1
|
Mikitova V, Jopcik M, Rajninec M, Libantova J. Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata. PLANTA 2025; 261:32. [PMID: 39799526 PMCID: PMC11725546 DOI: 10.1007/s00425-025-04607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
MAIN CONCLUSION DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation. Here, we characterised a novel chitinase gene (DbChitI-3) isolated from the carnivorous plant species Drosera binata with strong homology to other Drosera species' extracellular class I chitinases with a role in digestive processes. The capability to cleave different forms of chitin was tested using recombinantly produced chitinase in Escherichia coli (rDbChitI-3S-His) and subsequent purification. The recombinant protein did not cleave chitin powder, the mono-, di- and tri- N-acetyl-D-glucosamine substrates, but cleaved acetic acid-swollen chitin. Fluorometric assay with acetic acid-swollen FITC-chitin as a substrate revealed the maximum enzyme activity at pH 2.5, spanning from 15 °C to 30 °C. Comparing enzymatic parameters with commercial chitinase from Streptomyces griseus showed rDbChitI-3S-His efficiency reaching 64.3% of S. griseus chitinase under optimal conditions. The highest basal expression of DbChitI-3 was detected in leaf blades. In other organs, the expression was either fivefold lower (petioles) or almost nondetectable (stems, roots and flowers). Application of gelatin, chitin, and pachyman resulted in a 3.9-, 4.6- and 5.7-fold increase in the mRNA transcript abundance of DbChitI-3 in leaves. In contrast, monosaccharides and laminarin decreased transcription of the DbChitI-3 gene by at least 70%, 5 h after treatment. The simultaneous application of suppressor and inducer (glucose and pachyman) indicated the predominant effect of the suppressor, implying that sufficient monosaccharide nutrients prioritize absorption processes in D. binata leaves over further digestion of the potential substrate.
Collapse
Affiliation(s)
- Veronika Mikitova
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Martin Jopcik
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Miroslav Rajninec
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Libantova
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.
| |
Collapse
|
2
|
Kocáb O, Bačovčinová M, Bokor B, Šebela M, Lenobel R, Schöner CR, Schöner MG, Pavlovič A. Enzyme activities in two sister-species of carnivorous pitcher plants (Nepenthes) with contrasting nutrient sequestration strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:113-121. [PMID: 33581619 DOI: 10.1016/j.plaphy.2021.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The carnivorous pitcher plants of the genus Nepenthes usually attract, capture and digest arthropod prey to obtain mineral nutrients. But few members of the genus have evolved specialized nutrient sequestration strategies to acquire nitrogen from the faeces and urine of mutualistic mammals, which they attract. Because the plants obtain significant amounts of nitrogen in a more available form, we hypothesized that they have relaxed the production of digestive enzymes. If so, species that digest mammal faeces should show fewer digestive enzymes than closely related species that rely on arthropods. We tested this hypothesis by comparing digestive enzymes in 1) Nepenthes hemsleyana, whose pitchers serve as roosts for the mutualistic woolly bat Kerivoula hardwickii, which also defecate inside the pitchers, and 2) the close relative Nepenthes rafflesiana, a typical arthropod capturing species. To investigate the dynamics of aspartic proteases (nepenthesin I and II) and type III and IV chitinases in both species, we conducted qPCR, western blotting, mass spectrometry, and enzyme activity measurements. We found that mRNA in pitcher tissue and enzyme abundance in the digestive fluid is upregulated in both species in response to faeces and insect feeding. Contrary to our initial hypothesis, the final nepenthesin proteolytic activity in the digestive fluid is higher in response to faeces addition than to insect prey irrespective of Nepenthes species. This indicates that faeces can mimic arthropod prey triggering the production of digestive enzymes and N. hemsleyana retained capacity for production of them.
Collapse
Affiliation(s)
- Ondřej Kocáb
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Bačovčinová
- Department of Botany, Institute of Biology and Ecology, Šafárik University, Mánesova 23, SK-040 01, Košice, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská Dolina B2, SK-842 15, Bratislava, Slovakia; Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, SK-841 04, Bratislava, Slovakia
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Caroline R Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany
| | - Michael G Schöner
- Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, 17489, Greifswald, Germany
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Rajninec M, Jopcik M, Danchenko M, Libantova J. Biochemical and antifungal characteristics of recombinant class I chitinase from Drosera rotundifolia. Int J Biol Macromol 2020; 161:854-863. [DOI: 10.1016/j.ijbiomac.2020.06.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
|
4
|
Durechova D, Jopcik M, Rajninec M, Moravcikova J, Libantova J. Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Mol Biotechnol 2019; 61:916-928. [PMID: 31555964 DOI: 10.1007/s12033-019-00214-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a chitinase gene (DrChit) that plays a role in the carnivorous processes of Drosera rotundifolia L. was isolated from genomic DNA, linked to a double CaMV35S promoter and nos terminator in a pBinPlus plant binary vector, and used for Agrobacterium-mediated transformation of tobacco. RT-qPCR revealed that within 14 transgenic lines analysed in detail, 57% had DrChit transcript abundance comparable to or lower than level of a reference actin gene transcript. In contrast, the transgenic lines 9 and 14 exhibited 72 and 152 times higher expression level than actin. The protein extracts of these two lines exhibited five and eight times higher chitinolytic activity than non-transgenic controls when measured in a fluorimetric assay with FITC-chitin. Finally, the growth of Trichoderma viride was obviously suppressed when the pathogen was exposed to 100 μg of crude protein extract isolated from line 9 and line 14, with the area of mycelium growth reaching only 56.4% and 45.2%, of non-transgenic control, respectively. This is the first time a chitinase from a carnivorous plant with substrate specificity for long chitin polymers was tested in a transgenic plant with the aim of exploring its antifungal potential.
Collapse
Affiliation(s)
- Dominika Durechova
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Martin Jopcik
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Miroslav Rajninec
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Moravcikova
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Libantova
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.
| |
Collapse
|
5
|
Saganová M, Bokor B, Stolárik T, Pavlovič A. Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes. PLANTA 2018; 248:451-464. [PMID: 29767335 DOI: 10.1007/s00425-018-2917-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/11/2018] [Indexed: 05/09/2023]
Abstract
Nepenthes regulates enzyme activities by sensing stimuli from the insect prey. Protein is the best inductor mimicking the presence of an insect prey. Carnivorous plants of the genus Nepenthes have evolved passive pitcher traps for prey capture. In this study, we investigated the ability of chemical signals from a prey (chitin, protein, and ammonium) to induce transcription and synthesis of digestive enzymes in Nepenthes × Mixta. We used real-time PCR and specific antibodies generated against the aspartic proteases nepenthesins, and type III and type IV chitinases to investigate the induction of digestive enzyme synthesis in response to different chemical stimuli from the prey. Transcription of nepenthesins was strongly induced by ammonium, protein and live prey; chitin induced transcription only very slightly. This is in accordance with the amount of released enzyme and proteolytic activity in the digestive fluid. Although transcription of type III chitinase was induced by all investigated stimuli, a significant accumulation of the enzyme in the digestive fluid was found mainly after protein and live prey addition. Protein and live prey were also the best inducers for accumulation of type IV chitinase in the digestive fluid. Although ammonium strongly induced transcription of all investigated genes probably through membrane depolarization, strong acidification of the digestive fluid affected stability and abundance of both chitinases in the digestive fluid. The study showed that the proteins are universal inductors of enzyme activities in carnivorous pitcher plants best mimicking the presence of insect prey. This is not surprising, because proteins are a much valuable source of nitrogen, superior to chitin. Extensive vesicular activity was observed in prey-activated glands.
Collapse
Affiliation(s)
- Michaela Saganová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, 842 15, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, 842 15, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, 841 04, Bratislava, Slovakia
| | - Tibor Stolárik
- Department of Plant Physiology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Ravee R, Mohd Salleh F‘I, Goh HH. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 2018; 6:e4914. [PMID: 29888132 PMCID: PMC5993016 DOI: 10.7717/peerj.4914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/16/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. METHODS This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts). RESULTS Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. DISCUSSION These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
Collapse
Affiliation(s)
- Rishiesvari Ravee
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Faris ‘Imadi Mohd Salleh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
Improvement of catalytic, thermodynamics and antifungal activity of constitutive Trichoderma longibrachiatum KT693225 exochitinase by covalent coupling to oxidized polysaccharides. Int J Biol Macromol 2018; 112:179-187. [DOI: 10.1016/j.ijbiomac.2018.01.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/19/2022]
|
8
|
Miguel S, Hehn A, Bourgaud F. Nepenthes: State of the art of an inspiring plant for biotechnologists. J Biotechnol 2017; 265:109-115. [PMID: 29191666 DOI: 10.1016/j.jbiotec.2017.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 11/04/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022]
Abstract
Plant carnivory results from the adaptation of plants to their environment. The capture and digestion of preys, followed by their assimilation by the plant is a source of additional nutrients to overcome scarce nutrient in poor soils. Nepenthes are highly studied carnivorous plants and have developed a number of ecological traits which have attracted the attention of plant biologists. Multiple adaptive strategies developed by these plants make them a source of inspiration for many applications ranging from therapeutic treatments to biocontrol solution in agriculture. The outstanding tissue organization of the digestive pitcher can help to create new and original materials usable in everyday life. In this review article, we propose a state of the art of the latest studies carried out on these particular plants and we establish a list of potential tracks for their exploitation.
Collapse
Affiliation(s)
- Sissi Miguel
- Plant Advanced Technologies SA, 19 Avenue de la forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France; Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France.
| | - Frédéric Bourgaud
- Plant Advanced Technologies SA, 19 Avenue de la forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
9
|
Jopcik M, Moravcikova J, Matusikova I, Bauer M, Rajninec M, Libantova J. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). PLANTA 2017; 245:313-327. [PMID: 27761648 DOI: 10.1007/s00425-016-2608-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698 bp in length were isolated from Drosera rotundifolia L. using degenerate PCR and a genome-walking approach. The corresponding coding sequence of chitinase gene (DrChit) was obtained following RNA isolation from the leaves of aseptically grown in vitro plants, cDNA synthesis with a gene-specific primer and PCR amplification. The open reading frame of cDNA clone consisted of 978 nucleotides and encoded 325 amino acid residues. Sequence analysis indicated that DrChit belongs to the class I group of plant chitinases. Phylogenetic analysis within the Caryophyllales class I chitinases demonstrated a significant evolutionary relatedness of DrChit with clade Ib, which contains the extracellular orthologues that play a role in carnivory. Comparative expression analysis revealed that the DrChit is expressed predominantly in tentacles and is up-regulated by treatment with inducers that mimick insect prey. Enzymatic activity of rDrChit protein expressed in Escherichia coli was confirmed and purified protein exhibited a long oligomer-specific endochitinase activity on glycol-chitin and FITC-chitin. The isolation and expression profile of a chitinase gene from D. rotundifolia has not been reported so far. The obtained results support the role of specific chitinases in digestive processes in carnivorous plant species.
Collapse
Affiliation(s)
- Martin Jopcik
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Moravcikova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Ildiko Matusikova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Miroslav Bauer
- NAFC Research Institute for Animal Production, Nitra, Hlohovska 2, 951 41, Lužianky, Slovak Republic
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University, Nábrežie mládeže 91, 949 74, Nitra, Slovak Republic
| | - Miroslav Rajninec
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Libantova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic.
| |
Collapse
|
10
|
Lee L, Zhang Y, Ozar B, Sensen CW, Schriemer DC. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes. J Proteome Res 2016; 15:3108-17. [PMID: 27436081 DOI: 10.1021/acs.jproteome.6b00224] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.
Collapse
Affiliation(s)
- Linda Lee
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Ye Zhang
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Brittany Ozar
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Christoph W Sensen
- Institute of Molecular Biotechnology, Graz University of Technology , Graz 8010, Austria
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
11
|
Rottloff S, Miguel S, Biteau F, Nisse E, Hammann P, Kuhn L, Chicher J, Bazile V, Gaume L, Mignard B, Hehn A, Bourgaud F. Proteome analysis of digestive fluids in Nepenthes pitchers. ANNALS OF BOTANY 2016; 117:479-95. [PMID: 26912512 PMCID: PMC4765550 DOI: 10.1093/aob/mcw001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants have developed strategies to enable growth in nutrient-poor soils. For the genus Nepenthes, this strategy represents producing pitcher-modified leaves that can trap and digest various prey. These pitchers produce a digestive fluid composed of proteins, including hydrolytic enzymes. The focus of this study was on the identification of these proteins. METHODS In order to better characterize and have an overview of these proteins, digestive fluid was sampled from pitchers at different stages of maturity from five species of Nepenthes (N. mirabilis, N. alata, N. sanguinea, N. bicalcarata and N. albomarginata) that vary in their ecological niches and grew under different conditions. Three complementary approaches based on transcriptomic resources, mass spectrometry and in silico analysis were used. KEY RESULTS This study permitted the identification of 29 proteins excreted in the pitchers. Twenty of these proteins were never reported in Nepenthes previously and included serine carboxypeptidases, α- and β-galactosidases, lipid transfer proteins and esterases/lipases. These 20 proteins display sequence signals allowing their secretion into the pitcher fluid. CONCLUSIONS Nepenthes pitcher plants have evolved an arsenal of enzymes to digest prey caught in their traps. The panel of new proteins identified in this study provides new insights into the digestive process of these carnivorous plants.
Collapse
Affiliation(s)
- Sandy Rottloff
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Aura Optik GmbH, Hans-Knöll-Str. 6, D-07745 Jena, Germany
| | - Sissi Miguel
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Flore Biteau
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| | - Estelle Nisse
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Philippe Hammann
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Lauriane Kuhn
- Proteomic Platform, Institut de Biologie Moléculaire et Cellulaire, CNRS, FRC 1589, 15 rue Descartes, F-67084 Strasbourg cedex, France and
| | - Johana Chicher
- Proteomic Platform, Institut de Biologie Moléculaire et Cellulaire, CNRS, FRC 1589, 15 rue Descartes, F-67084 Strasbourg cedex, France and
| | - Vincent Bazile
- Université Montpellier II and CNRS, UMR AMAP: Botanique et bioinformatique de l'architecture des plantes, TA A51/PS2, Bd de la Lironde, F-34398 Montpellier cedex 5, France
| | - Laurence Gaume
- Université Montpellier II and CNRS, UMR AMAP: Botanique et bioinformatique de l'architecture des plantes, TA A51/PS2, Bd de la Lironde, F-34398 Montpellier cedex 5, France
| | - Benoit Mignard
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France,
| | - Frédéric Bourgaud
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| |
Collapse
|
12
|
Han P, Yang C, Liang X, Li L. Identification and characterization of a novel chitinase with antifungal activity from 'Baozhu' pear (Pyrus ussuriensis Maxim.). Food Chem 2015; 196:808-14. [PMID: 26593558 DOI: 10.1016/j.foodchem.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 11/15/2022]
Abstract
A novel chitinase from the 'Baozhu' pear was found, purified, and characterized in this report. This chitinase was a monomer with a molecular mass of 28.9 kDa. Results of the internal peptide sequence analyses classify this chitinase as a class III chitinase. In the enzymatic hydrolytic assay, this chitinase could hydrolyze chitin derivatives into di-N-acetylchitobiose (GlcNAc2) as a major product in the initial phase, as well as hydrolyze GlcNAc2 into N-acetylglucosamine (GlcNAc), which represents both chitobiosidase and β-N-acetylglucosaminase activity. Biological analyses showed that this chitinase exhibits strong antifungal activity toward agricultural pathogenic fungi. In total, chitinase from 'Baozhu' pear is a novel bifunctional chitinase that could be a potential fungicide in the biological control of plant diseases.
Collapse
Affiliation(s)
- Peng Han
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Chengcheng Yang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiaobo Liang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lirong Li
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
13
|
Wang L, Zhou Q. Nepenthes pitchers: surface structure, physical property, anti-attachment function and potential application in mechanical controlling plague locust. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0383-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:374-83. [DOI: 10.1016/j.bbapap.2013.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022]
|
15
|
Pavlovič A, Krausko M, Libiaková M, Adamec L. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis. ANNALS OF BOTANY 2014; 113:69-78. [PMID: 24201141 PMCID: PMC3864725 DOI: 10.1093/aob/mct254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/11/2013] [Indexed: 05/24/2023]
Abstract
UNLABELLED BACKROUND AND AIMS: It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. METHODS Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). KEY RESULTS Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). CONCLUSIONS According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Lubomír Adamec
- Institute of Botany of the Academy of Sciences of the Czech Republic, Section of Plant Ecology, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| |
Collapse
|
16
|
Michalko J, Socha P, Mészáros P, Blehová A, Libantová J, Moravčíková J, Matušíková I. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases. PLANTA 2013; 238:715-725. [PMID: 23832529 DOI: 10.1007/s00425-013-1925-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/20/2013] [Indexed: 05/28/2023]
Abstract
Carnivory in plants evolved as an adaptation strategy to nutrient-poor environments. Thanks to specialized traps, carnivorous plants can gain nutrients from various heterotrophic sources such as small insects. Digestion in traps requires a coordinated action of several hydrolytic enzymes that break down complex substances into simple absorbable nutrients. Among these, several pathogenesis-related proteins including β-1,3-glucanases have previously been identified in digestive fluid of some carnivorous species. Here we show that a single acidic endo-β-1,3-glucanase of ~50 kDa is present in the digestive fluid of the flypaper-trapped sundew (Drosera rotundifolia L.). The enzyme is inducible with a complex plant β-glucan laminarin from which it releases simple saccharides when supplied to leaves as a substrate. Moreover, thin-layer chromatography of digestive exudates showed that the simplest degradation products (especially glucose) are taken up by the leaves. These results for the first time point on involvement of β-1,3-glucanases in digestion of carnivorous plants and demonstrate the uptake of saccharide-based compounds by traps. Such a strategy could enable the plant to utilize other types of nutritional sources e.g., pollen grains, fungal spores or detritus from environment. Possible multiple roles of β-1,3-glucanases in the digestive fluid of carnivorous sundew are also discussed.
Collapse
Affiliation(s)
- Jaroslav Michalko
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07, Nitra, Slovak Republic,
| | | | | | | | | | | | | |
Collapse
|