1
|
Wahart AJC, Dolan JP, Anderson SD, Cheallaigh AN, Staniland J, Lima MA, Skidmore MA, Miller GJ, Cosgrove SC. Harnessing a Biocatalyst to Bioremediate the Purification of Alkylglycosides. Chembiochem 2024; 25:e202300625. [PMID: 37830893 DOI: 10.1002/cbic.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
As the world moves towards net-zero carbon emissions, the development of sustainable chemical manufacturing processes is essential. Within manufacturing, purification by distillation is often used, however this process is energy intensive and methods that could obviate or reduce its use are desirable. Developed herein is an alternative, oxidative biocatalytic approach that enables purification of alkyl monoglucosides (essential bio-based surfactant components). Implementing an immobilised engineered alcohol oxidase, a long-chain alcohol by-product derived from alkyl monoglucoside synthesis (normally removed by distillation) is selectively oxidised to an aldehyde, conjugated to an amine resin and then removed by simple filtration. This affords recovery of the purified alkyl monoglucoside. The approach lays a blueprint for further development of sustainable alkylglycoside purification using biocatalysis and, importantly, for refining other important chemical feedstocks that currently rely on distillation.
Collapse
Affiliation(s)
- Alice J C Wahart
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jonathan P Dolan
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Simon D Anderson
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Aisling Ní Cheallaigh
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jessica Staniland
- Croda Europe Ltd., Croda Europe Ltd., Cowick Hall, Snaith, Goole, DN14 9AA, UK
| | - Marcelo A Lima
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Mark A Skidmore
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Sebastian C Cosgrove
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
2
|
Bietsch J, Chen A, Wang D, Wang G. Synthesis of a Series of Trimeric Branched Glycoconjugates and Their Applications for Supramolecular Gels and Catalysis. Molecules 2023; 28:6056. [PMID: 37630308 PMCID: PMC10459207 DOI: 10.3390/molecules28166056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They typically formed gels in toluene and alcohols; some formed gels in ethanol-water mixtures or DMSO water mixtures. The glycoclusters 9 and 10 demonstrated rate acceleration for the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. These were further studied for their metallogels formation properties, and the copper metallogels from compound 9 were successfully utilized to catalyze click reactions. These metallogels were able to form a gel column, which was effective in converting the reactants into the triazole products in multiple cycles. Moreover, the same gel column was used to transform a second click reaction using different reactants. The synthesis and characterization of these compounds and their applications for catalytic reactions were discussed.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.B.); (A.C.); (D.W.)
| |
Collapse
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
5
|
Solvent-Free Approaches in Carbohydrate Synthetic Chemistry: Role of Catalysis in Reactivity and Selectivity. Catalysts 2020. [DOI: 10.3390/catal10101142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Owing to their abundance in biomass and availability at a low cost, carbohydrates are very useful precursors for products of interest in a broad range of scientific applications. For example, they can be either converted into basic chemicals or used as chiral precursors for the synthesis of potentially bioactive molecules, even including nonsaccharide targets; in addition, there is also a broad interest toward the potential of synthetic sugar-containing structures in the field of functional materials. Synthetic elaboration of carbohydrates, in both the selective modification of functional groups and the assembly of oligomeric structures, is not trivial and often entails experimentally demanding approaches practiced by specialized groups. Over the last years, a large number of solvent-free synthetic methods have appeared in the literature, often being endowed with several advantages such as greenness, experimental simplicity, and a larger scope than analogous reactions in solution. Most of these methods are catalytically promoted, and the catalyst often plays a key role in the selectivity associated with the process. This review aims to describe the significant recent contributions in the solvent-free synthetic chemistry of carbohydrates, devoting a special critical focus on both the mechanistic role of the catalysts employed and the differences evidenced so far with corresponding methods in solution.
Collapse
|
6
|
Vangala M, Yousf S, Chugh J, Hotha S. Solid‐Phase Synthesis of Clickable Psicofuranose Glycocarbamates and Application of Their Self‐Assembled Nanovesicles for Curcumin Encapsulation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Madhuri Vangala
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Saleem Yousf
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Jeetender Chugh
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Srinivas Hotha
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
7
|
Džubák P, Gurská S, Bogdanová K, Uhríková D, Kanjaková N, Combet S, Klunda T, Kolář M, Hajdúch M, Poláková M. Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics. Carbohydr Res 2020; 488:107905. [DOI: 10.1016/j.carres.2019.107905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
|
8
|
Sharma K, Joseph JP, Sahu A, Yadav N, Tyagi M, Singh A, Pal A, Kartha KPR. Supramolecular gels from sugar-linked triazole amphiphiles for drug entrapment and release for topical application. RSC Adv 2019; 9:19819-19827. [PMID: 35519397 PMCID: PMC9065371 DOI: 10.1039/c9ra02868d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 01/11/2023] Open
Abstract
A simple molecular framework obtained by cross-linking a hydrophobic chain with S,S- and R,R-tetritol by the copper-catalysed azide-alkyne cycloaddition reaction is found to serve as an excellent bioisostere for self-assembly. The hexadecyl-linked triazolyl tetritol composite spontaneously self-assembles in n-hepane and methanol to form hierarchical organogels. Microscopic analyses and X-ray diffraction studies demonstrate eventual formation of nanotubes through lamellar assembly of the amphiphiles. A rheological investigation shows solvent-dictated mechanical properties that obey power law behavior similar to other low molecular weight gelators (LMOGs). The gel network was then utilized for the entrapment of drugs e.g. ibuprofen and 5-fluorouracil, with tunable mechanical behaviour under applied stress. The differential release profiles of the drugs over a period of a few hours as a result of the relative spatio-temporal location in the supramolecular network can be utilized for topical formulations.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| | - Jojo P Joseph
- Institute of Nano Science and Technology Phase 10, Sector 64 Mohali Punjab-160062 India http://www.twitter.com/pal_asish
| | - Adarsh Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| | - Narender Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| | - Mohit Tyagi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| | - Ashmeet Singh
- Institute of Nano Science and Technology Phase 10, Sector 64 Mohali Punjab-160062 India http://www.twitter.com/pal_asish
| | - Asish Pal
- Institute of Nano Science and Technology Phase 10, Sector 64 Mohali Punjab-160062 India http://www.twitter.com/pal_asish
| | - K P Ravindranathan Kartha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| |
Collapse
|
9
|
Ardila-Fierro KJ, Pich A, Spehr M, Hernández JG, Bolm C. Synthesis of acylglycerol derivatives by mechanochemistry. Beilstein J Org Chem 2019; 15:811-817. [PMID: 30992730 PMCID: PMC6444433 DOI: 10.3762/bjoc.15.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
In recent times, many biologically relevant building blocks such as amino acids, peptides, saccharides, nucleotides and nucleosides, etc. have been prepared by mechanochemical synthesis. However, mechanosynthesis of lipids by ball milling techniques has remained essentially unexplored. In this work, a multistep synthetic route to access mono- and diacylglycerol derivatives by mechanochemistry has been realized, including the synthesis of diacylglycerol-coumarin conjugates.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan22, 6167 RD Geleen, The Netherlands
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
10
|
Porta EOJ, Jäger SN, Nocito I, Lepesheva GI, Serra EC, Tekwani BL, Labadie GR. Antitrypanosomal and antileishmanial activity of prenyl-1,2,3-triazoles. MEDCHEMCOMM 2017; 8:1015-1021. [PMID: 28993794 DOI: 10.1039/c7md00008a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A series of prenyl 1,2,3-triazoles were prepared from isoprenyl azides and different alkynes. The dipolar cycloaddition reaction provided exclusively primary azide products as regioisomeric mixtures that were separated by column chromatography and fully characterized. Most of the compounds displayed antiparasitic activity against Trypanosoma cruzi and Leishmania donovani. The most active compounds were assayed as potential TcCYP51 inhibitors.
Collapse
Affiliation(s)
- Exequiel O J Porta
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK, Rosario, Argentina. Tel
| | - Sebastián N Jäger
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK, Rosario, Argentina. Tel
| | - Isabel Nocito
- Instituto de Biología Molecular y Celular (IBR-CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, S2002LRK, Rosario, Argentina
| | - Galina I Lepesheva
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN37232, USA
| | - Esteban C Serra
- Instituto de Biología Molecular y Celular (IBR-CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, S2002LRK, Rosario, Argentina
| | - Babu L Tekwani
- National Center for Natural Products Research & Department of Pharmacology, School of Pharmacy, University of Mississippi, University MS 38677, USA
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK, Rosario, Argentina. Tel.,Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| |
Collapse
|
11
|
da Costa PLF, Melo VN, Guimarães BM, Schuler M, Pimenta V, Rollin P, Tatibouët A, de Oliveira RN. Glycerol carbonate in Ferrier reaction: Access to new enantiopure building blocks to develop glycoglycerolipid analogues. Carbohydr Res 2016; 436:1-10. [DOI: 10.1016/j.carres.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023]
|
12
|
He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res 2016; 429:1-22. [DOI: 10.1016/j.carres.2016.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
13
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
14
|
Rajkamal R, Pathak NP, Chatterjee D, Paul A, Yadav S. Arabinose based gelators: rheological characterization of the gels and phase selective organogelation of crude-oil. RSC Adv 2016. [DOI: 10.1039/c6ra21109g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Detailed characterizations, including rheological studies of new triazolyl arabinoside based organogelators which are effective for PSOG of crude-oil are reported.
Collapse
Affiliation(s)
- Rajkamal Rajkamal
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad – 826004
- India
| | - Navendu Prakash Pathak
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad – 826004
- India
| | - Debnath Chatterjee
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad – 826004
- India
| | - Abhijit Paul
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad – 826004
- India
| | - Somnath Yadav
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad – 826004
- India
| |
Collapse
|