deprivation of female sex hormones by inhibiting cardiac immune activation is therefore interesting. MAIN METHODS Nine-week treadmill running program was introduced in sham-operated and ovariectomized rats. In addition, chronic angiotensin II infusion was further challenged to activate pathological cardiac remodeling. Cardiac remodeling in associated with the density and degranulation of cardiac mast cells was then evaluated. KEY FINDINGS With exogenous angiotensin II-induced hypertension, cardiac hypertrophy with myocardial fibrosis was shown similarly in both sham-operated controls and ovariectomized rats. Although exercise training did not prevent cardiac hypertrophy, myocardial fibrosis was abolished by exercise. While ovariectomy increased both cardiac mast cell density and degranulation percentage, angiotensin II infusion only enhanced mast cell density. Exercise training could not decrease the density of mast cells, but it did normalize the percentage of degranulation in all groups. Correlation analysis suggested that cardiac mast cell activation is inversely associated with cardiomyocyte hypertrophy due to exercise training but is directly correlated to cardiac hypertrophy by angiotensin II infusion. SIGNIFICANCE Exercise training could attenuate cardiac mast cell hyperactivation induced by either deprivation of female sex hormones or excessive angiotensin II. Additionally, cardiac mast cells could be a solution in the distinction between physiological and pathological hypertrophic development.
Collapse
|
17
|
Ahmad S, Ferrario CM. Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010-2018). Expert Opin Ther Pat 2018; 28:755-764. [PMID: 30278800 DOI: 10.1080/13543776.2018.1531848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chymase is primarily found in mast cells (MCs), fibroblasts, and vascular endothelial cells. MC chymase is released into the extracellular interstitium in response to inflammatory signals, tissue injury, and cellular stress. Among many functions, chymase is a major extravascular source for angiotensin II (Ang II) generation. Several recent pre-clinical and a few clinical studies point to the relatively unrecognized fact that chymase inhibition may have significant therapeutic advantages over other treatments in halting progression of cardiac and vascular disease. AREAS COVERED The present review covers patent literature on chymase inhibitors for the treatment of cardiac diseases registered between 2010 and 2018. EXPERT OPINION Increase in cardiac MC number in various cardiac diseases has been found in pathological tissues of human and experimental animals. Meta-analysis data from large clinical trials employing angiotensin-converting enzyme (ACE) inhibitors show a relatively small risk reduction of clinical cardiovascular endpoints. The disconnect between the expected benefit associated with Ang II blockade of synthesis or activity underscores a greater participation of chymase compared to ACE in forming Ang II in humans. Emerging literature and a reconsideration of previous studies provide lucid arguments to reconsider chymase as a primary Ang II forming enzyme in human heart and vasculature.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- a Department of Surgery , Wake Forest School of Medicine , Winston Salem , NC , USA
| | - Carlos M Ferrario
- a Department of Surgery , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Department of Physiology-Pharmacology , Wake Forest School of Medicine , Winston Salem , NC , USA.,c Department of Social Sciences, Division of Public Health , Wake Forest School of Medicine , Winston Salem , NC , USA
| |
Collapse
|
18
|
Widiapradja A, Chunduri P, Levick SP. The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 2017; 74:2019-2038. [PMID: 28097372 PMCID: PMC6339818 DOI: 10.1007/s00018-017-2452-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022]
Abstract
In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
19
|
Properties and Immune Function of Cardiac Fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:35-70. [DOI: 10.1007/978-3-319-57613-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Kolck UW, Haenisch B, Molderings GJ. Cardiovascular symptoms in patients with systemic mast cell activation disease. Transl Res 2016; 174:23-32.e1. [PMID: 26775802 DOI: 10.1016/j.trsl.2015.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/23/2022]
Abstract
Traditionally, mast cell activation disease (MCAD) has been considered as just one rare (neoplastic) disease, mastocytosis, focused on the mast cell (MC) mediators tryptase and histamine and the suggestive, blatant symptoms of flushing and anaphylaxis. Recently another form of MCAD, the MC activation syndrome, has been recognized featuring inappropriate MC activation with little to no neoplasia and likely much more heterogeneously clonal and far more prevalent than mastocytosis. Increasing expertise and appreciation has been established for the truly very large menagerie of MC mediators and their complex patterns of release, engendering complex, nebulous presentations of chronic and acute illness best characterized as multisystem polymorbidity of generally inflammatory ± allergic theme. We describe the pathogenesis of MCAD with a particular focus on clinical cardiovascular symptoms and the therapeutic options for MC mediator-induced cardiovascular symptoms.
Collapse
Affiliation(s)
- Ulrich W Kolck
- Johanniter-Kliniken Bonn, Waldkrankenhaus, Innere Medizin II, Bonn, Germany
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
21
|
Phungphong S, Kijtawornrat A, Wattanapermpool J, Bupha-Intr T. Regular exercise modulates cardiac mast cell activation in ovariectomized rats. J Physiol Sci 2016; 66:165-73. [PMID: 26467449 PMCID: PMC10717377 DOI: 10.1007/s12576-015-0409-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
It is well accepted that regular exercise is a significant factor in the prevention of cardiac dysfunction; however, the cardioprotective mechanism is as yet not well defined. We have examined whether regular exercise can modulate the activity of cardiac mast cells (CMC) after deprivation of female sex hormones, as well as the density and percentage degranulation of mast cells, in ventricular tissue of ovariectomized (OVX) rats after an 11-week running program. A significant increase in CMC density with a greater percentage degranulation was induced after ovarian sex hormone deprivation. Increased CMC density was prevented by estrogen supplements, but not by regular training. To the contrary, increased CMC degranulation in the OVX rat heart was attenuated by exercise training, but not by estrogen supplement. These findings indicate a significant correlation between the degree of CMC degranulation and myocyte cross-section area. However, no change in the expression of inflammatory mediators, including chymase, interleukin-6, and interleukin-10, was detected. Taken together, these results clearly indicate one of the cardioprotective mechanisms of regular aerobic exercise is the modulation of CMC activation.
Collapse
Affiliation(s)
- Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jonggonnee Wattanapermpool
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
22
|
Berthiaume J, Kirk J, Ranek M, Lyon R, Sheikh F, Jensen B, Hoit B, Butany J, Tolend M, Rao V, Willis M. Pathophysiology of Heart Failure and an Overview of Therapies. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Teixeira TL, Machado FC, Alves da Silva A, Teixeira SC, Borges BC, Dos Santos MA, Martins FA, Brígido PC, Rodrigues AA, Notário AFO, Ferreira BA, Servato JPS, Deconte SR, Lopes DS, Ávila VMR, Araújo FDA, Tomiosso TC, Silva MJB, da Silva CV. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy. Sci Rep 2015; 5:16877. [PMID: 26574156 PMCID: PMC4648062 DOI: 10.1038/srep16877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%–30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Fabrício Castro Machado
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, SP, Brasil
| | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | | | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | - Adele Aud Rodrigues
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | | | | | - Simone Ramos Deconte
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Daiana Silva Lopes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | | | | | | | | | | |
Collapse
|
24
|
Brower GL, Levick SP, Janicki JS. Differential Effects of Prevention and Reversal Treatment with Lisinopril on Left Ventricular Remodelling in a Rat Model of Heart Failure. Heart Lung Circ 2015; 24:919-24. [PMID: 25837018 PMCID: PMC4564313 DOI: 10.1016/j.hlc.2015.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Angiotensin converting enzyme (ACE) inhibitors such as lisinopril, represent the front line pharmacological treatment for heart failure, which is characterised by marked left ventricular (LV) dilatation and hypertrophy. This study sought to determine whether initiating treatment with ACE inhibitors at different stages in the remodelling process would alter the efficacy of treatment. METHODS To this end, LV size and function were determined in the aortocaval (AV) fistula model of volume overload-induced heart failure. Sprague-Dawley rats were assigned to sham, untreated AV fistula (21 weeks), AV fistula treated with lisinopril (21 weeks), or AV fistula treated with lisinopril from six to 21 weeks post-fistula groups. RESULTS Administration of lisinopril for the entire 21-week period prevented LV dilatation, attenuated myocardial hypertrophy and prevented changes in myocardial compliance and contractility, whereas delaying initiation of treatment until six weeks post-fistula attenuated LV dilatation and hypertrophy, however, the delayed onset of treatment had no beneficial effect on ventricular compliance or systolic function. CONCLUSIONS The results demonstrate differential effects that can occur with ACE inhibitors depending on the stage during the remodelling process at which treatment is administered.
Collapse
Affiliation(s)
- Gregory L Brower
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Scott P Levick
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph S Janicki
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
25
|
Janicki JS, Brower GL, Levick SP. The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods Mol Biol 2015; 1220:121-39. [PMID: 25388248 DOI: 10.1007/978-1-4939-1568-2_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed.
Collapse
Affiliation(s)
- Joseph S Janicki
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA,
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Ryan A Frieler
- From Department of Molecular and Integrative Physiology (R.A.F., R.M.M.), Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division (R.M.M.), and Department of Pharmacology (R.M.M.), University of Michigan Medical School, Ann Arbor
| | - Richard M Mortensen
- From Department of Molecular and Integrative Physiology (R.A.F., R.M.M.), Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division (R.M.M.), and Department of Pharmacology (R.M.M.), University of Michigan Medical School, Ann Arbor.
| |
Collapse
|
27
|
Abstract
: Mitral regurgitation and other conditions marked by a pure isolated volume overload (VO) of the heart result in a progressive form of eccentric left ventricular remodeling and dysfunction. As opposed to the more extensively studied pressure overload, there are no approved medical therapies because an understanding of the underlying pathological mechanisms at work in VO is lacking. Over the past 20 years, our laboratory has identified multiple key biological functions involved in the pathological remodeling in VO. Specifically, we have noted perturbed matrix homeostasis, detrimental adrenergic signaling, increased intracellular reactive oxygen species and an intense inflammatory response that implicates mast cells and their product chymase, which seems to cause extensive remodeling both inside and outside the cardiomyocyte. How these multiple pathways intersect over the course of VO and their response to various single and combined interventions are now the subject of intense investigation.
Collapse
|
28
|
Li J, Jubair S, Janicki JS. Estrogen inhibits mast cell chymase release to prevent pressure overload-induced adverse cardiac remodeling. Hypertension 2014; 65:328-34. [PMID: 25403608 DOI: 10.1161/hypertensionaha.114.04238] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogen regulation of myocardial chymase and chymase effects on cardiac remodeling are unknown. To test the hypothesis that estrogen prevents pressure overload-induced adverse cardiac remodeling by inhibiting mast cell (MC) chymase release, transverse aortic constriction or sham surgery was performed in 7-week-old intact and ovariectomized (OVX) rats. Three days before creating the constriction, additional groups of OVX rats began receiving 17β-estradiol, a chymase inhibitor, or a MC stabilizer. Left ventricular function, cardiomyocyte size, collagen volume fraction, MC density and degranulation, and myocardial and plasma chymase levels were assessed 18 days postsurgery. Aortic constriction resulted in ventricular hypertrophy in intact and OVX groups, whereas collagen volume fraction was increased only in OVX rats. Chymase protein content was increased by aortic constriction in the intact and OVX groups, with the magnitude of the increase being greater in OVX rats. MC density and degranulation, plasma chymase levels, and myocardial active transforming growth factor-β1 levels were increased by aortic constriction only in OVX rats. Estrogen replacement markedly attenuated the constriction-increased myocardial chymase, MC density and degranulation, plasma chymase, and myocardial active transforming growth factor-β1, as well as prevented ventricular hypertrophy and increased collagen volume fraction. Chymostatin attenuated the aortic constriction-induced ventricular hypertrophy and collagen volume fraction in the OVX rats similar to that achieved by estrogen replacement. Nedocromil yielded similar effects, except for the reduction of chymase content. We conclude that the estrogen-inhibited release of MC chymase is responsible for the cardioprotection against transverse aortic constriction-induced adverse cardiac remodeling.
Collapse
Affiliation(s)
- Jianping Li
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia
| | - Shaiban Jubair
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia
| | - Joseph S Janicki
- From the Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia.
| |
Collapse
|
29
|
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014; 71:549-74. [PMID: 23649149 PMCID: PMC3769482 DOI: 10.1007/s00018-013-1349-6] [Citation(s) in RCA: 1211] [Impact Index Per Article: 110.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/16/2022]
Abstract
Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium, and contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis. Although activated myofibroblasts are the main effector cells in the fibrotic heart, monocytes/macrophages, lymphocytes, mast cells, vascular cells and cardiomyocytes may also contribute to the fibrotic response by secreting key fibrogenic mediators. Inflammatory cytokines and chemokines, reactive oxygen species, mast cell-derived proteases, endothelin-1, the renin/angiotensin/aldosterone system, matricellular proteins, and growth factors (such as TGF-β and PDGF) are some of the best-studied mediators implicated in cardiac fibrosis. Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible. Understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.
Collapse
Affiliation(s)
- Ping Kong
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461 USA
| | - Panagiota Christia
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461 USA
| | - Nikolaos G. Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461 USA
| |
Collapse
|
30
|
Onitsuka K, Ide T, Arai S, Hata Y, Murayama Y, Hosokawa K, Sakamoto T, Tobushi T, Sakamoto K, Fujino T, Sunagawa K. Cardiac phase-targeted dynamic load on left ventricle differentially regulates phase-sensitive gene expressions and pathway activation. J Mol Cell Cardiol 2013; 64:30-8. [PMID: 24004468 DOI: 10.1016/j.yjmcc.2013.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 08/07/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022]
Abstract
The heart has remarkable capacity to adapt to mechanical load and to dramatically change its phenotype. The mechanism underlying such diverse phenotypic adaptations remains unknown. Since systolic overload induces wall thickening, while diastolic overload induces chamber enlargement, we hypothesized that cardiac phase-sensitive mechanisms govern the adaptation. We inserted a balloon into the left ventricle (LV) of a Langendorff perfused rat heart, and controlled LV volume (LVV) using a high performance servo-pump. We created isolated phasic systolic overload (SO) by isovolumic contraction (peak LV pressure >170mmHg) at unstressed diastolic LVV [end-diastolic pressure (EDP)=0mmHg]. We also created pure phasic diastolic overload (DO) by increasing diastolic LVV until EDP >40mmHg and unloading completely in systole. After 3hours under each condition, the myocardium was analyzed using DNA microarray. Gene expressions under SO and DO conditions were compared against unloaded control condition using gene ontology and pathway analysis (n=4 each). SO upregulated proliferation-related genes, whereas DO upregulated fibrosis-related genes (P<10(-5)). Both SO and DO upregulated genes related functionally to cardiac hypertrophy, although the gene profiles were totally different. Upstream regulators confirmed by Western blot indicated that SO activated extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase, and Ca(2+)/calmodulin-dependent protein kinase II (3.2-, 2.0-, and 4.7-fold versus control, P<0.05, n=5), whereas DO activated p38 (2.9-fold, P<0.01), which was consistent with the downstream gene expressions. In conclusion, pure isolated systolic and diastolic overload permits elucidation of cardiac phase-sensitive gene regulation. The genomic responses indicate that mechanisms governing the cardiac phase-sensitive adaptations are different.
Collapse
Affiliation(s)
- Ken Onitsuka
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
McLarty JL, Li J, Levick SP, Janicki JS. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts. J Inflamm Res 2013; 6:99-108. [PMID: 24062614 PMCID: PMC3780290 DOI: 10.2147/jir.s48422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Inflammatory cells play a major role in the pathology of heart failure by stimulating cardiac fibroblasts to regulate the extracellular matrix in an adverse way. In view of the fact that inflammatory cells have estrogen receptors, we hypothesized that estrogen provides cardioprotection by decreasing the ability of cardiac inflammatory cells to influence fibroblast function. Methods Male rats were assigned to either an untreated or estrogen-treated group. In the treated group, estrogen was delivered for 2 weeks via a subcutaneous implanted pellet containing 17β-estradiol. A mixed population of cardiac inflammatory cells, including T-lymphocytes (about 70%), macrophages (about 12%), and mast cells (about 12%), was isolated from each rat and cultured in a Boyden chamber with cardiac fibroblasts from untreated adult male rats for 24 hours. To examine if tumor necrosis factor-alpha (TNF-α) produced by inflammatory cells represents a mechanism contributing to the stimulatory effects of inflammatory cells on cardiac fibroblasts, inflammatory cells from the untreated group were incubated with cardiac fibroblasts in a Boyden chamber system for 24 hours in the presence of a TNF-α-neutralizing antibody. Cardiac fibroblasts were also incubated with 5 ng/mL of TNF-α for 24 hours. Fibro-blast proliferation, collagen synthesis, matrix metalloproteinase activity, β1 integrin protein levels, and the ability of fibroblasts to contract collagen gels were determined in all groups and statistically compared via one-way analysis of variance. Results Inflammatory cells from the untreated group resulted in: 1) an increased fibroblast proliferation, collagen production and matrix metalloproteinase activity; and 2) a loss of β1 integrin protein and a reduced ability to contract collagen gels. In contrast, inflammatory cells from the treated group resulted in: 1) an attenuated fibroblast proliferation; 2) a nonsignificant reduction in collagen production; 3) the prevention of matrix metalloproteinase activation and the loss of β1 integrin by fibroblasts and 4) a preservation of the fibroblasts’ ability to contract collagen gels. The TNF-α neutralizing antibody attenuated or prevented the untreated inflammatory cell-induced fibroblast proliferation, collagen production, matrix metalloproteinase activation and loss of β1 integrin protein as well as preserved fibroblast contractile ability. Incubation with TNF-α yielded changes in the cardiac fibroblast parameters that were directionally similar to the results obtained with untreated inflammatory cells. Conclusion These results and those of our previous in vivo studies suggest that a major mechanism by which estrogen provides cardioprotection is its ability to modulate synthesis of TNF-α by inflammatory cells, thereby preventing inflammatory cell induction of cardiac fibroblast events that contribute to adverse extracellular matrix remodeling.
Collapse
Affiliation(s)
- Jennifer L McLarty
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
32
|
Fujiu K, Nagai R. Contributions of cardiomyocyte–cardiac fibroblast–immune cell interactions in heart failure development. Basic Res Cardiol 2013; 108:357. [DOI: 10.1007/s00395-013-0357-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/13/2013] [Accepted: 03/21/2013] [Indexed: 12/20/2022]
|
33
|
Mina Y, Rinkevich-Shop S, Konen E, Goitein O, Kushnir T, Epstein FH, Feinberg MS, Leor J, Landa-Rouben N. Mast cell inhibition attenuates myocardial damage, adverse remodeling, and dysfunction during fulminant myocarditis in the rat. J Cardiovasc Pharmacol Ther 2013; 18:152-61. [PMID: 23172937 PMCID: PMC3968541 DOI: 10.1177/1074248412458975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Myocarditis is a life-threatening heart disease characterized by myocardial inflammation, necrosis, and chronic fibrosis. While mast cell inhibition has been suggested to prevent fibrosis in rat myocarditis, little is known about its effectiveness in attenuating cardiac remodeling and dysfunction in myocarditis. Thus, we sought to test the hypothesis that mast cell inhibition will attenuate the inflammatory reaction and associated left ventricular (LV) remodeling and dysfunction after fulminant autoimmune myocarditis. Methods and RESULTS To induce experimental autoimmune myocarditis, we immunized 30 rats with porcine cardiac myosin (PCM) twice at a 7-day interval. On day 8 animals were randomized into treatment with either an intraperitoneal (IP) injection of 25mg/kg of cromolyn sodium (n = 13) or an equivalent volume (∼0.5 mL IP) of normal saline (n = 11). All animals were scanned by serial echocardiography studies before treatment (baseline echocardiogram) and after 20 days of cromolyn sodium (28 days after immunization). Furthermore, serial cardiac magnetic resonance was performed in a subgroup of 12 animals. After 20 days of treatment (28 days from first immunization), hearts were harvested for histopathological analysis. By echocardiography, cromolyn sodium prevented LV dilatation and attenuated LV dysfunction, compared with controls. Postmortem analysis of hearts showed that cromolyn sodium reduced myocardial fibrosis, as well as the number and size of cardiac mast cells in the inflamed myocardium, compared with controls. CONCLUSIONS Our study suggests that mast cell inhibition with cromolyn sodium attenuates adverse LV remodeling and dysfunction in myocarditis. This mechanism-based therapy is clinically relevant and could improve the outcome of patients at risk for inflammatory cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Yair Mina
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Janicki JS, Spinale FG, Levick SP. Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase. Pflugers Arch 2013; 465:687-97. [PMID: 23417570 DOI: 10.1007/s00424-013-1229-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
This review is focused on gender differences in cardiac remodeling secondary to sustained increases in cardiac volume (VO) and generated pressure (PO). Estrogen has been shown to favorably alter the course of VO-induced remodeling. That is, the VO-induced increased extracellular matrix proteolytic activity and mast cell degranulation responsible for the adverse cardiac remodeling in males and ovariectomized rodents do not occur in intact premenopausal females. While less is known regarding the mechanisms responsible for female cardioprotection in PO-induced stress, gender differences in remodeling have been reported indicating the ability of premenopausal females to adequately compensate. In view of the fact that, in male mice with PO, mast cells have been shown to play a role in the adverse remodeling suggests favorable estrogen modification of mast cell phenotype may also be responsible for cardioprotection in females with PO. Thus, while evidence is accumulating regarding premenopausal females being cardioprotected, there remains the need for in-depth studies to identify critical downstream molecular targets that are under the regulation of estrogen and relevant to cardiac remodeling. Such studies would result in the development of therapy which provides cardioprotection while avoiding the adverse effects of systemic estrogen delivery.
Collapse
Affiliation(s)
- Joseph S Janicki
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
35
|
Abstract
Mast cells are increasingly being recognized as effector cells in many cardiovascular conditions. Many mast-cell-derived products such as tryptase and chymase can, through their enzymic action, have detrimental effects on blood vessel structure while mast cell-derived mediators such as cytokines and chemokines can perpetuate vascular inflammation. Mice lacking mast cells have been developed and these are providing an insight into how mast cells are involved in cardiovascular diseases and, as knowledge increase, mast cells may become a viable therapeutic target to slow progression of cardiovascular disease.
Collapse
|
36
|
Fowlkes V, Wilson CG, Carver W, Goldsmith EC. Mechanical loading promotes mast cell degranulation via RGD-integrin dependent pathways. J Biomech 2012; 46:788-95. [PMID: 23261248 DOI: 10.1016/j.jbiomech.2012.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 01/15/2023]
Abstract
Mast cells are known to respond to a number of stimuli, such as IgE antibody-antigen complexes, pathogens, chemical compounds, and physical stimulation, resulting in the activation of these cells and subsequent release of cytokines, inflammatory mediators and granules which can influence the pathophysiology of neighboring cells. Although different forms of physical stimulation (i.e. shear stress and acupuncture) have been investigated, the effect of cyclic tensile loading on mast cell activation has not. To characterize the response of mast cells to tensile loading, RBL-2H3 cells were embedded in a 3-dimensional fibrin construct and subjected to 24h of cyclic loading at 0%, 5% or 10% peak tensile strain. Mechanical loading significantly increased RBL-2H3 cell secretion of β-hexosaminidase (2.1- to 2.3-fold, respectively) in a load- and time-dependent manner when compared to the controls. Furthermore, no evidence of load-induced cell death or alterations in cell proliferation was observed. To determine if RGD-dependent integrins mediated the degranulation of mast cells during mechanical loading, cell-matrix interactions were inhibited by treating the cells with echistatin, a disintegrin that binds RGD-dependent integrins. Treatment with echistatin significantly attenuated load-induced degranulation without compromising cell viability. These results suggest a novel mechanism through which mechanical loading induces mast cell activation via RGD binding integrins.
Collapse
Affiliation(s)
- Vennece Fowlkes
- University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, 6439 Garners Ferry Rd., Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
37
|
Li J, Lu H, Plante E, Meléndez GC, Levick SP, Janicki JS. Stem cell factor is responsible for the rapid response in mature mast cell density in the acutely stressed heart. J Mol Cell Cardiol 2012; 53:469-74. [PMID: 22850284 DOI: 10.1016/j.yjmcc.2012.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/26/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
In the abdominal aortocaval (AV) fistula model of heart failure, we have shown that the acute doubling of cardiac mature mast cell (MC) density involved the maturation, but not proliferation, of a resident population of immature cardiac MCs. An increase in stem cell factor (SCF) may be responsible for this MC maturation process. Thus, the purpose of this study was to determine if: 1) myocardial SCF levels are increased following the initiation of cardiac volume overload; 2) the incubation of left ventricular (LV) tissue slices with SCF results in an increase in mature MC density; and 3) chemical degranulation of mature cardiac MCs in LV tissue slices results in an increase in SCF and mature MC density via MC chymase. Male rats with either sham or AV fistula surgery were studied at 6h and 1 and 3 days post-surgery. LV slices from normal male rat hearts were incubated for 16h with media alone or media containing one of the following: 1) recombinant rat SCF (20 ng/ml) to determine the effects of SCF on MC maturation; 2) the MC secretagogue compound 48/80 (20 μg/ml) to determine the effects of MC degranulation on SCF levels and mature MC density; 3) media containing compound 48/80 and anti-SCF (5 μg/ml) to block the effects of SCF; 4) chymase (100 nM) to determine the effects of chymase on SCF; and 5) compound 48/80 and chymostatin (chymase inhibitor, 10 μM) to block the effects of MC chymase. In AV fistula animals, myocardial SCF was significantly elevated above that in the sham group at 6h and 1 day post fistula by 2 and 1.8 fold, respectively, and then returned to normal by 3 days; this increase slightly preceded significant increases in MC density. Incubation of LV slices with SCF resulted in a doubling of mature MC density and this was concomitant with a significant decrease in the number of immature mast cells. Incubation of LV slices with compound 48/80 increased media SCF levels and mature MC density and with anti-SCF and chymostatin prevented these compound 48/80-induced increases. Incubation with chymase increased media SCF levels and mature MC density. These findings indicate that activated mature cardiac mast cells are responsible, in a paracrine fashion, for the increase in mature MC density post AV fistula by rapidly increasing SCF levels via the release of chymase.
Collapse
Affiliation(s)
- Jianping Li
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
38
|
McLarty JL, Meléndez GC, Levick SP, Bennett S, Sabo-Attwood T, Brower GL, Janicki JS. Estrogenic modulation of inflammation-related genes in male rats following volume overload. Physiol Genomics 2012; 44:362-73. [PMID: 22274565 DOI: 10.1152/physiolgenomics.00146.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our laboratory has previously reported significant increases of the proinflammatory cytokine TNF-α in male hearts secondary to sustained volume overload. These elevated levels of TNF-α are accompanied by left ventricular (LV) dilatation and cardiac dysfunction. In contrast, estrogen has been shown to protect against this adverse cardiac remodeling in both female and male rats. The purpose of this study was to determine whether estrogen has an effect on inflammation-related genes that contribute to this estrogen-mediated cardioprotection. Myocardial volume overload was induced by aortocaval fistula in 8 wk old male Sprague-Dawley rats (n = 30), and genes of interest were identified using an inflammatory PCR array in Sham, Fistula, and Fistula + Estrogen-treated (0.02 mg/kg per day beginning 2 wk prior to fistula) groups. A total of 55 inflammatory genes were modified (≥2-fold change) at 3 days postfistula. The number of inflammatory gene was reduced to 21 genes by estrogen treatment, whereas 13 genes were comparably modulated in both fistula groups. The most notable were TNF-α, which was downregulated by estrogen, and the TNF-α receptors, which were differentially regulated by estrogen. Specific genes related to arachidonic acid metabolism were downregulated by estrogen, including cyclooxygenase-1 and -2. Finally, gene expression for the β1-integrin cell adhesion subunit was significantly upregulated in the LV of estrogen-treated animals. Protein levels reflected the changes observed at the gene level. These data suggest that estrogen provides its cardioprotective effects, at least in part, via genomic modulation of numerous inflammation-related genes.
Collapse
Affiliation(s)
- Jennifer L McLarty
- Cell Biology and Anatomy, University of South Carolina-School of Medicine, Columbia, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Lu H, Meléndez GC, Levick SP, Janicki JS. Prevention of adverse cardiac remodeling to volume overload in female rats is the result of an estrogen-altered mast cell phenotype. Am J Physiol Heart Circ Physiol 2011; 302:H811-7. [PMID: 22160000 DOI: 10.1152/ajpheart.00980.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we have reported sex differences in the cardiac remodeling response to ventricular volume overload whereby male and ovariectomized (OVX) female rats develop eccentric hypertrophy, and intact (Int) female rats develop concentric hypertrophy. In males, this adverse remodeling has been attributed to an initial cascade of events involving myocardial mast cell and matrix metalloproteinase activation and extracellular collagen matrix degradation. The objective of this study was to determine the effect of female hormones on this initial cascade. Accordingly, an aortocaval fistula (Fist) was created in 7-wk-old Int and OVX rats, which, together with sham-operated (sham) controls, were studied at 1, 3, and 5 days postsurgery. In Int-Fist rats, myocardial mast cell density, collagen volume fraction, endothelin (ET)-1, stem cell factor (SCF), and TNF-α remained at control levels or were minimally elevated throughout the study period. This was not the case in the OVX-Fist group, where the initial response included significant increases in mast cell density, collagen degradation, ET-1, SCF, and TNF-α. These events in the OVX-Fist group were abolished by prefistula treatment with a mast cell stabilizer nedocromil. Of note was the observation that ET-1, TNF-α, SCF, and collagen volume fraction values for the OVX-sham group were greater than those of the Int-sham group, suggesting that the reduction of female hormones alone results in major myocardial changes. We concluded that female hormone-related cardioprotection to the volume stressed myocardium is the result of an altered mast cell phenotype and/or the prevention of mast cell activation.
Collapse
Affiliation(s)
- Hong Lu
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
40
|
McLarty JL, Meléndez GC, Spencer WJ, Levick SP, Brower GL, Janicki JS. Isolation of functional cardiac immune cells. J Vis Exp 2011:3020. [PMID: 22158428 PMCID: PMC3346052 DOI: 10.3791/3020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cardiac immune cells are gaining interest for the roles they play in the pathological remodeling in many cardiac diseases. These immune cells, which include mast cells, T-cells and macrophages; store and release a variety of biologically active mediators including cytokines and proteases such as tryptase. These mediators have been shown to be key players in extracellular matrix metabolism by activating matrix metalloproteinases or causing collagen accumulation by modulating the cardiac fibroblasts' function. However, available techniques for isolating cardiac immune cells have been problematic because they use bacterial collagenase to digest the myocardial tissue. This technique causes activation of the immune cells and thus a loss of function. For example, cardiac mast cells become significantly less responsive to compounds that cause degranulation. Therefore, we developed a technique that allows for the isolation of functional cardiac immune cells which would lead to a better understanding of the role of these cells in cardiac disease. This method requires a familiarity with the anatomical location of the rat's xiphoid process, axilla and falciform ligament, and pericardium of the heart. These landmarks are important to increase success of the procedure and to ensure a higher yield of cardiac immune cells. These isolated cardiac immune cells can then be used for characterization of functionality, phenotype, maturity, and co-culture experiments with other cardiac cells to gain a better understanding of their interactions.
Collapse
Affiliation(s)
- Jennifer L McLarty
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, USA
| | | | | | | | | | | |
Collapse
|
41
|
Takeda N, Manabe I. Cellular Interplay between Cardiomyocytes and Nonmyocytes in Cardiac Remodeling. Int J Inflam 2011; 2011:535241. [PMID: 21941677 PMCID: PMC3175723 DOI: 10.4061/2011/535241] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/28/2011] [Accepted: 06/12/2011] [Indexed: 01/12/2023] Open
Abstract
Cardiac hypertrophy
entails complex structural remodeling involving
rearrangement of muscle fibers, interstitial
fibrosis, accumulation of extracellular matrix,
and angiogenesis. Many of the processes
underlying cardiac remodeling have features in
common with chronic inflammatory processes.
During these processes, nonmyocytes, such as
endothelial cells, fibroblasts, and immune cells,
residing in or infiltrating into the myocardial
interstitium play active roles. This paper
mainly addresses the functional roles of
nonmyocytes during cardiac remodeling. In
particular, we focus on the communication
between cardiomyocytes and nonmyocytes through
direct cell-cell interactions and
autocrine/paracrine-mediated
pathways.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cell and Developmental Biology and Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
42
|
Meléndez GC, Li J, Law BA, Janicki JS, Supowit SC, Levick SP. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells. Cardiovasc Res 2011; 92:420-9. [PMID: 21908647 DOI: 10.1093/cvr/cvr244] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. METHODS AND RESULTS Volume overload was induced by aortocaval fistula in TAC1(-/-) mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1(-/-) mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1(-/-) mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1(-/-) group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. CONCLUSIONS Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix.
Collapse
Affiliation(s)
- Giselle C Meléndez
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
43
|
Meuser-Batista M, Corrêa JR, Carvalho VF, de Carvalho Britto CFDP, Moreira ODC, Batista MM, Soares MJ, Filho FAF, E Silva PMR, Lannes-Vieira J, Silva RC, Henriques-Pons A. Mast cell function and death in Trypanosoma cruzi infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1894-904. [PMID: 21819958 DOI: 10.1016/j.ajpath.2011.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 02/02/2023]
Abstract
Although the roles of mast cells (MCs) are essential in many inflammatory and fibrotic diseases, their role in Trypanosoma cruzi-induced cardiomyopathy is unexplored. In this study, we treated infected CBA mice with cromolyn, an MC stabilizer, and observed much greater parasitemia and interferon-γ levels, higher mortality, myocarditis, and cardiac damage. Although these data show that MCs are important in controlling acute infection, we observed MC apoptosis in the cardiac tissue and peritoneal cavity of untreated mice. In the heart, pericardial mucosal MC die, perhaps because of reduced amounts of local stem cell factor. Using RT-PCR in purified cardiac MCs, we observed that infection induced transcription of P2X(7) receptor and Fas, two molecules reportedly involved in cell death and inflammatory regulation. In gld/gld mice (FasL(-/-)), apoptosis of cardiac, but not peritoneal, MCs was decreased. Conversely, infection of P2X(7)(-/-) mice led to reduced peritoneal, but not cardiac, MC death. These data illustrate the immunomodulatory role played by MCs in T. cruzi infection and the complexity of molecular interactions that control inflammatory pathways in different tissues and compartments.
Collapse
Affiliation(s)
- Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino, e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Loss of interstitial collagen causes structural and functional alterations of cardiomyocyte subsarcolemmal mitochondria in acute volume overload. J Mol Cell Cardiol 2010; 50:147-56. [PMID: 21059354 DOI: 10.1016/j.yjmcc.2010.10.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 11/20/2022]
Abstract
Volume overload (VO) caused by aortocaval fistula (ACF) is associated with oxidative/inflammatory stress. The resulting inflammation, matrix metalloproteinase (MMP) activation, and collagen degradation is thought to play a pivotal role in left ventricular (LV) dilatation and failure. Since mitochondria are also targets for inflammation and oxidative stress, we hypothesized that there would be bioenergetic dysfunction with acute VO. In Sprague-Dawley rats subjected to 24 hrs of ACF, there was a two-fold increase in LV pressure-volume area in vivo, consistent with increased LV myocardial oxygen usage and increased bioenergetic demand in cardiomyocytes. Isolated cardiomyocytes from ACF LVs demonstrated increased hydrogen peroxide and superoxide formation and increased MMP activity. Subsarcolemmal mitochondria (SSM) showed a 40% decrease in state 3 respiration and proteomic analysis of SSM demonstrated decreased levels of complexes I-V in ACF. Immunohistochemical analysis revealed disruption of the subsarcolemmal location of the SSM network in ACF. To test for a potential link between SSM dysfunction and loss of interstitial collagen, rats were treated with the MMP-inhibitor PD166793 prior to ACF. MMP-inhibitor preserved interstitial collagen, integrin-α5 and the SSM structural arrangement. In addition, the decrease in state 3 mitochondrial respiration with ACF was prevented by PD166793. These studies established an important interaction between degradation of interstitial collagen in acute VO and the disruption of SSM structure and function which could contribute to progression to heart failure.
Collapse
|
45
|
Levick SP, Meléndez GC, Plante E, McLarty JL, Brower GL, Janicki JS. Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res 2010; 89:12-9. [PMID: 20736239 DOI: 10.1093/cvr/cvq272] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic volume overload secondary to aortocaval fistula and mitral regurgitation. Accordingly, mast cells have been implicated to have a major role in the pathophysiology of these cardiovascular disorders. In vitro studies have verified that mast cell proteases are capable of activating collagenase, gelatinases and stromelysin. Recent results have shown that with chronic ventricular volume overload, there is an elevation in mast cell density, which is associated with a concomitant increase in matrix metalloproteinase (MMP) activity and extracellular matrix degradation. However, the role of the cardiac mast cell is not one dimensional, with evidence from hypertension and cardiac transplantation studies suggesting that they can also assume a pro-fibrotic phenotype in the heart. These adverse events do not occur in mast cell deficient rodents or when cardiac mast cells are pharmacologically prevented from degranulating. This review is focused on the regulation and dual roles of cardiac mast cells in: (i) activating MMPs and causing myocardial fibrillar collagen degradation and (ii) causing fibrosis in the stressed, injured or diseased heart. Moreover, there is strong evidence that premenopausal female cardioprotection may at least partly be due to gender differences in cardiac mast cells. This too will be addressed.
Collapse
Affiliation(s)
- Scott P Levick
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
46
|
Du Y, Plante E, Janicki JS, Brower GL. Temporal evaluation of cardiac myocyte hypertrophy and hyperplasia in male rats secondary to chronic volume overload. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1155-63. [PMID: 20651227 DOI: 10.2353/ajpath.2010.090587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The temporal myocardial remodeling induced by chronic ventricular volume overload in male rats was examined. Specifically, left ventricular (LV) cardiomyocyte length and width, sarcomere length, and number of nuclei were measured in male rats (n = 8 to 17) at 1, 3, 5, 7, 21, 35, and 56 days after creation of an infrarenal aortocaval fistula. In contrast to previously published reports of progressive increases in cardiomyocyte length and cross-sectional area at 5 days post-fistula and beyond in female hearts, cardiomyocyte length and width did not increase significantly in males during the first 35 days of volume overload. Furthermore, a significant decrease in cardiomyocyte length relative to age-matched controls, together with a reduced number of sarcomeres per cell, was noted in male hearts at 5 days post-fistula. There was a concurrent increase in the percentage of mononucleated cardiomyocytes from 11.6% to 18% at 5 days post-fistula. These initial differences could not be attributed to cardiomyocyte proliferation, and treatment with a microtubule stabilizing agent prevented them from occurring. The subsequent significant increase in LV weight without corresponding increases in cardiomyocyte dimensions is indicative of hyperplasia. Thus, these findings indicate hyperplasia resulting from cytokinesis of cardiomyocytes is a key mechanism, independent of hypertrophy, that contributes to the significant increase in LV mass in male hearts subjected to chronic volume overload.
Collapse
Affiliation(s)
- Yan Du
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
47
|
Meléndez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 2010; 56:225-31. [PMID: 20606113 DOI: 10.1161/hypertensionaha.109.148635] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although there is a correlation between hypertension and levels of interleukin (IL) 6, the exact role this cytokine plays in myocardial remodeling is unknown. This is complicated by the variable tissue and circulating levels of IL-6 reported in numerous experimental models of hypertension. Accordingly, we explored the hypothesis that elevated levels of IL-6 mediate adverse myocardial remodeling. To this end, adult male Sprague-Dawley rats were infused with IL-6 (2.5 microg . kg(-1) . h(-1), IP) for 7 days via osmotic minipump and compared with vehicle-infused, aged-matched controls. Left ventricular function was evaluated using a blood-perfused isolated heart preparation. Myocardial interstitial collagen volume fraction and isolated cardiomyocyte size were also assessed. Isolated adult cardiac fibroblast experiments were performed to determine the importance of the soluble IL-6 receptor in mediating cardiac fibrosis. IL-6 infusions in vivo resulted in concentric left ventricular hypertrophy, increased ventricular stiffness, a marked increase in collagen volume fraction (6.2% versus 1.7%; P<0.001), and proportional increases in cardiomyocyte width and length, all independent of blood pressure. The soluble IL-6 receptor in combination with IL-6 was found to be essential to producing increased collagen concentration by isolated cardiac fibroblasts and also played a role in mediating a phenotypic conversion to myofibroblasts. These novel observations demonstrate that IL-6 induces a myocardial phenotype almost identical to that of the hypertensive heart, identifying IL-6 as potentially important in this remodeling process.
Collapse
Affiliation(s)
- Giselle C Meléndez
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Pat B, Killingsworth C, Chen Y, Gladden JD, Walcott G, Powell PC, Denney T, Gupta H, Desai R, Tillson M, Dillon AR, Dell'italia LJ. Mast cell stabilization decreases cardiomyocyte and LV function in dogs with isolated mitral regurgitation. J Card Fail 2010; 16:769-76. [PMID: 20797601 DOI: 10.1016/j.cardfail.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mast cells are increased in isolated mitral regurgitation (MR) in the dog and may mediate extracellular matrix loss and left ventricular (LV) dilatation. We tested the hypothesis that mast cell stabilization would attenuate LV remodeling and improve function in the MR dog. METHODS AND RESULTS MR was induced in adult dogs randomized to no treatment (MR, n = 5) or to the mast cell stabilizer, ketotifen (MR + MCS, n = 4) for 4 months. LV hemodynamics were obtained at baseline and after 4 months of MR and magnetic resonance imaging (MRI) was performed at sacrifice. MRI-derived, serial, short-axis LV end-diastolic (ED) and end-systolic (ES) volumes, LVED volume/mass ratio, and LV 3-dimensional radius/wall thickness were increased in MR and MR + MCS dogs compared with normal dogs (n = 6) (P < .05). Interstitial collagen was decreased by 30% in both MR and MR + MCS versus normal dogs (P < .05). LV contractility by LV maximum time-varying elastance was significantly depressed in MR and MR + MCS dogs. Furthermore, cardiomyocyte fractional shortening was decreased in MR versus normal dogs and further depressed in MR + MCS dogs (P < .05). In vitro administration of ketotifen to normal cardiomyocytes also significantly decreased fractional shortening and calcium transients. CONCLUSIONS Chronic mast cell stabilization did not attenuate eccentric LV remodeling or collagen loss in MR. However, MCS therapy had a detrimental effect on LV function because of a direct negative inotropic effect on cardiomyocyte function.
Collapse
Affiliation(s)
- Betty Pat
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Murray DB, Levick SP, Brower GL, Janicki JS. Inhibition of matrix metalloproteinase activity prevents increases in myocardial tumor necrosis factor-alpha. J Mol Cell Cardiol 2010; 49:245-50. [PMID: 20403361 DOI: 10.1016/j.yjmcc.2010.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 02/05/2023]
Abstract
TNF-alpha is known to cause adverse myocardial remodeling. While we have previously shown a role for cardiac mast cells in mediating increases in myocardial TNF-alpha, however, matrix metalloproteinase (MMP) activation of TNF-alpha may also be contributory. We sought to determine the relative roles of MMPs and cardiac mast cells in the activation of TNF-alpha in the hearts of rats subjected to chronic volume overload. Interventions with the broad spectrum MMP inhibitor, GM6001, or the mast cell stabilizer, nedocromil, were performed in the rat aortocaval fistula (ACF) model of volume overload. Myocardial TNF-alpha levels were significantly increased in the ACF. This increase was prevented by MMP inhibition with GM6001 (p< or =0.001 vs. ACF). Conversely, myocardial TNF-alpha levels were increased in the ACF+nedocromil treated fistula groups (p< or =0.001 vs. sham). The degradation of interstitial collagen volume fraction seen in the untreated ACF group was prevented in both the GM6001 and nedocromil treated hearts. Significant increases in LV myocardial ET-1 levels also occurred in the ACF group at 3days post-fistula. Whereas administration of GM6001 significantly attenuated this increase, mast cell stabilization with nedocromil markedly exacerbated the increase, producing ET-1 levels 6.5 fold and 2 fold greater than that in the sham-operated control and ACF group, respectively. The efficacy of the MMP inhibitor, GM6001, to prevent increased levels of myocardial TNF-alpha is indicative of MMP-mediated cleavage of latent extracellular membrane-bound TNF-alpha protein as the primary source of bioactive TNF-alpha in the myocardium of the volume overload heart.
Collapse
Affiliation(s)
- David B Murray
- Department of Pharmacology, University of Mississippi School of Pharmacy, University, MS 38677, USA.
| | | | | | | |
Collapse
|
50
|
Omae K, Ogawa T, Yoshikawa M, Nitta K. The use of H1-receptor antagonists and left ventricular remodeling in patients on chronic hemodialysis. Heart Vessels 2010; 25:163-9. [DOI: 10.1007/s00380-009-1183-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022]
|