1
|
Wang H, Guo L, Wu M, Chu G, Zhu W, Song J, Guo J. The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals. Biomacromolecules 2024; 25:8006-8015. [PMID: 39546419 DOI: 10.1021/acs.biomac.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Cellulose nanocrystals (CNC) have been significantly developed as a building block material for the design of novel functional materials in many fields such as biomedicine, nanotechnology, and materials science due to their excellent optical properties, biocompatibility, and sustainability. Improving the redispersibility of CNC in the sustainable processing of nanocellulose has been a challenge because intense hydrogen bond interaction leads to irreversible aggregation, making CNC difficult to redisperse and increasing the cost of storage and transportation of CNC. Hydroxypropyl cellulose (HPC) is an important hydroxy propylated cellulose ether. As a water-soluble cellulose derivative, HPC has a polyhydroxy structure similar to that of CNC, which leads to good compatibility and high affinity between HPC and CNC. In this work, HPC of different molecular weights was comixed with CNC of different contents, which was then dried using different methods, and the dried samples were redispersed in water. The addition of HPC improved the redispersibility of the CNC. Finally, the redispersed suspension was also redried to form a film, which was found to retain its structure color. These results provide an important avenue for the redispersion of dried CNC and for the development of functional materials from redispersed CNC.
Collapse
Affiliation(s)
- Huan Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Lukuan Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mingfeng Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Guang Chu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Zheng B, Zhang L, Zhou Z, Chen S, Chen L, Li Y, Wu A, Li H. Understanding the dynamic evolution of hemicellulose during Pinus taeda L. growth. Int J Biol Macromol 2024; 273:132914. [PMID: 38844290 DOI: 10.1016/j.ijbiomac.2024.132914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Pinus taeda L. is a fast-growing softwood with significant commercial value. Understanding structural changes in hemicellulose during growth is essential to understanding the biosynthesis processes occurring in the cell walls of this tree. In this study, alkaline extraction is applied to isolate hemicellulose from Pinus taeda L. stem segments of different ages (1, 2, 3, and 4 years old). The results show that the extracted hemicellulose is mainly comprised of O-acetylgalactoglucomannan (GGM) and 4-O-methylglucuronoarabinoxylan (GAX), with the molecular weights and ratios (i.e., GGM:GAX) of GGM and GAX increasing alongside Pinus taeda L. age. Mature Pinus taeda L. hemicellulose is mainly composed of GGM, and the ratio of (mannose:glucose) in the GGM main chain gradually increases from 2.45 to 3.60 with growth, while the galactose substitution of GGM decreases gradually from 21.36% to 14.65%. The acetylation of GGM gradually increases from 0.33 to 0.45 with the acetyl groups mainly substituting into the O-3 position in the mannan. Furthermore, the contents of arabinose and glucuronic acid in GAX gradually decrease with growth. This study can provide useful information to the research in genetic breeding and high-value utilization of Pinus taeda L.
Collapse
Affiliation(s)
- Biao Zheng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Liuyang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zibin Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Siyi Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Luoting Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Shen W, Zhang C, Wang G, Li Y, Zhang X, Cui Y, Hu Z, Shen S, Xu X, Cao Y, Li X, Wen J, Lin J. Variation pattern in the macromolecular (cellulose, hemicelluloses, lignin) composition of cell walls in Pinus tabulaeformis tree trunks at different ages as revealed using multiple techniques. Int J Biol Macromol 2024; 268:131619. [PMID: 38692998 DOI: 10.1016/j.ijbiomac.2024.131619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: β-O-4, β-β, and β-5. Furthermore, the C-O bond (β-O-4) signals of lignin decreased while the C-C bonds (β-β and β-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.
Collapse
Affiliation(s)
- Weiwei Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guangchao Wang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yujian Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zijian Hu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shiya Shen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiuping Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jinxing Lin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Park JS, Han JM, Park YS, Shin YN, Shin YR, Chun BS, Lee HJ. Optimization and evaluation of Atrina pectinata polysaccharides recovered by subcritical water extraction: A promising path to natural products. Int J Biol Macromol 2024; 259:129130. [PMID: 38181917 DOI: 10.1016/j.ijbiomac.2023.129130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In this study, the recovery of Atrina pectinata posterior adductor polysaccharides (APP-PS) using subcritical water extraction (SWE) was optimized by response surface methodology (RSM) and the physicochemical and biological properties of the recovered APP-PS were evaluated. The optimal extraction conditions, which resulted in a maximum yield of 55.58 ± 1.12 %, were temperature, 152.08 °C; extraction time, 10 min; solid-liquid ratio, 30 g/600 mL. The obtained APP-PS was found to be 88.05 ± 0.17 % total sugar. Fourier transform infrared (FT-IR) and Nuclear magnetic resonance (NMR) analyses confirmed the presence of the α-coordination of D-glucan in the polymer sample. The analysis of monosaccharide composition, along with thermogravimetric analysis, revealed the typical structure of the sample, composed of glucose alone. Total phenolic contents of APP-PS were measured as 5.47 ± 0.01 mg Gallic acid/g of dry sample and total flavonoids contents were determined to be 0.78 ± 0.06 mg Quercetin/g of dry sample. For biological activities, ABTS+, DPPH and FRAP antioxidant activities were measured to be 20.00 ± 0.71, 2.35 ± 0.05 and 4.02 ± 0.07 μg Trolox equivalent/100 g of dry sample, respectively. Additionally ACE inhibitory was confirmed to be 87.02 ± 0.47 %. These results showed that SWE is an effective method to recover biofunctional materials from marine organisms.
Collapse
Affiliation(s)
- Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ye-Seul Park
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Yu-Na Shin
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ye-Ryeon Shin
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Republic of Korea.
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Republic of Korea.
| |
Collapse
|
5
|
Zheng B, Yang H, Xu X, Xiang Z, Hong Z, Zheng H, Wu A, Li H. Characterization of hemicellulose in Cunninghamia lanceolata stem during xylogenesis. Int J Biol Macromol 2023; 246:125530. [PMID: 37355061 DOI: 10.1016/j.ijbiomac.2023.125530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
In this study, hemicellulose was isolated from the apical, middle and basal segments of C. lanceolata stem to investigate the dynamic change of its structure during xylogenesis. Results showed that the C. lanceolata hemicellulose is mainly consisted of O-acetylgalactoglucomannan (GGM) which backbone is alternately linked by β-d-mannopyranosyl (Manp) and β-d-glucopyranosyl (Glcp) via (1 → 4)-glycosidic bond, while the side chains are α-d-galactopyranosyl (Galp) and acetyl. In addition, 4-O-methylglucuronoarabinoxylan (GAX) is another dominant structure of C. lanceolata hemicellulose which contains a linear backbone of (1 → 4)-β-d-xylopyranosyl (Xylp) and side chains of 4-O-Me-α-d-glucuronic acid (MeGlcpA) and α-L-arabinofuranose (Araf). The thickness of the cell wall, the ratio of GGM/GAX and the molecular weight of hemicellulose were increased as the extension of growth time. The degree of glycosyl substitutions of xylan and mannan was decreased from 10.34 % (apical) to 8.38 % (basal) and from 15.63 % (apical) to 10.49 % (basal), respectively. However, the total degree of acetylation was enhanced from 0.28 (apical) to 0.37 (basal). Transcriptome analysis showed that genes (CSLA9, IRX9H1, IRX10L, IRX15L, GMGT1, TBL19, TBL25, GUX2, GUX3, GXM1, F8H1 and F8H2) related to hemicellulose biosynthesis are mainly expressed in mature part. This study is of great significance for genetic breeding and high-value utilization of C. lanceolata.
Collapse
Affiliation(s)
- Biao Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Haoqiang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Xu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhou Hong
- Research institute of tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Huiquan Zheng
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Fan G, Peng Q, Chen Y, Long Y, Bai J, Song G, Cheng Q. Preparation of biodegradable composite films based on carboxymethylated holocellulose from wheat straw. Int J Biol Macromol 2023; 242:124868. [PMID: 37201885 DOI: 10.1016/j.ijbiomac.2023.124868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Holocellulose was extracted from wheat straw and catalytically transformed into carboxymethylated holocellulose (CMHCS) to prepare a biodegradable composite film. By changing the type and amount of catalyst, the carboxymethylation of the holocellulose was optimized with respect to the degree of substitution (DS). A high DS of 2.46 was achieved in the presence of a cocatalyst composed of polyethylene glycol and cetyltrimethylammonium bromide. The effect of DS on the properties of CMHCS-derived biodegradable composite films was further investigated. Compared to pristine holocellulose, the mechanical properties of the composite film were significantly improved and increased with increasing DS. The tensile strength, elongation at break, and Young's modulus increased from 6.58 MPa, 51.4 %, and 26.13 MPa for the unmodified holocellulose-based composite film to 14.81 MPa, 89.36 %, and 81.73 MPa for the film derived from the CMHCS with a DS of 2.46. The biodegradability of the composite film was assessed under soil burial biodisintegration conditions and reached 71.5 % degradation after 45 d. Additionally, a possible degradation process for the composite film was proposed. The results indicated that the CMHCS-derived composite film has good comprehensive performance, and CMHCS is expected to be applied in the field of biodegradable composite materials.
Collapse
Affiliation(s)
- Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China.
| | - Qiao Peng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| | - Yi Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| | - Yifei Long
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| | - Juan Bai
- Ecoplast Technologies Inc, Wuhan 430202, China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| |
Collapse
|
7
|
Sun Q, Wang HM, Ma CY, Hong S, Sun Z, Yuan TQ. Dynamic structural evolution of lignin macromolecules and hemicelluloses during Chinese pine growth. Int J Biol Macromol 2023; 235:123688. [PMID: 36801284 DOI: 10.1016/j.ijbiomac.2023.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
To comprehend the biosynthesis processes of conifers, it is essential to investigate the disparity between the cell wall shape and the interior chemical structures of polymers throughout the development of Chinese pine. In this study, branches of mature Chinese pine were separated according to their growth time (2, 4, 6, 8 and 10 years). The variation of cell wall morphology and lignin distribution was comprehensively monitored by scanning electron microscopy (SEM) and confocal Raman microscopy (CRM), respectively. Moreover, the chemical structures of lignin and alkali-extracted hemicelluloses were extensively characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The thickness of latewood cell walls increased steadily from 1.29 μm to 3.38 μm, and the structure of the cell wall components became more complicated as the growth time increased. Based on the structural analysis, it was found that the content of β-O-4 (39.88-45.44/100 Ar), β-β (3.20-10.02/100 Ar) and β-5 (8.09-15.35/100 Ar) linkages as well as the degree of polymerization of lignin increased with the growth time. The complication propensity increased significantly over 6 years before slowing to a trickle over 8 and 10 years. Furthermore, alkali-extracted hemicelluloses of Chinese pine mainly consist of galactoglucomannans and arabinoglucuronxylan, in which the relative content of galactoglucomannans increased with the growth of the pine, especially from 6 to 10 years.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Han-Min Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Si Hong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Effect of Loblolly Pine ( Pinus taeda L.) Hemicellulose Structure on the Properties of Hemicellulose-Polyvinyl Alcohol Composite Film. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010046. [PMID: 36615241 PMCID: PMC9822227 DOI: 10.3390/molecules28010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hemicellulose is the second most abundant natural polysaccharide and a promising feedstock for biomaterial synthesis. In the present study, the hemicellulose of loblolly pine was obtained by the alkali extraction-graded ethanol precipitation technique, and the hemicellulose-polyvinyl alcohol (hemicellulose-PVA) composite film was prepared by film casting from water. Results showed that hemicellulose with a low degree of substitution is prone to self-aggregation during film formation, while hemicellulose with high branching has better compatibility with PVA and is easier to form a homogeneous composite film. In addition, the higher molecular weight of hemicellulose facilitates the preparation of hemicellulose-PVA composite film with better mechanical properties. More residual lignin in hemicellulose results in the better UV shielding ability of the composite film. This study provides essential support for the efficient and rational utilization of hemicellulose.
Collapse
|
9
|
Xu Y, Xu Y, Chen H, Gao M, Yue X, Ni Y. Redispersion of dried plant nanocellulose: A review. Carbohydr Polym 2022; 294:119830. [PMID: 35868740 DOI: 10.1016/j.carbpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Nanocellulose has undergone substantial development as a high value-added cellulose product with broad applications. Dried products are advantageous to decrease transportation costs. However, dried nanocellulose has redispersion challenges when rewetting. In this work, drying techniques, factors affecting redispersibility, and strategies improving the nanocellulose redispersibility are comprehensively reviewed. Hydrogen bonds of nanocellulose are unavoidably developed during drying, leading to inferior redispersibility of dried nanocellulose, even hornification. Drying processes of nanocellulose are discussed first. Then, factors affecting redispersibility are discussed. Following that, strategies improving the nanocellulose redispersibility are analyzed and their advantages and disadvantages are highlighted. Surface charge modification and steric hindrance concept are two main pathways to overcome the redispersion challenge, which are mainly carried out by chemical modification, additive incorporation and non-cellulosic component preservation. Despite several advancements having been achieved, new approaches for enhancing the nanocellulose redispersibility are still required to promote the industrial-scale applications of nanocellulose in various domains.
Collapse
Affiliation(s)
- Yang Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Hao Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Minlan Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xiaopeng Yue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
10
|
Structure of corn bran hemicelluloses isolated with aqueous ethanol solutions and their potential to produce furfural. Carbohydr Polym 2022; 288:119420. [DOI: 10.1016/j.carbpol.2022.119420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
|
11
|
Barbieri SF, da Costa Amaral S, Mazepa E, Filho APS, Sassaki GL, Silveira JLM. Isolation, NMR characterization and bioactivity of a (4-O-methyl-α-D-glucurono)-β-D-xylan from Campomanesia xanthocarpa Berg fruits. Int J Biol Macromol 2022; 207:893-904. [PMID: 35358579 DOI: 10.1016/j.ijbiomac.2022.03.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Hemicellulose-type polysaccharides were isolated from Campomanesia xanthocarpa fruits by alkaline extraction and submitted to fractionation processes giving rise to eluted (GE-300) and retained (GR-300) fractions. GE-300 presented a mixture of galactoglucomannans (GGM) and glucuronoxylans (MGX), while the GR-300 fraction is composed only of MGX. In this way, the chemical structure of MGX, investigated by 1D 1H, 13C and 2D 1H-13C HSQC, 1H-1H COSY and 1H-13C HMBC NMR spectroscopy, revealed that the chemical structure of polysaccharide is a (4-O-methyl-α-D-glucurono)-D-xylan. Deep and precise NMR chemical shift determination of clean and specific 1H NMR glycosyl units were developed by 1D TOCSY and 1D NOESY analysis. This approach demonstrated unequivocally that 4-O-methyl-α-D-glucopyranosyl uronic acid group is linked to O-2 of a (1 → 4)-β-D-xylan in the main chain. Furthermore, MGX scavenged DPPH radical (0.5 to 1.0 mg mL-1) and was not cytotoxic to human dermal fibroblasts at concentrations up to 1.0 mg mL-1, as demonstrated by neutral red and crystal violet assays, evidencing in vitro biocompatibility. The structure elucidation of GR-300 together with its bioactivity assessment contributed to better understand the chemical characteristics of C. xanthocarpa hemicelluloses and may provide structural basis for future structure-property studies.
Collapse
Affiliation(s)
- Shayla Fernanda Barbieri
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil
| | - Sarah da Costa Amaral
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil
| | - Ester Mazepa
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil
| | | | - Guilherme Lanzi Sassaki
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Paraná, CEP 81.531-980 Curitiba, PR, Brazil
| | - Joana Léa Meira Silveira
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil.
| |
Collapse
|
12
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. Int J Biol Macromol 2022; 205:530-538. [PMID: 35217078 DOI: 10.1016/j.ijbiomac.2022.02.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
Galactomannan (GM) is widely recognized as an immune enhancer; however, the underlying molecular mechanism is still unknown. Herein, four products with molecular weights in descending order, namely GM40, GM50, GM65, and GMOS, were separated from incomplete degradation products of Sesbania cannabina GM by ethanol precipitation, followed by their immunomodulatory activity. Through FTIR and XPS spectra, the amount of free hydroxyl groups was shown to decrease in the following order: GM > GM50 > GMOS > GM40 > GM65. Moreover, the immunomodulatory activity of different products decreased in abovementioned order. The TNF-α, IL-6 and TLR4 content in RAW 264.7 cells treated with different GM products in the presence or absence of TAK-242 (TLR4 inhibitor) suggested that the immunomodulatory activity of GM and its degradation products is TLR4-dependent. Overall, the preliminary relationship indicated here between the hydroxyl groups or the possible deeper structural changes of GM and the immunomodulatory activity need to be further investigated.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
13
|
The extraction of lignocelluloses and silica from rice husk using a single biorefinery process and their characteristics. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhang Q, Wang J, Sun Q, Zhang SM, Sun XY, Li CY, Zheng MX, Xiang WL, Tang J. Characterization and Antioxidant Activity of Released Exopolysaccharide from Potential Probiotic Leuconostoc mesenteroides LM187. J Microbiol Biotechnol 2021; 31:1144-1153. [PMID: 34226411 PMCID: PMC9705892 DOI: 10.4014/jmb.2103.03055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
A released exopolysaccharide (rEPS)-producing strain (LM187) with good acid resistance, bile salt resistance, and cholesterol-lowering properties was isolated from Sichuan paocai and identified as Leuconostoc mesenteroides subsp. mesenteroides. The purified rEPS, designated as rEPS414, had a uniform molecular weight of 7.757 × 105 Da. Analysis of the monosaccharide composition revealed that the molecule was mainly composed of glucose. The Fourier transform-infrared spectrum showed that rEPS414 contained both α-type and β-type glycosidic bonds. 1H and 13C nuclear magnetic resonance spectra analysis showed that the purified rEPS contained arabinose, galactose, and rhamnose, but less uronic acid. Scanning electron microscopy demonstrated that the exopolysaccharide displayed a large number of scattered, fluffy, porous cellular network flake structures. In addition, rEPS414 exhibited strong in vitro antioxidant activity. These results showed that strain LM187 and its rEPS are promising probiotics with broad prospects in industry.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,Corresponding authors Q. Zhang Phone: +86-28-87720552 Fax: +86-28-87720552 E-mail:
| | - Jie Wang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Qing Sun
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Shu-Ming Zhang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Xiang-Yang Sun
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Chan-Yuan Li
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Miao-Xin Zheng
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Wen-Liang Xiang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Jie Tang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,
J. Tang E-mail:
| |
Collapse
|
15
|
The Use of Sugarcane Bagasse to Remove the Organic Dyes from Wastewater. Int J Anal Chem 2021; 2021:5570806. [PMID: 34257663 PMCID: PMC8261189 DOI: 10.1155/2021/5570806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
In the present study, the potential of sugarcane bagasse (SCB) was evaluated by methylene blue (MB) retention. The selected low-cost adsorbent was characterized by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), BET method, and determination of the point of zero charge (pHzpc). Batch kinetic and isothermal studies were performed to examine the effects of contact time, initial dye concentration, adsorbent dose, pH, and temperature. The results show that the kinetic study of MB adsorption on sugarcane bagasse is very fast; the equilibrium is reached after only 20 minutes. The kinetic model of pseudo-second-order and the Langmuir isotherm model perfectly explain the adsorption process of MB with a monolayer adsorption capacity equal to 49.261 mg·g-1 activation parameters' values such as free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) also determined as -4.35 kJ·mol-1, -31.062 kJ·mol-1, and -0.084 J·mol-1·K-1, respectively. Besides, the thermodynamic parameters of the methylene blue sugarcane bagasse system indicate that the exothermic adsorption process is spontaneous.
Collapse
|
16
|
A facile quantitative characterization method of incomplete degradation products of galactomannan by ethanol fractional precipitation. Carbohydr Polym 2020; 250:116951. [DOI: 10.1016/j.carbpol.2020.116951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
|
17
|
Cui W, Huang J, Niu X, Shang H, Sha Z, Miao Y, Wang H, Chen R, Wei K, Zhu R. Screening active fractions from Pinus massoniana pollen for inhibiting ALV-J replication and their structure activity relationship investigation. Vet Microbiol 2020; 252:108908. [PMID: 33254056 DOI: 10.1016/j.vetmic.2020.108908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The objective was to identify the active fractions of polysaccharide against replication of ALV-J and elucidate their structure activity relationship. The optimal extraction conditions were extracting temperature 90℃, pH 9 and the ratio of liquid to solid 30:1. Under these conditions, extraction yield of total polysaccharide was 6.5 % ± 0.19 %. Total polysaccharide was then purified by DEAE-52 cellulose and Sephadex G-200 gel. Three fractions, PPP-1, PPP-2, and PPP-3, were identified with molecular weight of 463.70, 99.41, and 26.97 kDa, respectively. Three polysaccharide fractions were all composed of 10 monosaccharides in different proportions. Compared with PPP-1, which was mainly composed of glucose, PPP-2 and PPP-3 contained a higher proportion of galactose, glucuronic acid and galacturonic acid. The Congo red assay indicated that the PPP-2 may have a triple helical structure, while PPP-1 and PPP-3 were absent. In vitro assay showed that there was no significant cytotoxicity among the polysaccharide fractions under the concentration of 800 μg mL-1 (P > 0.05). The antiviral test showed that PPP-2 had the strongest activity, indicating PPP-2 was the major antiviral component. The structure-activity relationship showed that the antiviral activities of polysaccharide fractions were affected by their monosaccharide composition, molecular weight, and triple helical structure, which was a result of a combination of multiple molecular structural factors. These results showed that the PPP-2 could be exploited as a valued product for replacing synthetic antiviral drugs, and provided support for future applications of polysaccharide from Pinus massoniana pollen as a useful source for antiviral agent.
Collapse
Affiliation(s)
- Wenping Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Jin Huang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Xiangyun Niu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Hongqi Shang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Zhou Sha
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Yongqiang Miao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Huan Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Ruichang Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Kai Wei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Ruiliang Zhu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| |
Collapse
|
18
|
Structural characterization of a novel galactoglucan from Fortunella margarita and its molecular structural change following simulated digestion in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
19
|
Chang Y, Lu W, Chu Y, Yan J, Wang S, Xu H, Ma H, Ma J. Extraction of polysaccharides from maca: Characterization and immunoregulatory effects on CD4 + T cells. Int J Biol Macromol 2020; 154:477-485. [PMID: 32179120 DOI: 10.1016/j.ijbiomac.2020.03.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
The immunomodulatory effects of maca polysaccharides (MCPs) on macrophages have been demonstrated in many studies. However, the effects of MCPs on CD4+ T cells have not been studied. Four water-soluble MCPs, labeled MCP1 (weight-average molecular weights [Mws] of 896.1 and 276.6 kDa), MCP2 (Mws of 337.8 and 219.0 kDa), MCP3 (Mws of 110.6, 58.1, and 38.9 kDa), and MCP4 (Mws of 15.7, 12.6, and 12.1 kDa), were obtained from maca by graded ethanol precipitation. The immunoregulatory effects of MCPs on CD4+ T cells were evaluated for the first time. The experimental results indicated that all MCPs had immunoregulatory effects on CD4+ T cells. However, the effects of MCP2 were stronger compared to the other three components, not only in promoting the proliferation of CD4+ T cells but also in terms of secretion of interferon-γ (IFN-γ). The molecular weight and monosaccharide compositions of MCPs were analyzed to explore the structure-activity relationship. The results suggested that the molecular weight and the galactosamine (GalN) of MCPs might be determining factors for its bioactivity. These findings suggest that the MCP2 isolated in our study have immune potentiation effects on CD4+ T cells.
Collapse
Affiliation(s)
- Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jingkun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Udchumpisai W, Bangyeekhun E. Purification, Structural Characterization, and Biological Activity of Polysaccharides from Lentinus velutinus. MYCOBIOLOGY 2020; 48:51-57. [PMID: 32158606 PMCID: PMC7048199 DOI: 10.1080/12298093.2019.1693482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 05/13/2023]
Abstract
A polysaccharide (LVP) was purified from fruiting body of Lentinus velutinus by ethanol precipitation fractionation and DEAE and Sephadex G-100 column chromatography. The yield of purified polysaccharide was 0.025%. Molecular characteristics of LVP were determined by gel permeation chromatography, FT-IR spectroscopy, and thin-layer chromatography. Our results revealed that LVP is a polysaccharide composed of only glucose units, and has a molecular weight of 336 kDa. Biological activity assays indicated that LVP exhibits both cytotoxic and antioxidant activity. LVP showed specific cytotoxicity against cancer cells (HeLa and HepG2 cells), and alterations in cancer cell morphology were found after LVP treatment.
Collapse
Affiliation(s)
- Wascharin Udchumpisai
- Department of Microbiology, Faculty of Science, Silpakorn University, Mueang, Nakhon Pathom, Thailand
| | - Eakaphun Bangyeekhun
- Department of Microbiology, Faculty of Science, Silpakorn University, Mueang, Nakhon Pathom, Thailand
- CONTACT Eakaphun Bangyeekhun
| |
Collapse
|
21
|
Chen P, Lin Y, Chen Y, Chang Q, Zheng B, Zhang Y, Hu X, Zeng H. Structural characterization of a novel mannogalactoglucan from Fortunella margarita and its simulated digestion in vitro. Food Chem Toxicol 2019; 133:110778. [DOI: 10.1016/j.fct.2019.110778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
|
22
|
de Freitas C, Carmona E, Brienzo M. Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100184] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Getachew AT, Lee HJ, Cho YJ, Chae SJ, Chun BS. Optimization of polysaccharides extraction from Pacific oyster (Crassostrea gigas) using subcritical water: Structural characterization and biological activities. Int J Biol Macromol 2019; 121:852-861. [DOI: 10.1016/j.ijbiomac.2018.10.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
24
|
Hu X, Goff HD. Fractionation of polysaccharides by gradient non-solvent precipitation: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Chang CK, Ho WJ, Chang SL, Yeh CH, Liang ZC, Hsu TH, Hsieh CW. Fractionation, characterization and antioxidant activity of exopolysaccharide from fermentation broth of a Xylaria nigripes. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Chang R, Xiong L, Li M, Liu J, Wang Y, Chen H, Sun Q. Fractionation of debranched starch with different molecular weights via edible alcohol precipitation. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Ma Q, Santhanam RK, Xue Z, Guo Q, Gao X, Chen H. Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides. Int J Biol Macromol 2018; 119:1137-1143. [PMID: 30098363 DOI: 10.1016/j.ijbiomac.2018.08.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
Abstract
This study aimed to optimize the suitable drying method to obtain high yield of polysaccharides from mulberry leaves and to determine their structural characterization and antioxidant activities. The effects of three different drying methods such as air dried, hot air dried (55 °C, 65 °C & 75 °C) and freeze dried on the physicochemical and antioxidant properties of mulberry leaves polysaccharides were studied using gas chromatography, high performance gel permeation chromatography, Fourier transform infrared spectroscopy, scanning electron micrography and antioxidant assays. Results revealed that pre-treatment remarkably influenced the changes in their physicochemical and antioxidant properties. In comparison with the other drying techniques, freeze dried polysaccharides showed more rough morphologies and significant antioxidant property. The yield of polysaccharides from the freeze dried sample was about 28.88% higher than the yield of hot air dried sample. The MDA activity of freeze dried sample was about 95.45%. Overall, the results suggested that the freeze drying technique was the appropriate method to extract polysaccharides from mulberry leaves that offered significant biological properties.
Collapse
Affiliation(s)
- Qiqi Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ramesh Kumar Santhanam
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qingwen Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
28
|
Liu T, Nobeshima H, Ojima Y, Azuma M. A New Method to Purify Poly-γ-glutamic Acid Using Gemini Quaternary Ammonium Salts and Characterization of its Ionic Complex. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Liu
- Department of Applied Chemistry and Bioengineering, Osaka City University
| | | | - Yoshihiro Ojima
- Department of Applied Chemistry and Bioengineering, Osaka City University
| | - Masayuki Azuma
- Department of Applied Chemistry and Bioengineering, Osaka City University
| |
Collapse
|
29
|
Hu X, Wang Y, Liu C, Jin Z, Tian Y. Preparative fractionation of dextrin by polyethylene glycol: Effects of initial dextrin concentration and pH. J Chromatogr A 2017; 1530:226-231. [DOI: 10.1016/j.chroma.2017.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/22/2017] [Accepted: 11/10/2017] [Indexed: 02/04/2023]
|
30
|
Nagel A, Winkler C, Carle R, Endress HU, Rentschler C, Neidhart S. Processes involving selective precipitation for the recovery of purified pectins from mango peel. Carbohydr Polym 2017; 174:1144-1155. [PMID: 28821039 DOI: 10.1016/j.carbpol.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/23/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Three methods for the recovery of purified pectins from directly dried mango peel were developed, using selective precipitation of mango pectin in propan-2-ol (IPA) of adequate volume concentrations for purification. Yields, composition, macromolecular and gelling properties of the resultant pectins were compared. Effluent analyses proved postextractive removal of fruit exudate arabinogalactans. The recovery processes involved (A) washing of raw-pectin powder in IPA of defined volume concentration, (B) fractional alcoholic precipitation of dissolved raw pectin, or (C) selective pectin precipitation from the hot-acid extract of mango peel in adequately diluted IPA. High galacturonic acid contents (≥ 721g/kg) and intrinsic viscosities (≥ 320mL/g) enabled ∼2.2-fold gelling capacities compared to raw mango pectin, which resulted from the standard procedure mimicking industrial pectin recovery from established sources. Removal of the predominant impurities (coextractable exudate arabinogalactans, ash) diminished the yields to ∼49% of the raw-pectin yield. Technical feasibility of the proposed procedures was discussed.
Collapse
Affiliation(s)
- Andreas Nagel
- Institute of Food Science and Biotechnology, Chair of Plant Foodstuff Technology and Analysis, Hohenheim University, Garbenstrasse 25, 70599 Stuttgart, Germany.
| | - Carina Winkler
- Institute of Food Science and Biotechnology, Chair of Plant Foodstuff Technology and Analysis, Hohenheim University, Garbenstrasse 25, 70599 Stuttgart, Germany.
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair of Plant Foodstuff Technology and Analysis, Hohenheim University, Garbenstrasse 25, 70599 Stuttgart, Germany; Biological Science Department, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia.
| | - Hans-Ulrich Endress
- Herbstreith & Fox KG Pektin-Fabriken, Turnstrasse 37, 75305 Neuenbürg, Germany.
| | | | - Sybille Neidhart
- Institute of Food Science and Biotechnology, Chair of Plant Foodstuff Technology and Analysis, Hohenheim University, Garbenstrasse 25, 70599 Stuttgart, Germany.
| |
Collapse
|
31
|
Silva FF, Alves AMB, de Lurdes Serrano M, de Sousa APM. Isolation and purification of concentrated and non-concentrated hemicellulose alkaline extracts. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Rheological and chemical properties of pectin enriched fractions from different sources extracted with citric acid. Carbohydr Polym 2017; 156:443-451. [DOI: 10.1016/j.carbpol.2016.09.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/28/2016] [Accepted: 09/14/2016] [Indexed: 02/02/2023]
|
33
|
Santoni I, Callone E, Sandak A, Sandak J, Dirè S. Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydr Polym 2015; 117:710-721. [DOI: 10.1016/j.carbpol.2014.10.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 09/15/2014] [Accepted: 10/19/2014] [Indexed: 11/28/2022]
|
34
|
Evans BR, Bali G, Reeves DT, O'Neill HM, Sun Q, Shah R, Ragauskas AJ. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2595-2604. [PMID: 24640947 DOI: 10.1021/jf4055566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The development of deuterated biomass is essential for effective neutron scattering studies on biomass, which can provide key insights into the complex biomass conversion processes. A method for optimized production of deuterated annual ryegrass (Lolium multiflorum) was developed by growing the plants in 50% D2O in perfused hydroponic chambers. Deuterium incorporation of 36.9% was found in the annual rye grown in 50% D2O. Further, deuterium incorporation of 60% was achieved by germinating the rye seedlings in H2O and growing in 50% D2O inside the perfusion chambers. The characteristics related to enzymatic hydrolysis such as biomass composition, degree of polymerization, and cellulose crystallinity were compared with its control protiated counterpart. The cellulose molecular weight indicated slight variation while hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration.
Collapse
Affiliation(s)
- Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee, 37831, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Zou P, Yang X, Huang WW, Zhao HT, Wang J, Xu RB, Hu XL, Shen SY, Qin D. Characterization and bioactivity of polysaccharides obtained from pine cones of Pinus koraiensis by graded ethanol precipitation. Molecules 2013; 18:9933-48. [PMID: 23966080 PMCID: PMC6270541 DOI: 10.3390/molecules18089933] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 11/17/2022] Open
Abstract
Pinus koraiensis polysaccharides (PKP) were extracted by hot water from P. koraiensis pine cones. Five polysaccharide fractions named PKP-A, PKP-B, PKP-C, PKP-D and PKP-E were successfully separated at final ethanol concentrations of 30%, 50%, 60%, 70% and 80%, respectively. HPLC, FT-IR, GC-MS and automatic amino-acid analysis were applied to investigate their chemical characteristics. Monosaccharide component analysis indicated that the five fractions were all composed of D-ribose, L-rhamnose, L-arabinose, D-xylose, D-mannose, D-glucose and D-galactose, but their molar ratios were quite different. HPLC results revealed that the polysaccharides precipitated by higher concentrations of ethanol solution had lower molecular masses. Moreover, the antioxidant activities of the five fractions were studied on the basis of hydroxyl radical and ABTS radical scavenging tests. The five graded polysaccharide fractions exhibited good inhibitory power, and MTT tests in vitro showed the IC50 of PKP-A and PKP-E were 1,072.5 and 2,070.0 μg · mL-1, respectively. These results demonstrated that the PKP could be a potential source of natural antioxidants or dietary supplements.
Collapse
Affiliation(s)
- Pan Zou
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, Helongjiang, China; E-Mails: (P.Z.); (W.-W.H.); (H.-T.Z.); (R.-B.X.); (X.-L.H); (S.-Y.S.); (D.Q.)
| | - Xin Yang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, Helongjiang, China; E-Mails: (P.Z.); (W.-W.H.); (H.-T.Z.); (R.-B.X.); (X.-L.H); (S.-Y.S.); (D.Q.)
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei-Wei Huang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, Helongjiang, China; E-Mails: (P.Z.); (W.-W.H.); (H.-T.Z.); (R.-B.X.); (X.-L.H); (S.-Y.S.); (D.Q.)
| | - Hai-Tian Zhao
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, Helongjiang, China; E-Mails: (P.Z.); (W.-W.H.); (H.-T.Z.); (R.-B.X.); (X.-L.H); (S.-Y.S.); (D.Q.)
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Ren-Bo Xu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, Helongjiang, China; E-Mails: (P.Z.); (W.-W.H.); (H.-T.Z.); (R.-B.X.); (X.-L.H); (S.-Y.S.); (D.Q.)
| | - Xing-Long Hu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, Helongjiang, China; E-Mails: (P.Z.); (W.-W.H.); (H.-T.Z.); (R.-B.X.); (X.-L.H); (S.-Y.S.); (D.Q.)
| | - Si-Yan Shen
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, Helongjiang, China; E-Mails: (P.Z.); (W.-W.H.); (H.-T.Z.); (R.-B.X.); (X.-L.H); (S.-Y.S.); (D.Q.)
| | - Di Qin
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, Helongjiang, China; E-Mails: (P.Z.); (W.-W.H.); (H.-T.Z.); (R.-B.X.); (X.-L.H); (S.-Y.S.); (D.Q.)
| |
Collapse
|
36
|
Huang QL, Siu KC, Wang WQ, Cheung YC, Wu JY. Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Hu DJ, Cheong KL, Zhao J, Li SP. Chromatography in characterization of polysaccharides from medicinal plants and fungi. J Sep Sci 2012; 36:1-19. [DOI: 10.1002/jssc.201200874] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 02/04/2023]
Affiliation(s)
- De-jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao; China
| | - Kit-leong Cheong
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao; China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao; China
| | - Shao-ping Li
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao; China
| |
Collapse
|
38
|
|