1
|
El-Nashar H, Sabry M, Tseng YT, Francis N, Latif N, Parker KH, Moore JE, Yacoub MH. Multiscale structure and function of the aortic valve apparatus. Physiol Rev 2024; 104:1487-1532. [PMID: 37732828 PMCID: PMC11495199 DOI: 10.1152/physrev.00038.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.
Collapse
Affiliation(s)
- Hussam El-Nashar
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Malak Sabry
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nadine Francis
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kim H Parker
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - James E Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdi H Yacoub
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Lu W, Sun C, Hou J. Predicting key gene related to immune infiltration and myofibroblast-like valve interstitial cells in patients with calcified aortic valve disease based on bioinformatics analysis. J Thorac Dis 2023; 15:3726-3740. [PMID: 37559614 PMCID: PMC10407485 DOI: 10.21037/jtd-23-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/09/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Calcified aortic valve disease (CAVD) is the most prevalent valvular disease that can be treated only through valve replacement. We aimed to explore potential biomarkers and the role of immune cell infiltration in CAVD progression through bioinformatics analysis. METHODS Differentially ex-pressed genes (DEGs) were screened out based on three microarray datasets: GSE12644, GSE51472 and GSE83453. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to evaluate gene expression differences. Machine learning algorithms and DEGs were used to screen key gene. We used CIBERSORT to evaluate the immune cell infiltration of CAVD and evaluated the correlation between the biomarkers and infiltrating immune cells. We also compared bioinformatics analysis results with the valve interstitial cells (VICs) gene expression in single-cell RNA sequencing. RESULTS Collagen triple helix repeat containing 1 (CTHRC1) was identified as the key gene of CAVD. We identified a cell subtype valve interstitial cells-fibroblast, which was closely associated with fibro-calcific progress of aortic valve. CTHRC1 highly expressed in the VIC subpopulation. Immune infiltration analysis demonstrated that mast cells, B cells, dendritic cells and eosinophils were involved in pathogenesis of CAVD. Correlation analysis demonstrated that CTHRC1 was correlated with mast cells mostly. CONCLUSIONS In summary, the study suggested that CTHRC1 was a key gene of CAVD and CTHRC1 might participate in the potential molecular pathways involved in the connection between infiltrating immune cells and myofibroblast phenotype VICs.
Collapse
Affiliation(s)
- Wenyuan Lu
- Cardiac Surgery Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Sun
- Cardiac Surgery Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Hou
- Cardiac Surgery Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Bracco Gartner TCL, Wang Y, Leiteris L, van Adrichem I, Marsman J, Goumans MJ, Bouten CVC, Sluijter JPG, den Toonder JMJ, Suyker WJL, Hjortnaes J. Cyclic strain has antifibrotic effects on the human cardiac fibroblast transcriptome in a human cardiac fibrosis-on-a-chip platform. J Mech Behav Biomed Mater 2023; 144:105980. [PMID: 37399762 DOI: 10.1016/j.jmbbm.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
In cardiac fibrosis, in response to stress or injury, cardiac fibroblasts deposit excessive amounts of collagens which contribute to the development of heart failure. The biochemical stimuli in this process have been extensively studied, but the influence of cyclic deformation on the fibrogenic behavior of cardiac fibroblasts in the ever-beating heart is not fully understood. In fact, most investigated mechanotransduction pathways in cardiac fibroblasts seem to ultimately have profibrotic effects, which leaves an important question in cardiac fibrosis research unanswered: how do cardiac fibroblasts stay quiescent in the ever-beating human heart? In this study, we developed a human cardiac fibrosis-on-a-chip platform and utilized it to investigate if and how cyclic strain affects fibrogenic signaling. The pneumatically actuated platform can expose engineered tissues to controlled strain magnitudes of 0-25% - which covers the entire physiological and pathological strain range in the human heart - and to biochemical stimuli and enables high-throughput screening of multiple samples. Microtissues of human fetal cardiac fibroblasts (hfCF) embedded in gelatin methacryloyl (GelMA) were 3D-cultured on this platform and exposed to strain conditions which mimic the healthy human heart. The results provide evidence of an antifibrotic effect of the applied strain conditions on cardiac fibroblast behavior, emphasizing the influence of biomechanical stimuli on the fibrogenic process and giving a detailed overview of the mechanosensitive pathways and genes involved, which can be used in the development of novel therapies against cardiac fibrosis.
Collapse
Affiliation(s)
- Tom C L Bracco Gartner
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands
| | - Ye Wang
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Department of Mechanical Engineering, Technical University Eindhoven, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Laurynas Leiteris
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands
| | - Iris van Adrichem
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands
| | - Judith Marsman
- Central Diagnostics Laboratory, UMC Utrecht, Utrecht, the Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carlijn V C Bouten
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Department of Cardiology, UMC Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Jaap M J den Toonder
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J L Suyker
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, UMC Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, the Netherlands; Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Wang X, Kuban-Johnston D, Lapuerta P, Lacerda CMR. Telotristat ethyl reverses myxomatous changes in mice mitral valves. Front Cardiovasc Med 2022; 9:945672. [PMID: 35990981 PMCID: PMC9386075 DOI: 10.3389/fcvm.2022.945672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Rationale Myxomatous mitral valve degeneration is a common pathological manifestation of mitral valve regurgitation, with or without valvular prolapse. In addition to similarities between naturally occurring and serotonergic valve degeneration, an increasing body of evidence has recently suggested that serotonin signaling is a regulator of degenerative valvulopathies. Studies have found that serotonin can be synthesized locally by valvular cells and serotonin receptors in turn may be activated to promote signaling. Recently, telotristat ethyl (TE) has been introduced as a treatment for carcinoid disease, by selectively inhibiting tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis. TE provides a unique tool to test inhibition of serotonin synthesis in vivo, without impacting brain serotonin, to further confirm the role of local serotonin synthesis on heart valves. Objective To confirm the link between serotonin and myxomatous valvular disease in vivo. Methods and results A hypertension-induced myxomatous mitral valve disease mouse model was employed to test the effect of TE on valvular degeneration. Circulating serotonin and local serotonin in valve tissues were tested by enzyme immunoassay and immunohistochemistry, respectively. TE was administrated in two modes: (1) parallel with angiotensin II (A2); (2) post A2 treatment. Myxomatous changes were successfully recapitulated in hypertensive mice, as determined by ECM remodeling, myofibroblast transformation, and serotonin signaling activation. These changes were at least partially reversed upon TE administration. Conclusion This study provides the first evidence of TE as a potential therapeutic for myxomatous mitral disease, either used to prevent or reverse myxomatous degeneration.
Collapse
Affiliation(s)
- Xinmei Wang
- Department of Bioengineering, Shenyang University, Shenyang, China
| | | | - Pablo Lapuerta
- Lexicon Pharmaceuticals, Basking Ridge, NJ, United States
| | - Carla M. R. Lacerda
- Department of Chemical Engineering, The University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
5
|
Bogdanova M, Zabirnyk A, Malashicheva A, Semenova D, Kvitting JPE, Kaljusto ML, Perez MDM, Kostareva A, Stensløkken KO, Sullivan GJ, Rutkovskiy A, Vaage J. Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Front Pharmacol 2022; 13:835825. [PMID: 35721220 PMCID: PMC9203042 DOI: 10.3389/fphar.2022.835825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Aortic valve stenosis secondary to aortic valve calcification is the most common valve disease in the Western world. Calcification is a result of pathological proliferation and osteogenic differentiation of resident valve interstitial cells. To develop non-surgical treatments, the molecular and cellular mechanisms of pathological calcification must be revealed. In the current overview, we present methods for evaluation of calcification in different ex vivo, in vitro and in vivo situations including imaging in patients. The latter include echocardiography, scanning with computed tomography and magnetic resonance imaging. Particular emphasis is on translational studies of calcific aortic valve stenosis with a special focus on cell culture using human primary cell cultures. Such models are widely used and suitable for screening of drugs against calcification. Animal models are presented, but there is no animal model that faithfully mimics human calcific aortic valve disease. A model of experimentally induced calcification in whole porcine aortic valve leaflets ex vivo is also included. Finally, miscellaneous methods and aspects of aortic valve calcification, such as, for instance, biomarkers are presented.
Collapse
Affiliation(s)
- Maria Bogdanova
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Arsenii Zabirnyk
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Daria Semenova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Mari-Liis Kaljusto
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Woman and Children Health, Karolinska Institute, Stockholm, Sweden
| | - Kåre-Olav Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Dayawansa NH, Baratchi S, Peter K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022; 9:783543. [PMID: 35355968 PMCID: PMC8959593 DOI: 10.3389/fcvm.2022.783543] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a high burden of mortality. Chronic inflammation has been postulated as the predominant pathophysiological process underlying CAVD. So far, no effective medical therapies exist to halt the progression of CAVD. This review aims to outline the known pathways of inflammation and calcification in CAVD, focussing on the critical roles of mechanical stress and mechanosensing in the perpetuation of valvular inflammation. Following initiation of valvular inflammation, dysregulation of proinflammatory and osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs) into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways convert mechanical forces experienced by valve leaflets and circulating cells into biochemical signals and may provide the positive feedback loop that promotes acceleration of disease progression in the advanced stages of CAVD. Mechanosensing is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial cells and platelets to high shear stress results in increased expression of mediators of VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated to promote inflammation in CAVD, which normalises following transcatheter valve replacement. Genetic variants and inhibition of Notch signalling accentuate VIC responses to altered mechanical stresses. The study of mechanosensing pathways has revealed promising insights into the mechanisms that perpetuate inflammation and calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD. Mechanosensing pathways may yield promising targets for therapeutic interventions and prognostic biomarkers with the potential to improve the management of CAVD.
Collapse
Affiliation(s)
- Nalin H. Dayawansa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Rogers JD, Richardson WJ. Fibroblast mechanotransduction network predicts targets for mechano-adaptive infarct therapies. eLife 2022; 11:e62856. [PMID: 35138248 PMCID: PMC8849334 DOI: 10.7554/elife.62856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regional control of fibrosis after myocardial infarction is critical for maintaining structural integrity in the infarct while preventing collagen accumulation in non-infarcted areas. Cardiac fibroblasts modulate matrix turnover in response to biochemical and biomechanical cues, but the complex interactions between signaling pathways confound efforts to develop therapies for regional scar formation. We employed a logic-based ordinary differential equation model of fibroblast mechano-chemo signal transduction to predict matrix protein expression in response to canonical biochemical stimuli and mechanical tension. Functional analysis of mechano-chemo interactions showed extensive pathway crosstalk with tension amplifying, dampening, or reversing responses to biochemical stimuli. Comprehensive drug target screens identified 13 mechano-adaptive therapies that promote matrix accumulation in regions where it is needed and reduce matrix levels in regions where it is not needed. Our predictions suggest that mechano-chemo interactions likely mediate cell behavior across many tissues and demonstrate the utility of multi-pathway signaling networks in discovering therapies for context-specific disease states.
Collapse
Affiliation(s)
- Jesse D Rogers
- Department of Bioengineering; Clemson UniversityClemsonUnited States
| | | |
Collapse
|
8
|
Rego BV, Pouch AM, Gorman JH, Gorman RC, Sacks MS. Patient-Specific Quantification of Normal and Bicuspid Aortic Valve Leaflet Deformations from Clinically Derived Images. Ann Biomed Eng 2022; 50:1-15. [PMID: 34993699 PMCID: PMC9084616 DOI: 10.1007/s10439-021-02882-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022]
Abstract
The clinical benefit of patient-specific modeling of heart valve disease remains an unrealized goal, often a result of our limited understanding of the in vivo milieu. This is particularly true in assessing bicuspid aortic valve (BAV) disease, the most common cardiac congenital defect in humans, which leads to premature and severe aortic stenosis or insufficiency (AS/AI). However, assessment of BAV risk for AS/AI on a patient-specific basis is hampered by the substantial degree of anatomic and functional variations that remain largely unknown. The present study was undertaken to utilize a noninvasive computational pipeline ( https://doi.org/10.1002/cnm.3142 ) that directly yields local heart valve leaflet deformation information using patient-specific real-time three-dimensional echocardiographic imaging (rt-3DE) data. Imaging data was collected for patients with normal tricuspid aortic valve (TAV, [Formula: see text]) and those with BAV ([Formula: see text] with fused left and right coronary leaflets and [Formula: see text] with fused right and non-coronary leaflets), from which the medial surface of each leaflet was extracted. The resulting deformation analysis resulted in, for the first time, quantified differences between the in vivo functional deformations of the TAV and BAV leaflets. Our approach was able to capture the complex, heterogeneous surface deformation fields in both TAV and BAV leaflets. We were able to identify and quantify differences in stretch patterns between leaflet types, and found in particular that stretches experienced by BAV leaflets during closure differ from those of TAV leaflets in terms of both heterogeneity as well as overall magnitude. Deformation is a key parameter in the clinical assessment of valvular function, and serves as a direct means to determine regional variations in structure and function. This study is an essential step toward patient-specific assessment of BAV based on correlating leaflet deformation and AS/AI progression, as it provides a means for assessing patient-specific stretch patterns.
Collapse
Affiliation(s)
- Bruno V Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Richardson WJ, Rogers JD, Spinale FG. Does the Heart Want What It Wants? A Case for Self-Adapting, Mechano-Sensitive Therapies After Infarction. Front Cardiovasc Med 2021; 8:705100. [PMID: 34568449 PMCID: PMC8460777 DOI: 10.3389/fcvm.2021.705100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
There is a critical need for interventions to control the development and remodeling of scar tissue after myocardial infarction. A significant hurdle to fibrosis-related therapy is presented by the complex spatial needs of the infarcted ventricle, namely that collagenous buildup is beneficial in the ischemic zone but detrimental in the border and remote zones. As a new, alternative approach, we present a case to develop self-adapting, mechano-sensitive drug targets in order to leverage local, microenvironmental mechanics to modulate a therapy's pharmacologic effect. Such approaches could provide self-tuning control to either promote fibrosis or reduce fibrosis only when and where it is beneficial to do so.
Collapse
Affiliation(s)
| | - Jesse D Rogers
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, SC, United States
| |
Collapse
|
10
|
Walker M, Godin M, Pelling AE. Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF-β1 activation. Integr Biol (Camb) 2021; 12:199-210. [PMID: 32877929 DOI: 10.1093/intbio/zyaa015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Developing methods to study tissue mechanics and myofibroblast activation may lead to new targets for therapeutic treatments that are urgently needed for fibrotic disease. Microtissue arrays are a promising approach to conduct relatively high-throughput research into fibrosis as they recapitulate key biomechanical aspects of the disease through a relevant 3D extracellular environment. In early work, our group developed a device called the MVAS-force to stretch microtissues while enabling simultaneous assessment of their dynamic mechanical behavior. Here, we investigated TGF-β1-induced fibroblast to myofibroblast differentiation in microtissue cultures using our MVAS-force device through assessing α-SMA expression, contractility and stiffness. In doing so, we linked cell-level phenotypic changes to functional changes that characterize the clinical manifestation of fibrotic disease. As expected, TGF-β1 treatment promoted a myofibroblastic phenotype and microtissues became stiffer and possessed increased contractility. These changes were partially reversible upon TGF-β1 withdrawal under a static condition, while, in contrast, long-term cyclic stretching maintained myofibroblast activation. This pro-fibrotic effect of mechanical stretching was absent when TGF-β1 receptors were inhibited. Furthermore, stretching promoted myofibroblast differentiation when microtissues were given latent TGF-β1. Altogether, these results suggest that external mechanical stretch may activate latent TGF-β1 and, accordingly, might be a powerful stimulus for continued myofibroblast activation to progress fibrosis. Further exploration of this pathway with our approach may yield new insights into myofibroblast activation and more effective therapeutic treatments for fibrosis.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada
| | - Michel Godin
- Department of Physics, 150 Louis Pasteur pvt., STEM Complex, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Mechanical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON K1N6N5, Canada.,Ottawa-Carleton Institute for Biomedical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Andrew E Pelling
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada.,Department of Physics, 150 Louis Pasteur pvt., STEM Complex, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, K1N5N5, Canada.,SymbioticA, School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
11
|
Rogers JD, Holmes JW, Saucerman JJ, Richardson WJ. Mechano-chemo signaling interactions modulate matrix production by cardiac fibroblasts. Matrix Biol Plus 2021; 10:100055. [PMID: 34195592 PMCID: PMC8233457 DOI: 10.1016/j.mbplus.2020.100055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
Extracellular matrix remodeling after myocardial infarction occurs in a dynamic environment in which local mechanical stresses and biochemical signaling species stimulate the accumulation of collagen-rich scar tissue. It is well-known that cardiac fibroblasts regulate post-infarction matrix turnover by secreting matrix proteins, proteases, and protease inhibitors in response to both biochemical stimuli and mechanical stretch, but how these stimuli act together to dictate cellular responses is still unclear. We developed a screen of cardiac fibroblast-secreted proteins in response to combinations of biochemical agonists and cyclic uniaxial stretch in order to elucidate the relationships between stretch, biochemical signaling, and cardiac matrix turnover. We found that stretch significantly synergized with biochemical agonists to inhibit the secretion of matrix metalloproteinases, with stretch either amplifying protease suppression by individual agonists or antagonizing agonist-driven upregulation of protease expression. Stretch also modulated fibroblast sensitivity towards biochemical agonists by either sensitizing cells towards agonists that suppress protease secretion or de-sensitizing cells towards agonists that upregulate protease secretion. These findings suggest that the mechanical environment can significantly alter fibrosis-related signaling in cardiac fibroblasts, suggesting caution when extrapolating in vitro data to predict effects of fibrosis-related cytokines in situations like myocardial infarction where mechanical stretch occurs.
Collapse
Affiliation(s)
- Jesse D. Rogers
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Jeffrey W. Holmes
- Departments of Biomedical Engineering, Medicine/Cardiovascular Disease, and Surgery/Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
12
|
Driscoll K, Cruz AD, Butcher JT. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ Res 2021; 128:1344-1370. [PMID: 33914601 DOI: 10.1161/circresaha.121.318011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcific aortic valve disease is dramatically increasing in global burden, yet no therapy exists outside of prosthetic replacement. The increasing proportion of younger and more active patients mandates alternative therapies. Studies suggest a window of opportunity for biologically based diagnostics and therapeutics to alleviate or delay calcific aortic valve disease progression. Advancement, however, has been hampered by limited understanding of the complex mechanisms driving calcific aortic valve disease initiation and progression towards clinically relevant interventions.
Collapse
Affiliation(s)
| | - Alexander D Cruz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
| | | |
Collapse
|
13
|
Bracco Gartner TCL, Stein JM, Muylaert DEP, Bouten CVC, Doevendans PA, Khademhosseini A, Suyker WJL, Sluijter JPG, Hjortnaes J. Advanced In Vitro Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Eng Part C Methods 2021; 27:100-114. [PMID: 33407000 DOI: 10.1089/ten.tec.2020.0298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In heart failure, cardiac fibrosis is the result of an adverse remodeling process. Collagen is continuously synthesized in the myocardium in an ongoing attempt of the heart to repair itself. The resulting collagen depositions act counterproductively, causing diastolic dysfunction and disturbing electrical conduction. Efforts to treat cardiac fibrosis specifically have not been successful and the molecular etiology is only partially understood. The differentiation of quiescent cardiac fibroblasts to extracellular matrix-depositing myofibroblasts is a hallmark of cardiac fibrosis and a key aspect of the adverse remodeling process. This conversion is induced by a complex interplay of biochemical signals and mechanical stimuli. Tissue-engineered 3D models to study cardiac fibroblast behavior in vitro indicate that cyclic strain can activate a myofibroblast phenotype. This raises the question how fibroblast quiescence is maintained in the healthy myocardium, despite continuous stimulation of ultimately profibrotic mechanotransductive pathways. In this review, we will discuss the convergence of biochemical and mechanical differentiation signals of myofibroblasts, and hypothesize how these affect this paradoxical quiescence. Impact statement Mechanotransduction pathways of cardiac fibroblasts seem to ultimately be profibrotic in nature, but in healthy human myocardium, cardiac fibroblasts remain quiescent, despite continuous mechanical stimulation. We propose three hypotheses that could explain this paradoxical state of affairs. Furthermore, we provide suggestions for future research, which should lead to a better understanding of fibroblast quiescence and activation, and ultimately to new strategies for the prevention and treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Thomas C L Bracco Gartner
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dimitri E P Muylaert
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carlijn V C Bouten
- Division of Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Pieter A Doevendans
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands.,Central Military Hospital, Utrecht, the Netherlands
| | - Ali Khademhosseini
- Department of Bioengineering, Radiology, Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
| | - Willem J L Suyker
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| |
Collapse
|
14
|
Zabirnyk A, Perez MDM, Blasco M, Stensløkken KO, Ferrer MD, Salcedo C, Vaage J. A Novel Ex Vivo Model of Aortic Valve Calcification. A Preliminary Report. Front Pharmacol 2020; 11:568764. [PMID: 33390945 PMCID: PMC7773652 DOI: 10.3389/fphar.2020.568764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background: No pharmacological treatment exists to prevent or stop the calcification process of aortic valves causing aortic stenosis. The aim of this study was to develop a robust model of induced calcification in whole aortic valve leaflets which could be suitable for studies of the basic mechanisms and for testing potentially inhibitory drugs. Methods: Pig hearts were obtained from a commercial abattoir. The aortic valve leaflets were dissected free and randomized between experimental groups. Whole leaflets were cultured in individual wells. Two growth media were used for cultivation: standard growth medium and an antimyofibroblastic growth medium. The latter was employed to inhibit contraction of the leaflet into a ball-like structure. Calcification was induced in the growth medium by supplementation with an osteogenic medium. Leaflets were cultivated for four weeks and medium was changed every third day. To block calcification, the inhibitor SNF472 (a formulation of the hexasodium salt of myo-inositol hexaphosphate hexasodium salt) was used at concentrations between 1 and 100 µM. After cultivation for four weeks the leaflets were snap frozen in liquid nitrogen and kept at −80 °C until blind assessment of the calcium amount in leaflets by inductively coupled plasma optical emission spectroscopy. For statistical analysis, a Kruskal–Wallis test with Dunn’s post-test was applied. Results: Osteodifferentiation with calcium accumulation was in principle absent when standard medium was used. However, when the antimyofibroblastic medium was used, a strong calcium accumulation was induced (p = 0.006 compared to controls), and this was blocked in a dose-dependent manner by the calcification inhibitor SNF472 (p = 0.008), with an EC50 of 3.3 µM. Conclusion: A model of experimentally induced calcification in cultured whole leaflets from porcine aortic valves was developed. This model can be useful for studying the basic mechanisms of valve calcification and to test pharmacological approaches to inhibit calcification.
Collapse
Affiliation(s)
- Arsenii Zabirnyk
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Research & Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | | | - Marc Blasco
- Sanifit Therapeutics, Palma de Mallorca, Spain
| | - Kåre-Olav Stensløkken
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Jarle Vaage
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Research & Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
16
|
Ayoub S, Howsmon DP, Lee CH, Sacks MS. On the role of predicted in vivo mitral valve interstitial cell deformation on its biosynthetic behavior. Biomech Model Mechanobiol 2020; 20:135-144. [PMID: 32761471 DOI: 10.1007/s10237-020-01373-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Ischemic mitral regurgitation (IMR), a frequent complication of myocardial infarction, is characterized by regurgitation of blood from the left ventricle back into the left atrium. Physical interventions via surgery or less-invasive techniques are the only available therapies for IMR, with valve repair via undersized ring annuloplasty (URA) generally preferred over valve replacement. However, recurrence of IMR after URA occurs frequently and is attributed to continued remodeling of the MV and infarct region of the left ventricle. The mitral valve interstitial cells (MVICs) that maintain the tissue integrity of the MV leaflets are highly mechanosensitive, and altered loading post-URA is thought to lead to aberrant MVIC-directed tissue remodeling. Although studies have investigated aspects of mechanically directed VIC activation and remodeling potential, there remains a substantial disconnect between organ-level biomechanics and cell-level phenomena. Herein, we utilized an extant multiscale computational model of the MV that linked MVIC to organ-level MV biomechanical behaviors to simulate changes in MVIC deformation following URA. A planar biaxial bioreactor system was then used to cyclically stretch explanted MV leaflet tissue, emulating the in vivo changes in loading following URA. This simulation-directed experimental investigation revealed that post-URA deformations resulted in decreased MVIC activation and collagen mass fraction. These results are consistent with the hypothesis that URA failures post-IMR are due, in part, to reduced MVIC-mediated maintenance of the MV leaflet tissue resulting from a reduction in physical stimuli required for leaflet tissue homeostasis. Such information can inform the development of novel URA strategies with improved durability.
Collapse
Affiliation(s)
- Salma Ayoub
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Daniel P Howsmon
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA.
| |
Collapse
|
17
|
Raddatz MA, Huffstater TM, Bersi MR, Reinfeld BI, Madden MZ, Booton SE, Rathmell WK, Rathmell JC, Lindman BR, Madhur MS, Merryman WD. Macrophages Promote Aortic Valve Cell Calcification and Alter STAT3 Splicing. Arterioscler Thromb Vasc Biol 2020; 40:e153-e165. [PMID: 32295422 PMCID: PMC7285853 DOI: 10.1161/atvbaha.120.314360] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Macrophages have been described in calcific aortic valve disease, but it is unclear if they promote or counteract calcification. We aimed to determine how macrophages are involved in calcification using the Notch1+/- model of calcific aortic valve disease. Approach and Results: Macrophages in wild-type and Notch1+/- murine aortic valves were characterized by flow cytometry. Macrophages in Notch1+/- aortic valves had increased expression of MHCII (major histocompatibility complex II). We then used bone marrow transplants to test if differences in Notch1+/- macrophages drive disease. Notch1+/- mice had increased valve thickness, macrophage infiltration, and proinflammatory macrophage maturation regardless of transplanted bone marrow genotype. In vitro approaches confirm that Notch1+/- aortic valve cells promote macrophage invasion as quantified by migration index and proinflammatory phenotypes as quantified by Ly6C and CCR2 positivity independent of macrophage genotype. Finally, we found that macrophage interaction with aortic valve cells promotes osteogenic, but not dystrophic, calcification and decreases abundance of the STAT3β isoform. CONCLUSIONS This study reveals that Notch1+/- aortic valve disease involves increased macrophage recruitment and maturation driven by altered aortic valve cell secretion, and that increased macrophage recruitment promotes osteogenic calcification and alters STAT3 splicing. Further investigation of STAT3 and macrophage-driven inflammation as therapeutic targets in calcific aortic valve disease is warranted.
Collapse
Affiliation(s)
- Michael A. Raddatz
- Vanderbilt University School of Medicine
- Department of Biomedical Engineering, Vanderbilt University
| | | | | | - Bradley I. Reinfeld
- Vanderbilt University School of Medicine
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center
| | - Matthew Z. Madden
- Vanderbilt University School of Medicine
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | | | - W. Kimryn Rathmell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Brian R. Lindman
- Structural Heart and Valve Center, Vanderbilt University Medical Center
| | - Meena S. Madhur
- Department of Molecular Physiology & Biophysics, Vanderbilt University
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center
| | | |
Collapse
|
18
|
Wang L, Wang C, Wu S, Fan Y, Li X. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater Sci 2020; 8:2714-2733. [PMID: 32307482 DOI: 10.1039/d0bm00269k] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
The development of suitable biomaterials with the ability to improve repair and regeneration of human tissues is continuously in progress, and mechanical properties of biomaterials play a critical role in their success in the clinical setting. Both biomaterial degradability and signaling cascades of cell interactions with biomaterials are significantly influenced by the mechanical properties of biomaterials, determining the final repair effect of bio-implants. Actually, the mechanical properties of biomaterials play a critical role in designing and developing medical material products both in research and in practice. Currently, advances in mechanics have provided new possibilities for researchers to investigate and modulate both the substrates and cell behaviors with respect to material perfection in tissue engineering. Achieving convenient and accurate approaches for producing different types of biomaterials is now possible by applying computerized methods. In this review, we have systematically clarified the influence of several selected mechanical properties of biomaterials (including stress/strain, elasticity/stiffness and certain time-dependent mechanical properties) on biomaterial degradability, cell behaviors and signaling pathways. Furthermore, the mechanical design targets and approaches for optimizing the mechanical properties of biomaterials, as well as the challenges and prospects are elaborated. This review will certainly bring up new ideas and possibilities for the field of tissue engineering and regenerative biomaterials.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | |
Collapse
|
19
|
Howsmon DP, Rego BV, Castillero E, Ayoub S, Khalighi AH, Gorman RC, Gorman JH, Ferrari G, Sacks MS. Mitral valve leaflet response to ischaemic mitral regurgitation: from gene expression to tissue remodelling. J R Soc Interface 2020; 17:20200098. [PMID: 32370692 PMCID: PMC7276554 DOI: 10.1098/rsif.2020.0098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic mitral regurgitation (IMR), a frequent complication following myocardial infarction (MI), leads to higher mortality and poor clinical prognosis if untreated. Accumulating evidence suggests that mitral valve (MV) leaflets actively remodel post MI, and this remodelling increases both the severity of IMR and the occurrence of MV repair failures. However, the mechanisms of extracellular matrix maintenance and modulation by MV interstitial cells (MVICs) and their impact on MV leaflet tissue integrity and repair failure remain largely unknown. Herein, we sought to elucidate the multiscale behaviour of IMR-induced MV remodelling using an established ovine model. Leaflet tissue at eight weeks post MI exhibited significant permanent plastic radial deformation, eliminating mechanical anisotropy, accompanied by altered leaflet composition. Interestingly, no changes in effective collagen fibre modulus were observed, with MVICs slightly rounder, at eight weeks post MI. RNA sequencing indicated that YAP-induced genes were elevated at four weeks post MI, indicating elevated mechanotransduction. Genes related to extracellular matrix organization were downregulated at four weeks post MI when IMR occurred. Transcriptomic changes returned to baseline by eight weeks post MI. This multiscale study suggests that IMR induces plastic deformation of the MV with no functional damage to the collagen fibres, providing crucial information for computational simulations of the MV in IMR.
Collapse
Affiliation(s)
- Daniel P. Howsmon
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Bruno V. Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Estibaliz Castillero
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Salma Ayoub
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H. Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Ferrari
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael S. Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Chester AH, Grande-Allen KJ. Which Biological Properties of Heart Valves Are Relevant to Tissue Engineering? Front Cardiovasc Med 2020; 7:63. [PMID: 32373630 PMCID: PMC7186395 DOI: 10.3389/fcvm.2020.00063] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Over the last 20 years, the designs of tissue engineered heart valves have evolved considerably. An initial focus on replicating the mechanical and structural features of semilunar valves has expanded to endeavors to mimic the biological behavior of heart valve cells as well. Studies on the biology of heart valves have shown that the function and durability of native valves is underpinned by complex interactions between the valve cells, the extracellular matrix, and the mechanical environment in which heart valves function. The ability of valve interstitial cells to synthesize extracellular matrix proteins and remodeling enzymes and the protective mediators released by endothelial cells are key factors in the homeostasis of valve function. The extracellular matrix provides the mechanical strength and flexibility required for the valve to function, as well as communicating with the cells that are bound within. There are a number of regulatory mechanisms that influence valve function, which include neuronal mechanisms and the tight regulation of growth and angiogenic factors. Together, studies into valve biology have provided a blueprint for what a tissue engineered valve would need to be capable of, in order to truly match the function of the native valve. This review addresses the biological functions of heart valve cells, in addition to the influence of the cells' environment on this behavior and examines how well these functions are addressed within the current strategies for tissue engineering heart valves in vitro, in vivo, and in situ.
Collapse
Affiliation(s)
- Adrian H Chester
- Heart Science Centre, The Magdi Yacoub Institute, Harefield, United Kingdom
| | | |
Collapse
|
21
|
Beca BM, Sun Y, Wong E, Moraes C, Simmons CA. Dynamic Bioreactors with Integrated Microfabricated Devices for Mechanobiological Screening. Tissue Eng Part C Methods 2019; 25:581-592. [DOI: 10.1089/ten.tec.2019.0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Bogdan M. Beca
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| | - Edwin Wong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
| | | | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Blomme B, Deroanne C, Hulin A, Lambert C, Defraigne JO, Nusgens B, Radermecker M, Colige A. Mechanical strain induces a pro-fibrotic phenotype in human mitral valvular interstitial cells through RhoC/ROCK/MRTF-A and Erk1/2 signaling pathways. J Mol Cell Cardiol 2019; 135:149-159. [PMID: 31442470 DOI: 10.1016/j.yjmcc.2019.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023]
Abstract
The mitral valve is a complex multilayered structure populated by fibroblast-like cells, valvular interstitial cells (VIC) which are embedded in an extracellular matrix (ECM) scaffold and are submitted to the mechanical deformations affecting valve at each heartbeat, for an average of 40 million times per year. Myxomatous mitral valve (MMV) is the most frequent heart valve disease characterized by disruption of several valvular structures due to alterations of their ECM preventing the complete closure of the valve resulting in symptoms of prolapse and regurgitation. VIC and their ECM exhibit reciprocal dynamic processes between the mechanical signals issued from the ECM and the modulation of VIC phenotype responsible for ECM homeostasis of the valve. Abnormal perception and responsiveness of VIC to mechanical stress may induce an inappropriate adaptative remodeling of the valve progressively leading to MMV. To investigate the response of human VIC to mechanical strain and identify the molecular mechanisms of mechano-transduction in these cells, a cyclic equibiaxial elongation of 14% at the cardiac frequency of 1.16 Hz was applied to VIC by using a Flexercell-4000 T™ apparatus for increasing time (from 1 h to 8 h). We showed that cyclic stretch induces an early (1 h) and transient over-expression of TGFβ2 and αSMA. CTGF, a profibrotic growth factor promoting the synthesis of ECM components, was strongly induced after 1 and 2 h of stretching and still upregulated at 8 h. The mechanical stress-induced CTGF up-regulation was dependent on RhoC, but not RhoA, as demonstrated by siRNA-mediated silencing approaches, and further supported by evidencing RhoC activation upon cell stretching and suppression of cell response by pharmacological inhibition of the effector ROCK1/2. It was also dependent on the MEK/Erk1/2 pathway which was activated by mechanical stress independently of RhoC and ROCK. Finally, mechanical stretching induced the nuclear translocation of myocardin related transcription factor-A (MRTF-A) which forms a transcriptional complex with SRF to promote the expression of target genes, notably CTGF. Treatment of stretched cultures with inhibitors of the identified pathways (ROCK1/2, MEK/Erk1/2, MRTF-A translocation) blocked CTGF overexpression and abrogated the increased MRTF-A nuclear translocation. CTGF is up-regulated in many pathological processes involving mechanically challenged organs, promotes ECM accumulation and is considered as a hallmark of fibrotic diseases. Pharmacological targeting of MRTF-A by newly developed inhibitors may represent a relevant therapy for MMV.
Collapse
Affiliation(s)
- Benoit Blomme
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium; Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Alexia Hulin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, B34, University of Liège, 4000 Sart- Tilman, Belgium
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Jean-Olivier Defraigne
- Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Betty Nusgens
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Marc Radermecker
- Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium; Department of Human Anatomy, B23, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium.
| |
Collapse
|
23
|
Development of calcific aortic valve disease: Do we know enough for new clinical trials? J Mol Cell Cardiol 2019; 132:189-209. [PMID: 31136747 DOI: 10.1016/j.yjmcc.2019.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD), previously thought to represent a passive degeneration of the valvular extracellular matrix (VECM), is now regarded as an intricate multistage disorder with sequential yet intertangled and interacting underlying processes. Endothelial dysfunction and injury, initiated by disturbed blood flow and metabolic disorders, lead to the deposition of low-density lipoprotein cholesterol in the VECM further provoking macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines. Such changes in the valvular homeostasis induce differentiation of normally quiescent valvular interstitial cells (VICs) into synthetically active myofibroblasts producing excessive quantities of the VECM and proteins responsible for its remodeling. As a result of constantly ongoing degradation and re-deposition, VECM becomes disorganised and rigid, additionally potentiating myofibroblastic differentiation of VICs and worsening adaptation of the valve to the blood flow. Moreover, disrupted and excessively vascularised VECM is susceptible to the dystrophic calcification caused by calcium and phosphate precipitating on damaged collagen fibers and concurrently accompanied by osteogenic differentiation of VICs. Being combined, passive calcification and biomineralisation synergistically induce ossification of the aortic valve ultimately resulting in its mechanical incompetence requiring surgical replacement. Unfortunately, multiple attempts have failed to find an efficient conservative treatment of CAVD; however, therapeutic regimens and clinical settings have also been far from the optimal. In this review, we focused on interactions and transitions between aforementioned mechanisms demarcating ascending stages of CAVD, suggesting a predisposing condition (bicuspid aortic valve) and drug combination (lipid-lowering drugs combined with angiotensin II antagonists and cytokine inhibitors) for the further testing in both preclinical and clinical trials.
Collapse
|
24
|
Raddatz MA, Madhur MS, Merryman WD. Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 2019; 317:H141-H155. [PMID: 31050556 DOI: 10.1152/ajpheart.00100.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent and has no pharmaceutical treatment. Surgical replacement of the aortic valve has proved effective in advanced disease but is costly, time limited, and in many cases not optimal for elderly patients. This has driven an increasing interest in noninvasive therapies for patients with CAVD. Adaptive immune cell signaling in the aortic valve has shown potential as a target for such a therapy. Up to 15% of cells in the healthy aortic valve are hematopoietic in origin, and these cells, which include macrophages, T lymphocytes, and B lymphocytes, are increased further in calcified specimens. Additionally, cytokine signaling has been shown to play a causative role in aortic valve calcification both in vitro and in vivo. This review summarizes the physiological presence of hematopoietic cells in the valve, innate and adaptive immune cell infiltration in disease states, and the cytokine signaling pathways that play a significant role in CAVD pathophysiology and may prove to be pharmaceutical targets for this disease in the near future.
Collapse
Affiliation(s)
- Michael A Raddatz
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Meena S Madhur
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee.,Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
25
|
Ali MS, Wang X, Lacerda CMR. The effect of physiological stretch and the valvular endothelium on mitral valve proteomes. Exp Biol Med (Maywood) 2019; 244:241-251. [PMID: 30722697 PMCID: PMC6425102 DOI: 10.1177/1535370219829006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/09/2019] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT This work is important to the field of heart valve pathophysiology as it provides new insights into molecular markers of mechanically induced valvular degeneration as well as the protective role of the valvular endothelium. These discoveries reported here advance our current knowledge of the valvular endothelium and how its removal essentially takes valve leaflets into an environmental shock. In addition, it shows that static conditions represent a mild pathological state for valve leaflets, while 10% cyclic stretch provides valvular cell quiescence. These findings impact the field by informing disease stages and by providing potential new drug targets to reverse or slow down valvular change before it affects cardiac function.
Collapse
Affiliation(s)
- Mir S Ali
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Carla MR Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| |
Collapse
|
26
|
Kong M, Lee J, Yazdi IK, Miri AK, Lin YD, Seo J, Zhang YS, Khademhosseini A, Shin SR. Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation. Adv Healthc Mater 2019; 8:e1801146. [PMID: 30609312 PMCID: PMC6546425 DOI: 10.1002/adhm.201801146] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Cardiac tissue is characterized by being dynamic and contractile, imparting the important role of biomechanical cues in the regulation of normal physiological activity or pathological remodeling. However, the dynamic mechanical tension ability also varies due to extracellular matrix remodeling in fibrosis, accompanied with the phenotypic transition from cardiac fibroblasts (CFs) to myofibroblasts. It is hypothesized that the dynamic mechanical tension ability regulates cardiac phenotypic transition within fibrosis in a strain-mediated manner. In this study, a microdevice that is able to simultaneously and accurately mimic the biomechanical properties of the cardiac physiological and pathological microenvironment is developed. The microdevice can apply cyclic compressions with gradient magnitudes (5-20%) and tunable frequency onto gelatin methacryloyl (GelMA) hydrogels laden with CFs, and also enables the integration of cytokines. The strain-response correlations between mechanical compression and CFs spreading, and proliferation and fibrotic phenotype remolding, are investigated. Results reveal that mechanical compression plays a crucial role in the CFs phenotypic transition, depending on the strain of mechanical load and myofibroblast maturity of CFs encapsulated in GelMA hydrogels. The results provide evidence regarding the strain-response correlation of mechanical stimulation in CFs phenotypic remodeling, which can be used to develop new preventive or therapeutic strategies for cardiac fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Junmin Lee
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA90095, USA
- California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA90095, USA
| | - Iman K. Yazdi
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Amir K. Miri
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi-Dong Lin
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115, USA
| | - Jungmok Seo
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Yu Shrike Zhang
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA90095, USA
- California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA90095, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Su Ryon Shin
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Hu XJ, Wu WCH, Dong NG, Shi JW, Liu JW, Chen S, Deng C, Shi F. Role of TGF-β1 Signaling in Heart Valve Calcification Induced by Abnormal Mechanical Stimulation in a Tissue Engineering Model. Curr Med Sci 2018; 38:765-775. [DOI: 10.1007/s11596-018-1943-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/10/2018] [Indexed: 12/11/2022]
|
28
|
Sielicka A, Sarin EL, Shi W, Sulejmani F, Corporan D, Kalra K, Thourani VH, Sun W, Guyton RA, Padala M. Pathological Remodeling of Mitral Valve Leaflets from Unphysiologic Leaflet Mechanics after Undersized Mitral Annuloplasty to Repair Ischemic Mitral Regurgitation. J Am Heart Assoc 2018; 7:e009777. [PMID: 30571381 PMCID: PMC6404183 DOI: 10.1161/jaha.118.009777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 01/24/2023]
Abstract
Background Undersized ring annuloplasty is a commonly used surgical repair for ischemic mitral regurgitation, in which annular downsizing corrects regurgitation, but alters valve geometry and elevates tissue stresses. In this study, we investigated if unphysiological leaflet kinematics after annuloplasty might cause pathogenic biological remodeling of the mitral valve leaflets, and if preserving physiologic leaflet kinematics with a better technique can moderate such adverse remodeling. Methods and Results Twenty-nine swine were induced with ischemic mitral regurgitation, and survivors were assigned to groups: 7 underwent annuloplasty, 12 underwent annuloplasty with papillary-muscle approximation, 6 underwent papillary-muscle approximation, and 3 were sham controls. Pre-and post-surgery leaflet kinematics were measured, and valve tissue was explanted after 3 months to assess biological changes. Anterior leaflet excursion was unchanged across groups, but persistent tethering was observed with annuloplasty. Posterior leaflet was vertically immobile after annuloplasty, better mobile with the combined approach, and substantially ( P=0.0028) mobile after papillary-muscle approximation. Procollagen-1 was higher in leaflets from annuloplasty compared with the other groups. Heat shock protein-47 and lysyl oxidase were higher in groups receiving annuloplasty compared with sham. α- SMA was elevated in leaflets from animals receiving an annuloplasty, indicating activation of quiescent valve interstitial cells, paralleled by elevated transforming growth factor-β expression. Conclusions This is the first study to demonstrate that surgical valve repairs that impose unphysiological leaflet mechanics have a deleterious, pathological impact on valve biology. Surgeons may need to consider restoring physiologic leaflet stresses as well as valve competence, while also exploring pharmacological methods to inhibit the abnormal signaling cascades.
Collapse
Affiliation(s)
- Alicja Sielicka
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
| | - Eric L. Sarin
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
- Department of Cardiothoracic SurgeryInova Heart and Vascular InstituteFairfaxVA
| | - Weiwei Shi
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
| | - Fatiesa Sulejmani
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGA
| | - Daniella Corporan
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
| | - Kanika Kalra
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
| | - Vinod H. Thourani
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
- Department of Cardiac SurgeryMedStar Heart and Vascular Institute and Georgetown UniversityWashingtonDC
| | - Wei Sun
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGA
| | - Robert A. Guyton
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
- Division of Cardiothoracic SurgeryJoseph P. Whitehead Department of SurgeryEmory University School of MedicineAtlantaGA
| | - Muralidhar Padala
- Structural Heart Research & Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGA
- Division of Cardiothoracic SurgeryJoseph P. Whitehead Department of SurgeryEmory University School of MedicineAtlantaGA
| |
Collapse
|
29
|
D'Amore A, Nasello G, Luketich SK, Denisenko D, Jacobs DL, Hoff R, Gibson G, Bruno A, T Raimondi M, Wagner WR. Meso-scale topological cues influence extracellular matrix production in a large deformation, elastomeric scaffold model. SOFT MATTER 2018; 14:8483-8495. [PMID: 30357253 DOI: 10.1039/c8sm01352g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Physical cues are decisive factors in extracellular matrix (ECM) formation and elaboration. Their transduction across scale lengths is an inherently symbiotic phenomenon that while influencing ECM fate is also mediated by the ECM structure itself. This study investigates the possibility of enhancing ECM elaboration by topological cues that, while not modifying the substrate macro scale mechanics, can affect the meso-scale strain range acting on cells incorporated within the scaffold. Vascular smooth muscle cell micro-integrated, electrospun scaffolds were fabricated with comparable macroscopic biaxial mechanical response, but different meso-scale topology. Seeded scaffolds were conditioned on a stretch bioreactor and exposed to large strain deformations. Samples were processed to evaluate ECM quantity and quality via: biochemical assay, qualitative and quantitative histological assessment and multi-photon analysis. Experimental evaluation was coupled to a numerical model that elucidated the relationship between the scaffold micro-architecture and the strain acting on the cells. Results showed an higher amount of ECM formation for the scaffold type characterized by lowest fiber intersection density. The numerical model simulations associated this result with the differences found for the change in cell nuclear aspect ratio and showed that given comparable macro scale mechanics, a difference in material topology created significant differences in cell-scaffold meso-scale deformations. These findings reaffirmed the role of cell shape in ECM formation and introduced a novel notion for the engineering of cardiac tissue where biomaterial structure can be designed to both mimick the organ level mechanics of a specific tissue of interest and elicit a desirable cellular response.
Collapse
Affiliation(s)
- Antonio D'Amore
- Departments of Bioengineering and Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, 15216, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Activation of human aortic valve interstitial cells by local stiffness involves YAP-dependent transcriptional signaling. Biomaterials 2018; 181:268-279. [DOI: 10.1016/j.biomaterials.2018.07.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
|
31
|
Novel pharmacological targets for calcific aortic valve disease: Prevention and treatments. Pharmacol Res 2018; 136:74-82. [DOI: 10.1016/j.phrs.2018.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/24/2022]
|
32
|
Ayoub S, Tsai KC, Khalighi AH, Sacks MS. The Three-Dimensional Microenvironment of the Mitral Valve: Insights into the Effects of Physiological Loads. Cell Mol Bioeng 2018; 11:291-306. [PMID: 31719888 PMCID: PMC6816749 DOI: 10.1007/s12195-018-0529-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/14/2018] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION In the mitral valve (MV), numerous pathological factors, especially those resulting from changes in external loading, have been shown to affect MV structure and composition. Such changes are driven by the MV interstitial cell (MVIC) population via protein synthesis and enzymatic degradation of extracellular matrix (ECM) components. METHODS While cell phenotype, ECM composition and regulation, and tissue level changes in MVIC shape under stress have been studied, a detailed understanding of the three-dimensional (3D) microstructural mechanisms are lacking. As a first step in addressing this challenge, we applied focused ion beam scanning electron microscopy (FIB-SEM) to reveal novel details of the MV microenvironment in 3D. RESULTS We demonstrated that collagen is organized into large fibers consisting of an average of 605 ± 113 fibrils, with a mean diameter of 61.2 ± 9.8 nm. In contrast, elastin was organized into two distinct structural subtypes: (1) sheet-like lamellar elastin, and (2) circumferentially oriented elastin struts, based on both the aspect ratio and transmural tilt. MVICs were observed to have a large cytoplasmic volume, as evidenced by the large mean surface area to volume ratio 3.68 ± 0.35, which increased under physiological loading conditions to 4.98 ± 1.17. CONCLUSIONS Our findings suggest that each MVIC mechanically interacted only with the nearest 3-4 collagen fibers. This key observation suggests that in developing multiscale MV models, each MVIC can be considered a mechanically integral part of the local fiber ensemble and is unlikely to be influenced by more distant structures.
Collapse
Affiliation(s)
- Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Karen C. Tsai
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Amir H. Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Michael S. Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| |
Collapse
|
33
|
Capoulade R, Teoh JG, Bartko PE, Teo E, Scholtz JE, Tastet L, Shen M, Mihos CG, Park YH, Garcia J, Larose E, Isselbacher EM, Sundt TM, MacGillivray TE, Melnitchouk S, Ghoshhajra BB, Pibarot P, Hung J. Relationship Between Proximal Aorta Morphology and Progression Rate of Aortic Stenosis. J Am Soc Echocardiogr 2018; 31:561-569.e1. [PMID: 29455849 DOI: 10.1016/j.echo.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The aim of this study was to examine the association between abnormal morphology of the proximal aorta and aortic stenosis (AS) progression rate. The main hypothesis was that morphologic changes of the proximal aorta, such as effacement of the sinotubular junction (STJ), result in increased biomechanical stresses and contribute to calcification and progression of AS. METHODS Between 2010 and 2012, 426 patients with mild to moderate AS were included in this study. Proximal aortic dimensions were measured at three different levels (i.e., sinus of Valsalva, STJ, and ascending aorta), and sinuses of Valsalva/STJ and ascending aorta/STJ ratios were used to determine degree of aortic deformity. AS progression rate was assessed by annualized increase in mean gradient (median follow-up time, 3.1 years; interquartile range, 2.6-3.9 years). The degree of aortic flow turbulence was examined in 18 matched patients with and without STJ effacement using cardiac magnetic resonance phase-contrast imaging. RESULTS Patients' mean age was 71 ± 13 years, and 64% were men. Patients with low ratios had greater AS progression (P < .05). After comprehensive adjustment, sinuses of Valsalva/STJ (P = .025) and ascending aorta/STJ (P = .027) ratios were independently associated with greater AS progression rate. Compared with patients without STJ effacement, those with effacement of the STJ had higher degrees of aortic flow turbulence (24.4% vs 17.2%, P = .038). CONCLUSIONS Effacement of the STJ is independently associated with greater AS progression, regardless of arterial hemodynamics, aortic valve phenotype, or baseline AS severity. Patients with abnormal proximal aortic geometry had disturbed aortic flow patterns. These findings suggest an interrelation between proximal aorta morphology and stenosis progression.
Collapse
Affiliation(s)
- Romain Capoulade
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Jonathan G Teoh
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philipp E Bartko
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eliza Teo
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jan-Erik Scholtz
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lionel Tastet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart & Lung Institute, Laval University, Québec City, Québec
| | - Mylene Shen
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart & Lung Institute, Laval University, Québec City, Québec
| | - Christos G Mihos
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yong H Park
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julio Garcia
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart & Lung Institute, Laval University, Québec City, Québec; Department of Cardiac Sciences, Stephenson Cardiac Imaging Center, University of Calgary, Calgary, Alberta, Canada
| | - Eric Larose
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart & Lung Institute, Laval University, Québec City, Québec
| | - Eric M Isselbacher
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thoralf M Sundt
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas E MacGillivray
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Serguei Melnitchouk
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian B Ghoshhajra
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart & Lung Institute, Laval University, Québec City, Québec
| | - Judy Hung
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Richards JM, Kunitake JA, Hunt HB, Wnorowski AN, Lin DW, Boskey AL, Donnelly E, Estroff LA, Butcher JT. Crystallinity of hydroxyapatite drives myofibroblastic activation and calcification in aortic valves. Acta Biomater 2018; 71:24-36. [PMID: 29505892 DOI: 10.1016/j.actbio.2018.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022]
Abstract
Calcific aortic valve disease (CAVD) is an inexorably degenerative pathology characterized by progressive calcific lesion formation on the valve leaflets. The interaction of valvular cells in advanced lesion environments is not well understood yet highly relevant as clinically detectable CAVD exhibits calcifications composed of non-stoichiometric hydroxyapatite (HA). In this study, Fourier transform infrared spectroscopic imaging was used to spatially analyze mineral properties as a function of disease progression. Crystallinity (size and perfection) increased with increased valve calcification. To study the relationship between crystallinity and cellular behavior in CAVD, valve cells were seeded into 3D mineral-rich collagen gels containing synthetic HA particles, which had varying crystallinities. Lower crystallinity HA drove myofibroblastic activation in both valve interstitial and endothelial cells, as well as osteoblastic differentiation in interstitial cells. Additionally, calcium accumulation within gels depended on crystallinity, and apoptosis was insufficient to explain differences in HA-driven cellular activity. The protective nature of endothelial cells against interstitial cell activation and calcium accumulation was completely inhibited in the presence of less crystalline HA particles. Elucidating valve cellular behavior post-calcification is of vital importance to better predict and treat clinical pathogenesis, and mineral-containing hydrogel models provide a unique 3D platform to evaluate valve cell responses to a later stage of valve disease. STATEMENT OF SIGNIFICANCE We implement a 3D in vitro platform with embedded hydroxyapatite (HA) nanoparticles to investigate the interaction between valve interstitial cells, valve endothelial cells, and a mineral-rich extracellular environment. HA nanoparticles were synthesized based on analysis of the mineral properties of calcific regions of diseased human aortic valves. Our findings indicate that crystallinity of HA drives activation and differentiation in interstitial and endothelial cells. We also show that a mineralized environment blocks endothelial protection against interstitial cell calcification. Our HA-containing hydrogel model provides a unique 3D platform to evaluate valve cell responses to a mineralized ECM. This study additionally lays the groundwork to capture the diversity of mineral properties in calcified valves, and link these properties to progression of the disease.
Collapse
|
35
|
Sakamoto Y, Buchanan RM, Sanchez-Adams J, Guilak F, Sacks MS. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach. J Biomech Eng 2017; 139:2595420. [PMID: 28024085 DOI: 10.1115/1.4035557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 01/20/2023]
Abstract
The function of the heart valve interstitial cells (VICs) is intimately connected to heart valve tissue remodeling and repair, as well as the onset and progression of valvular pathological processes. There is yet only very limited knowledge and extant models for the complex three-dimensional VIC internal stress-bearing structures, the associated cell-level biomechanical behaviors, and how they change under varying activation levels. Importantly, VICs are known to exist and function within the highly dynamic valve tissue environment, including very high physiological loading rates. Yet we have no knowledge on how these factors affect VIC function. To this end, we extended our previous VIC computational continuum mechanics model (Sakamoto, et al., 2016, "On Intrinsic Stress Fiber Contractile Forces in Semilunar Heart Valve Interstitial Cells Using a Continuum Mixture Model," J. Mech. Behav. Biomed. Mater., 54(244-258)). to incorporate realistic stress-fiber geometries, force-length relations (Hill model for active contraction), explicit α-smooth muscle actin (α-SMA) and F-actin expression levels, and strain rate. Novel micro-indentation measurements were then performed using cytochalasin D (CytoD), variable KCl molar concentrations, both alone and with transforming growth factor β1 (TGF-β1) (which emulates certain valvular pathological processes) to explore how α-SMA and F-actin expression levels influenced stress fiber responses under quasi-static and physiological loading rates. Simulation results indicated that both F-actin and α-SMA contributed substantially to stress fiber force generation, with the highest activation state (90 mM KCL + TGF-β1) inducing the largest α-SMA levels and associated force generation. Validation was performed by comparisons to traction force microscopy studies, which showed very good agreement. Interestingly, only in the highest activation state was strain rate sensitivity observed, which was captured successfully in the simulations. These unique findings demonstrated that only VICs with high levels of αSMA expression exhibited significant viscoelastic effects. Implications of this study include greater insight into the functional role of α-SMA and F-actin in VIC stress fiber function, and the potential for strain rate-dependent effects in pathological states where high levels of α-SMA occur, which appear to be unique to the valvular cellular in vivo microenvironment.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Rachel M Buchanan
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Johannah Sanchez-Adams
- Departments of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710;Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710
| | - Farshid Guilak
- Departments of Orthopaedic Surgery, Washington University, St. Louis, MO 63110;Departments of Biomedical Engineering, Washington University, St. Louis, MO 63110;Departments of Developmental Biology, Washington University, St. Louis, MO 63110
| | - Michael S Sacks
- W. A. "Tex" Moncrief, Jr. Simulation-Based Engineering Science Chair I Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 e-mail:
| |
Collapse
|
36
|
Ayoub S, Lee CH, Driesbaugh KH, Anselmo W, Hughes CT, Ferrari G, Gorman RC, Gorman JH, Sacks MS. Regulation of valve interstitial cell homeostasis by mechanical deformation: implications for heart valve disease and surgical repair. J R Soc Interface 2017; 14:20170580. [PMID: 29046338 PMCID: PMC5665836 DOI: 10.1098/rsif.2017.0580] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Mechanical stress is one of the major aetiological factors underlying soft-tissue remodelling, especially for the mitral valve (MV). It has been hypothesized that altered MV tissue stress states lead to deviations from cellular homeostasis, resulting in subsequent cellular activation and extracellular matrix (ECM) remodelling. However, a quantitative link between alterations in the organ-level in vivo state and in vitro-based mechanobiology studies has yet to be made. We thus developed an integrated experimental-computational approach to elucidate MV tissue and interstitial cell responses to varying tissue strain levels. Comprehensive results at different length scales revealed that normal responses are observed only within a defined range of tissue deformations, whereas deformations outside of this range lead to hypo- and hyper-synthetic responses, evidenced by changes in α-smooth muscle actin, type I collagen, and other ECM and cell adhesion molecule regulation. We identified MV interstitial cell deformation as a key player in leaflet tissue homeostatic regulation and, as such, used it as the metric that makes the critical link between in vitro responses to simulated equivalent in vivo behaviour. Results indicated that cell responses have a delimited range of in vivo deformations that maintain a homeostatic response, suggesting that deviations from this range may lead to deleterious tissue remodelling and failure.
Collapse
Affiliation(s)
- Salma Ayoub
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Kathryn H Driesbaugh
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanda Anselmo
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor T Hughes
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Giovanni Ferrari
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
37
|
Krishnamurthy VK, Stout AJ, Sapp MC, Matuska B, Lauer ME, Grande-Allen KJ. Dysregulation of hyaluronan homeostasis during aortic valve disease. Matrix Biol 2017; 62:40-57. [PMID: 27856308 PMCID: PMC10615645 DOI: 10.1016/j.matbio.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
Abstract
Aortic valve disease (AVD) is one of the leading causes of cardiovascular mortality. Abnormal expression of hyaluronan (HA) and its synthesizing/degrading enzymes have been observed during latent AVD however, the mechanism of impaired HA homeostasis prior to and after the onset of AVD remains unexplored. Transforming growth factor beta (TGFβ) pathway defects and biomechanical dysfunction are hallmarks of AVD, however their association with altered HA regulation is understudied. Expression of HA homeostatic markers was evaluated in diseased human aortic valves and TGFβ1-cultured porcine aortic valve tissues using histology, immunohistochemistry and Western blotting. Further, porcine valve interstitial cell cultures were stretched (using Flexcell) and simultaneously treated with exogenous TGFβ1±inhibitors for activated Smad2/3 (SB431542) and ERK1/2 (U0126) pathways, and differential HA regulation was assessed using qRT-PCR. Pathological heavy chain HA together with abnormal regional expression of the enzymes HAS2, HYAL1, KIAA1199, TSG6 and IαI was demonstrated in calcified valve tissues identifying the collapse of HA homeostatic machinery during human AVD. Heightened TSG6 activity likely preceded the end-stage of disease, with the existence of a transitional, pre-calcific phase characterized by HA dysregulation. TGFβ1 elicited a fibrotic remodeling response in porcine aortic valves similar to human disease pathology, with increased collagen and HYAL to HAS ratio, and site-specific abnormalities in the expression of CD44 and RHAMM receptors. Further in these porcine valves, expression of HAS2 and HYAL1 was found to be differentially regulated by the Smad2/3 and ERK1/2 pathways, and CD44 expression was highly responsive to biomechanical strain. Leveraging the regulatory pathways that control both HA maintenance in normal valves and early postnatal dysregulation of HA homeostasis during disease may identify new mechanistic insight into AVD pathogenesis.
Collapse
Affiliation(s)
| | - Andrew J Stout
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Matthew C Sapp
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Brittany Matuska
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark E Lauer
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
38
|
VeDepo MC, Detamore MS, Hopkins RA, Converse GL. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve. J Tissue Eng 2017; 8:2041731417726327. [PMID: 28890780 PMCID: PMC5574480 DOI: 10.1177/2041731417726327] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered heart valve: assuring consistent recellularization of the entire valve leaflets by phenotypically appropriate cells. Many creative strategies have pursued complete biological valve recellularization; however, identifying the optimal recellularization method, including in situ or in vitro recellularization and chemical and/or mechanical conditioning, has proven difficult. Furthermore, while many studies have focused on individual parameters for increasing valve interstitial recellularization, a general understanding of the interacting dynamics is likely necessary to achieve success. Therefore, the purpose of this review is to explore and compare the various processing strategies used for the decellularization and subsequent recellularization of tissue-engineered heart valves.
Collapse
Affiliation(s)
- Mitchell C VeDepo
- Cardiac Regenerative Surgery Research Laboratories of the Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, MO, USA.,Bioengineering Program, The University of Kansas, Lawrence, KS, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Richard A Hopkins
- Cardiac Regenerative Surgery Research Laboratories of the Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Gabriel L Converse
- Cardiac Regenerative Surgery Research Laboratories of the Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, MO, USA
| |
Collapse
|
39
|
Perrucci GL, Zanobini M, Gripari P, Songia P, Alshaikh B, Tremoli E, Poggio P. Pathophysiology of Aortic Stenosis and Mitral Regurgitation. Compr Physiol 2017. [PMID: 28640443 DOI: 10.1002/cphy.c160020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The global impact of the spectrum of valve diseases is a crucial, fast-growing, and underrecognized health problem. The most prevalent valve diseases, requiring surgical intervention, are represented by calcific and degenerative processes occurring in heart valves, in particular, aortic and mitral valve. Due to the increasing elderly population, these pathologies will gain weight in the global health burden. The two most common valve diseases are aortic valve stenosis (AVS) and mitral valve regurgitation (MR). AVS is the most commonly encountered valve disease nowadays and affects almost 5% of elderly population. In particular, AVS poses a great challenge due to the multiple comorbidities and frailty of this patient subset. MR is also a common valve pathology and has an estimated prevalence of 3% in the general population, affecting more than 176 million people worldwide. This review will focus on pathophysiological changes in both these valve diseases, starting from the description of the anatomical aspects of normal valve, highlighting all the main cellular and molecular features involved in the pathological progression and cardiac consequences. This review also evaluates the main approaches in clinical management of these valve diseases, taking into account of the main published clinical guidelines. © 2017 American Physiological Society. Compr Physiol 7:799-818, 2017.
Collapse
Affiliation(s)
- Gianluca L Perrucci
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | - Paola Songia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Paolo Poggio
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
40
|
van Kelle MA, Oomen PJ, Bulsink JA, Janssen-van den Broek MW, Lopata RG, Rutten MC, Loerakker S, Bouten CV. A Bioreactor to Identify the Driving Mechanical Stimuli of Tissue Growth and Remodeling. Tissue Eng Part C Methods 2017; 23:377-387. [DOI: 10.1089/ten.tec.2017.0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mathieu A.J. van Kelle
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pim J.A. Oomen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurgen A. Bulsink
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marloes W.J.T. Janssen-van den Broek
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G.P. Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel C.M. Rutten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
41
|
Roosens A, Puype I, Cornelissen R. Scaffold-free high throughput generation of quiescent valvular microtissues. J Mol Cell Cardiol 2017; 106:45-54. [PMID: 28322869 DOI: 10.1016/j.yjmcc.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
AIMS The major challenge of working with valvular interstitial cells in vitro is the preservation or recovery of their native quiescent state. In this study, a biomimetic approach is used which aims to engineer small volume, high quality valve microtissues, having a potential in regenerative medicine and as a relevant 3D in vitro model to provide insights into valve (patho)biology. METHODS AND RESULTS To form micro-aggregates, porcine valvular interstitial cells were seeded in agarose micro-wells and cultured in medium supplemented with 250μM Ascorbic Acid 2-phosphate for 22days. Histology showed viable aggregates with normal nuclei and without any signs of calcification. Aggregates stained strongly for GAG and collagen I and reticular fibers were present. ECM formation was quantified and showed a significant increase of GAG, elastin and Col I during aggregate culture. Cultivation of VIC in aggregates also promoted mRNA expression of Col I/III/V, elastin, hyaluronan, biglycan, decorin, versican MMP-1/2/3/9 and TIMP-2 compared to monolayer cultured VIC. Phenotype analysis of aggregates showed a significant decrease in α-SMA expression, and an increase in FSP-1 expression at any time point. Furthermore, VIC aggregates did not show a significant difference in OCN, Egr-1, Sox-9 or Runx2 expression. CONCLUSION In this study high quality valvular interstitial cell aggregates were generated that are able to produce their own ECM, resembling the native valve composition. The applied and completely cell driven 3D approach overcomes the problems of VIC activation in 2D, by downregulating α-SMA expression and stimulating a homeostatic quiescent VIC state.
Collapse
Affiliation(s)
- Annelies Roosens
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| | - Inès Puype
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| | - Ria Cornelissen
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| |
Collapse
|
42
|
Cirka HA, Uribe J, Liang V, Schoen FJ, Billiar KL. Reproducible in vitro model for dystrophic calcification of cardiac valvular interstitial cells: insights into the mechanisms of calcific aortic valvular disease. LAB ON A CHIP 2017; 17:814-829. [PMID: 28128382 DOI: 10.1039/c6lc01226d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Calcific aortic valvular disease (CAVD) is the most prevalent valvular pathology in the United States. Development of a pharmacologic agent to slow, halt, or reverse calcification has proven to be unsuccessful as still much remains unknown about the mechanisms of disease initiation. Although in vitro models of some features of CAVD exist, their utility is limited by the inconsistency of the size and time course of the calcified cell aggregates. In this study, we introduce and verify a highly reproducible in vitro method for studying dystrophic calcification of cardiac valvular interstitial cells, considered to be a key mechanism of clinical CAVD. By utilizing micro-contact printing, we were able to consistently reproduce cell aggregation, myofibroblastic markers, programmed cell death, and calcium accumulation within aggregates of 50-400 μm in diameter on substrates with moduli from 9.6 to 76.8 kPa. This method is highly repeatable, with 70% of aggregates staining positive for Alizarin Red S after one week in culture. Dense mineralized calcium-positive nanoparticles were found within the valvular interstitial cell aggregates as shown by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The area of micro-contact printed aggregates staining positive for caspase 3/7 activity increased from 5.9 ± 0.9% to 12.6 ± 4.5% over one week in culture. Z-VAD-FMK reduced aggregates staining positive for Alizarin Red S by 60%. The state of cell stress is hypothesized to play a role in the disease progression; traction force microscopy indicates high substrate stresses along the aggregate periphery which can be modulated by altering the size of the aggregates and the modulus of the substrate. Micro-contact printing is advantageous over the currently used in vitro model as it allows the independent study of how cytokines, substrate modulus, and pharmacologic agents affect calcification. This controlled method for aggregate creation has the potential to be used as an in vitro assay for the screening of promising therapeutics to mitigate CAVD.
Collapse
Affiliation(s)
- Heather A Cirka
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| | - Johana Uribe
- Department of Bioengineering, University of Massachusetts at Dartmouth, Dartmouth, MA 02714, USA
| | - Vivian Liang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| | - Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
43
|
Huang S, Huang HYS. Biaxial stress relaxation of semilunar heart valve leaflets during simulated collagen catabolism: Effects of collagenase concentration and equibiaxial strain state. Proc Inst Mech Eng H 2016; 229:721-31. [PMID: 26405097 DOI: 10.1177/0954411915604336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart valve leaflet collagen turnover and remodeling are innate to physiological homeostasis; valvular interstitial cells routinely catabolize damaged collagen and affect repair. Moreover, evidence indicates that leaflets can adapt to altered physiological (e.g. pregnancy) and pathological (e.g. hypertension) mechanical load states, tuning collagen structure and composition to changes in pressure and flow. However, while valvular interstitial cell-secreted matrix metalloproteinases are considered the primary effectors of collagen catabolism, the mechanisms by which damaged collagen fibers are selectively degraded remain unclear. Growing evidence suggests that the collagen fiber strain state plays a key role, with the strain-dependent configuration of the collagen molecules either masking or presenting proteolytic sites, thereby protecting or accelerating collagen proteolysis. In this study, the effects of equibiaxial strain state on collagen catabolism were investigated in porcine aortic valve and pulmonary valve tissues. Bacterial collagenase (0.2 and 0.5 mg/mL) was utilized to simulate endogenous matrix metalloproteinases, and biaxial stress relaxation and biochemical collagen concentration served as functional and compositional measures of collagen catabolism, respectively. At a collagenase concentration of 0.5 mg/mL, increasing the equibiaxial strain imposed during stress relaxation (0%, 37.5%, and 50%) yielded significantly lower median collagen concentrations in the aortic valve (p = 0.0231) and pulmonary valve (p = 0.0183), suggesting that relatively large strain magnitudes may enhance collagen catabolism. Collagen concentration decreases were paralleled by trends of accelerated normalized stress relaxation rate with equibiaxial strain in aortic valve tissues. Collectively, these in vitro results indicate that biaxial strain state is capable of affecting the susceptibility of valvular collagens to catabolism, providing a basis for further investigation of how such phenomena may manifest at different strain magnitudes or in vivo.
Collapse
Affiliation(s)
- Siyao Huang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Hsiao-Ying Shadow Huang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
44
|
Ayoub S, Ferrari G, Gorman RC, Gorman JH, Schoen FJ, Sacks MS. Heart Valve Biomechanics and Underlying Mechanobiology. Compr Physiol 2016; 6:1743-1780. [PMID: 27783858 PMCID: PMC5537387 DOI: 10.1002/cphy.c150048] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart valves control unidirectional blood flow within the heart during the cardiac cycle. They have a remarkable ability to withstand the demanding mechanical environment of the heart, achieving lifetime durability by processes involving the ongoing remodeling of the extracellular matrix. The focus of this review is on heart valve functional physiology, with insights into the link between disease-induced alterations in valve geometry, tissue stress, and the subsequent cell mechanobiological responses and tissue remodeling. We begin with an overview of the fundamentals of heart valve physiology and the characteristics and functions of valve interstitial cells (VICs). We then provide an overview of current experimental and computational approaches that connect VIC mechanobiological response to organ- and tissue-level deformations and improve our understanding of the underlying functional physiology of heart valves. We conclude with a summary of future trends and offer an outlook for the future of heart valve mechanobiology, specifically, multiscale modeling approaches, and the potential directions and possible challenges of research development. © 2016 American Physiological Society. Compr Physiol 6:1743-1780, 2016.
Collapse
Affiliation(s)
- Salma Ayoub
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Giovanni Ferrari
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, USA
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, USA
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, USA
| | - Frederick J. Schoen
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Michael S. Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| |
Collapse
|
45
|
D'Amore A, Soares JS, Stella JA, Zhang W, Amoroso NJ, Mayer JE, Wagner WR, Sacks MS. Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model. J Mech Behav Biomed Mater 2016; 62:619-635. [PMID: 27344402 PMCID: PMC4955736 DOI: 10.1016/j.jmbbm.2016.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/30/2016] [Accepted: 05/03/2016] [Indexed: 01/07/2023]
Abstract
Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the denovo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments.
Collapse
Affiliation(s)
- Antonio D'Amore
- Department of Bioengineering McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fondazione RiMED, Italy; DICGIM, Università di Palermo, Italy
| | - Joao S Soares
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - John A Stella
- Department of Bioengineering McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Will Zhang
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas J Amoroso
- Department of Bioengineering McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E Mayer
- Department of Cardiac Surgery Boston Children׳s Hospital and Harvard Medical School, Boston, MA, USA
| | - William R Wagner
- Department of Bioengineering McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
46
|
Farrar EJ, Pramil V, Richards JM, Mosher CZ, Butcher JT. Valve interstitial cell tensional homeostasis directs calcification and extracellular matrix remodeling processes via RhoA signaling. Biomaterials 2016; 105:25-37. [PMID: 27497058 DOI: 10.1016/j.biomaterials.2016.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/04/2023]
Abstract
AIMS Valve interstitial cells are active and aggressive players in aortic valve calcification, but their dynamic mediation of mechanically-induced calcific remodeling is not well understood. The goal of this study was to elucidate the feedback loop between valve interstitial cell and calcification mechanics using a novel three-dimensional culture system that allows investigation of the active interplay between cells, disease, and the mechanical valve environment. METHODS & RESULTS We designed and characterized a novel bioreactor system for quantifying aortic valve interstitial cell contractility in 3-D hydrogels in control and osteogenic conditions over 14 days. Interstitial cells demonstrated a marked ability to exert contractile force on their environment and to align collagen fibers with the direction of tension. Osteogenic environment disrupted interstitial cell contractility and led to disorganization of the collagen matrix, concurrent with increased αSMA, TGF-β, Runx2 and calcific nodule formation. Interestingly, RhoA was also increased in osteogenic condition, pointing to an aberrant hyperactivation of valve interstitial cells mechanical activity in disease. This was confirmed by inhibition of RhoA experiments. Inhibition of RhoA concurrent with osteogenic treatment reduced pro-osteogenic signaling and calcific nodule formation. Time-course correlation analysis indicated a significant correlation between interstitial cell remodeling of collagen fibers and calcification events. CONCLUSIONS Interstitial cell contractility mediates internal stress state and organization of the aortic valve extracellular matrix. Osteogenesis disrupts interstitial cell mechanical phenotype and drives disorganization, nodule formation, and pro-calcific signaling via a RhoA-dependent mechanism.
Collapse
Affiliation(s)
- Emily J Farrar
- Department of Engineering, Messiah College, Mechanicsburg, PA, USA; School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Varsha Pramil
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Christopher Z Mosher
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
47
|
Schoen FJ, Gotlieb AI. Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective. Cardiovasc Pathol 2016; 25:341-352. [PMID: 27242130 DOI: 10.1016/j.carpath.2016.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 01/24/2023] Open
Abstract
The past several decades have witnessed major advances in the understanding of the structure, function, and biology of native valves and the pathobiology and clinical management of valvular heart disease. These improvements have enabled earlier and more precise diagnosis, assessment of the proper timing of surgical and interventional procedures, improved prosthetic and biologic valve replacements and repairs, recognition of postoperative complications and their management, and the introduction of minimally invasive approaches that have enabled definitive and durable treatment for patients who were previously considered inoperable. This review summarizes the current state of our understanding of the mechanisms of heart valve health and disease arrived at through innovative research on the cell and molecular biology of valves, clinical and pathological features of the most frequent intrinsic structural diseases that affect the valves, and the status and pathological considerations in the technological advances in valvular surgery and interventions. The contributions of many cardiovascular pathologists and other scientists, engineers, and clinicians are emphasized, and potentially fruitful areas for research are highlighted.
Collapse
Affiliation(s)
- Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115; Pathology and Health Sciences and Technology (HST), Harvard Medical School, 75 Francis Street, Boston, MA 02115.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Laboratory Medicine Program, University Health Network, Medical Sciences Building, 1 King's College Circle, Rm. 6275A, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
48
|
Ben-Zvi D, Savion N, Kolodgie F, Simon A, Fisch S, Schäfer K, Bachner-Hinenzon N, Cao X, Gertler A, Solomon G, Kachel E, Raanani E, Lavee J, Kotev Emeth S, Virmani R, Schoen FJ, Schneiderman J. Local Application of Leptin Antagonist Attenuates Angiotensin II-Induced Ascending Aortic Aneurysm and Cardiac Remodeling. J Am Heart Assoc 2016; 5:JAHA.116.003474. [PMID: 27143353 PMCID: PMC4889208 DOI: 10.1161/jaha.116.003474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Ascending thoracic aortic aneurysm (ATAA) is driven by angiotensin II (AngII) and contributes to the development of left ventricular (LV) remodeling through aortoventricular coupling. We previously showed that locally available leptin augments AngII‐induced abdominal aortic aneurysms in apolipoprotein E–deficient mice. We hypothesized that locally synthesized leptin mediates AngII‐induced ATAA. Methods and Results Following demonstration of leptin synthesis in samples of human ATAA associated with different etiologies, we modeled in situ leptin expression in apolipoprotein E–deficient mice by applying exogenous leptin on the surface of the ascending aorta. This treatment resulted in local aortic stiffening and dilation, LV hypertrophy, and thickening of aortic/mitral valve leaflets. Similar results were obtained in an AngII‐infusion ATAA mouse model. To test the dependence of AngII‐induced aortic and LV remodeling on leptin activity, a leptin antagonist was applied to the ascending aorta in AngII‐infused mice. Locally applied single low‐dose leptin antagonist moderated AngII‐induced ascending aortic dilation and protected mice from ATAA rupture. Furthermore, LV hypertrophy was attenuated and thickening of aortic valve leaflets was moderated. Last, analysis of human aortic valve stenosis leaflets revealed de novo leptin synthesis, whereas exogenous leptin stimulated proliferation and promoted mineralization of human valve interstitial cells in culture. Conclusions AngII‐induced ATAA is mediated by locally synthesized leptin. Aortoventricular hemodynamic coupling drives LV hypertrophy and promotes early aortic valve lesions, possibly mediated by valvular in situ leptin synthesis. Clinical implementation of local leptin antagonist therapy may attenuate AngII‐induced ATAA and moderate related LV hypertrophy and pre–aortic valve stenosis lesions. Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique identifier: NCT00449306.
Collapse
Affiliation(s)
- Danny Ben-Zvi
- Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Naphtali Savion
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Amos Simon
- Cancer Research Laboratory, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sudeshna Fisch
- Cardiovascular Physiology Core, Brigham and Women's Hospital, Boston, MA
| | - Katrin Schäfer
- Medical Clinic 2, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Xin Cao
- Cardiovascular Physiology Core, Brigham and Women's Hospital, Boston, MA
| | - Arieh Gertler
- Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot, Israel
| | - Gili Solomon
- Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot, Israel
| | - Erez Kachel
- Department of Cardiac Surgery, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Raanani
- Department of Cardiac Surgery, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Lavee
- Department of Cardiac Surgery, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomo Kotev Emeth
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital, Harvard-MIT Division of Health Sciences and Technology, and Harvard Medical School, Boston, MA
| | - Jacob Schneiderman
- The Gottesdiener Vascular Biology Laboratory, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Department of Vascular Surgery, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Vascular Surgery Research Laboratory, Department of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Xie C, Shen Y, Hu W, Chen Z, Li Y. Angiotensin II promotes an osteoblast-like phenotype in porcine aortic valve myofibroblasts. Aging Clin Exp Res 2016. [PMID: 26197716 DOI: 10.1007/s40520-015-0408-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The mechanisms for pathogenesis of cardiac valve calcification were explored by studying the regulation of the Wnt signaling pathway during the transformation from cardiac valvular myofibroblasts to osteoblast-like phenotype. METHODS Studies were carried on primary cultured porcine aortic valvular myofibroblasts. The cells were randomly divided into four groups and treated with angiotensin II (Ang II) according to the following: Ang II (10(-6) mol/l), Valsartan (Val) (10(-5) mol/l), Ang II plus Val (Ang II 10(-6) mol/l + Val 10(-5) mol/l) or mock treated as the control. Protein expression of Bone morphogenetic protein 2 (BMP2), Alkaline phosphatase (ALP), and Wnt pathway components, Wnt3a and β-catenin, was investigated to assess the activation of the Wnt signaling pathway and determine whether cells undergo the transformation to osteoblast-like phenotype. RESULT Ang II treatment of myofibroblasts led to significant up-regulation of α-SMA expression and activation of the cells. Neither the BMP2 or ALP proteins, nor the mRNA was detectable in the control group or the Val-treated group; however, there was a significant increase in Ang II-treated group (P < 0.01). The Wnt/β-catenin signaling ligand, Wnt3a, was not expressed in the control or Val-treated groups, whereas in Ang II-treated cells, both Wnt3a and β-catenin gene expression were enhanced (P < 0.01).The effect of Ang II can be inhibited by the addition of Val (P < 0.05). CONCLUSION Ang II might act on the Ang II receptor on valvular interstitial cells (VICs) and lead to activation of the Wnt/β-catenin pathway and hence cause the activation, differentiation and proliferation of myofibroblasts, and finally, osteoblast-like phenotype transformation, leading to calcification of heart valves.
Collapse
Affiliation(s)
- Cuihong Xie
- Departments of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yingnian Shen
- Departments of Geriatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Weilin Hu
- Departments of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zhengping Chen
- Departments of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongsheng Li
- Departments of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
50
|
Lei Y, Ferdous Z. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering. Biotechnol Prog 2016; 32:543-53. [PMID: 26929197 DOI: 10.1002/btpr.2256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/19/2016] [Indexed: 01/05/2023]
Abstract
With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016.
Collapse
Affiliation(s)
- Ying Lei
- Dept. of Mechanical, Aerospace, and Biomedical Engineering, the University of Tennessee, Knoxville, TN, 37996
| | - Zannatul Ferdous
- Dept. of Mechanical, Aerospace, and Biomedical Engineering, the University of Tennessee, Knoxville, TN, 37996
| |
Collapse
|