1
|
Yu Y, Ma J, Zhang L, Sun T, Wang M, Zhu J, Wang J. Selective electrooxidation of 5-hydroxymethylfurfural to value-added 2,5-furanodiformic acid: mechanism, electrolyzer system, and electrocatalyst regulation. Chem Commun (Camb) 2025; 61:7751-7769. [PMID: 40341891 DOI: 10.1039/d5cc01853f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Value-added chemical products derived from biomass have attracted wide attention in addressing global warming and fossil fuel pollution. Among them, 2,5-furanodiformic acid (FDCA), the oxidized product of 5-hydroxymethylfurfural (HMF), is an effective substitute for terylene acid extracted from petroleum to synthesize biodegradable plastics. Electrochemical oxidation is an environmentally friendly, mild reaction condition, high-efficiency process for converting HMF to FDCA. However, the electrooxidation of HMF involves six-electron transfer, normally leading to the formation of many by-products. Thus, there is still a need to construct highly selective catalysts for HMF electrooxidation to FDCA. In this review, first we have investigated the mechanism of HMF electrooxidation and summarized the electrolytic cells and product analysis methods for electrooxidation of HMF to FDCA. The factors influencing HMF electrooxidation to FDCA are also discussed. Then, the electronic structure regulation methods of various electrocatalysts including heteroatom doping, heterostructure construction, interfacial engineering, and defect engineering are systematically summarized for the highly selective electrooxidation of HMF to FDCA. Finally, future challenges and prospects are proposed for further deep understanding. It is expected that this review could provide new guidance for large-scale electrooxidation of HMF to FDCA in industry.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Junqing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - LiLi Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Tongming Sun
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Minmin Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jinli Zhu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jiacheng Wang
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, Zhejiang, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
2
|
Liuzzi F, Di Renzo F, Cesari C, Mammi A, Monti L, Allegri A, Zacchini S, Fornasari G, Dimitratos N, Albonetti S. Preparation of Ru-Based Systems Through Metal Carbonyl Cluster Decomposition for the Base-Free 5-Hydroxymethylfurfural (HMF) Oxidation. Molecules 2025; 30:2120. [PMID: 40430293 DOI: 10.3390/molecules30102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Metal carbonyl clusters, which can be seen as monodispersed and atomically defined nanoparticles stabilized by CO ligands, were used to prepare Ru-based catalysts with tuned basic properties to conduct the 5-hydroxymethylfurfural (HMF) aerobic oxidation to produce 2,5-furandicarboxylic acid (FDCA) in base-free conditions. The controlled decomposition of the carbonyl cluster [HRu3(CO)11]-, a methodology not yet applied to Ru catalysts for this reaction, on different supports focusing on controlling and tuning the basic properties of support allowed the formation of small Ru nanoparticles with a mean diameter of around 1 nm. The catalytic systems obtained resulted in more activity in the HMF oxidation than those prepared through a more common salt-impregnation technique, and the deposition of Ru nanoparticles on materials with basic functionalities has allowed avoiding the use of basic solutions in the reaction. The characterization by CO2-TPD of Mg(Al)O catalysts obtained from decomposition of layered double hydroxide hydrotalcites with different composition and activation has allowed disclosure of an important correlation between the selectivity of FDCA and the fraction of weak basic sites, which is decreased by the calcination treatment at increased temperature.
Collapse
Affiliation(s)
- Francesca Liuzzi
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| | | | - Cristiana Cesari
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| | - Alice Mammi
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| | - Lorenzo Monti
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| | - Alessandro Allegri
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| | - Giuseppe Fornasari
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| | - Stefania Albonetti
- Department of Industrial Chemistry, C3-Centre for Chemical Catalysis, Alma Mater Studiorum-University of Bologna, 40129 Bologna, Italy
| |
Collapse
|
3
|
Carrai I, Mazzaro R, Bellatreccia C, Piccioni A, Salvi M, Grandi S, Caramori S, Ceroni P, Pasquini L. Nickel-Based Cocatalysts on Titanium-Doped Hematite Empower Direct Photoelectrochemical Valorisation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2025; 18:e202402604. [PMID: 39714995 PMCID: PMC12051249 DOI: 10.1002/cssc.202402604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The photoelectrochemical oxidation of 5-hydroxymethylfurfural (HMF), a biomass-derived intermediate, to 2,5-furandicarboxylic acid (FDCA), a key building block for industrial applications, is a well-studied anodic reaction. This photoelectrochemical (PEC) conversion typically requires an electron mediator, such as TEMPO, regardless of the semiconductor used. Various electrocatalysts can also perform this reaction electrochemically, without additional organic species in the electrolyte. In this study, Ti-doped hematite (Ti:Fe2O3) photoanodes were employed for the HMF photoelectrochemical conversion at the anodic side of a two-compartments PEC cell. To avoid the need of an electron mediator, nickel-based electrocatalysts were deposited on the electrode's surface. The Ni(OH)2-electrodeposited (Ti:Fe2O3-Ni) and the NiMo-sputtered Ti:Fe2O3 photoanodes (Ti:Fe2O3-NiMo) were characterised and tested for the HMF oxidation in 0.1 M NaOH (pH 13) electrolyte. Partial HMF photoelectrochemical conversion to FDCA was achieved, pointing out the beneficial effect of Ni-based cocatalyst in shifting the selectivity towards the di-carboxylic acid. Fixed Energy X-ray Absorption Voltammetry (FEXRAV) and X-ray Absorption Near-Edge Structure (XANES) measurements were conducted to investigate the interaction between HMF and the two deposited electrocatalysts. These techniques offered valuable insights into the oxidation mechanism, which were further validated using a rate deconvolution procedure.
Collapse
Affiliation(s)
- Irene Carrai
- Department of Physics and AstronomyUniversity of BolognaViale Berti Pichat 6/240127BolognaItaly
| | - Raffaello Mazzaro
- Department of Physics and AstronomyUniversity of BolognaViale Berti Pichat 6/240127BolognaItaly
- Institute for Microelectronics and MicrosystemsNational Research Councilvia Gobetti 10140129BolognaItaly
| | - Caterina Bellatreccia
- Department of Chemistry “G. Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| | - Alberto Piccioni
- Department of Physics and AstronomyUniversity of BolognaViale Berti Pichat 6/240127BolognaItaly
- Institute for Microelectronics and MicrosystemsNational Research Councilvia Gobetti 10140129BolognaItaly
| | - Marco Salvi
- Department of Physics and AstronomyUniversity of BolognaViale Berti Pichat 6/240127BolognaItaly
| | - Silvia Grandi
- Department of Chemical and Pharmaceutical SciencesUniversity of FerraraVia Luigi Borsari 4644121FerraraItaly
| | - Stefano Caramori
- Department of Chemical and Pharmaceutical SciencesUniversity of FerraraVia Luigi Borsari 4644121FerraraItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)University of Ferrara Research Unit44121FerraraItaly
| | - Paola Ceroni
- Department of Chemistry “G. Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| | - Luca Pasquini
- Department of Physics and AstronomyUniversity of BolognaViale Berti Pichat 6/240127BolognaItaly
- Institute for Microelectronics and MicrosystemsNational Research Councilvia Gobetti 10140129BolognaItaly
| |
Collapse
|
4
|
Chen L, Liu Y. Advances and Prospects of Selective Electrocatalytic Upgrading of 5-Hydroxymethylfurfural to Furan-2,5-Dicarboxylic Acid. CHEM REC 2025; 25:e202400238. [PMID: 40029008 DOI: 10.1002/tcr.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The electrocatalytic upgrading of 5-hydroxymethylfurfural (HMF, 5-(Hydroxymethyl) furan-2-carbaldehyde) has emerged as a renewable and environmentally friendly means for the production of high-value chemicals, with the oxidation product furan-2,5-dicarboxylic acid (FDCA, 2,5-furandicarboxylic acid) possessing economic viability in substituting terephthalic acid in polymer synthesis. This article reviews the recent advancements in the selective electrocatalytic upgrading of HMF to FDCA, including the reaction pathways, mechanisms, as well as activity descriptors of HMF electrocatalytic oxidation reaction (HMFOR), alongside advanced operando characterization techniques. Subsequently, the representative HMFOR catalysts, encompassing noble metal, non-noble metal, transition metal-based catalysts and metal free-based catalysts are presented. Then strategies for regulating HMFOR activity and longevity were introduced, followed by an exploration of the future prospects for the development of HMFOR catalysts.
Collapse
Affiliation(s)
- Lianhua Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
5
|
Chico-Mesa L, Rodes A, Arán-Ais RM, Herrero E. Insights into catalytic activity and selectivity of 5-Hydroxymethylfurfural oxidation on gold single-crystal electrodes. Nat Commun 2025; 16:3349. [PMID: 40204756 PMCID: PMC11982258 DOI: 10.1038/s41467-025-58696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
The selective electrochemical oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) holds transformative potential for advancing sustainable, bio-based polymer production. In this study, we unveil the pivotal role of gold single-crystal electrode surface orientation in directing HMF oxidation pathways under alkaline conditions. Using cyclic voltammetry, we systematically evaluate the oxidation behavior on Au(111), Au(100), Au(110), Au(311), Au(331), and Au(210) surfaces. Our findings reveal that Au(111) and Au(100) surfaces exhibit superior catalytic activity for the complete oxidation to FDCA, while Au(110) promotes the selective formation of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). These differences in activity are closely linked to the crystallographic structure, influencing adsorption energies and reaction intermediates. In situ infrared reflection absorption spectroscopy (IRRAS) and attenuated total reflectance (ATR) spectroscopy provide direct molecular insights, identifying distinct vibrational signatures of intermediates and products. This study highlights the critical role of electrode surface structure in tuning reaction efficiency and selectivity, contributing to the development of more efficient catalytic processes in green chemistry.
Collapse
Affiliation(s)
- Lorena Chico-Mesa
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, Alicante, Spain
| | - Antonio Rodes
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, Alicante, Spain
| | - Rosa M Arán-Ais
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, Alicante, Spain.
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, Alicante, Spain
| |
Collapse
|
6
|
Liu H, Xia J, Liu X, Hu Y, Shakouri M, Wu H, Zhu M, Guo Y, Chen J, Wang H, Wang Y. Bifunctional MoNi 4/Nickel Foam Electro-Catalyst for Ultra-Efficient Oxidation of High-Concentration 5-Hydroxymethylfurfural and HER. CHEMSUSCHEM 2025; 18:e202401516. [PMID: 39429049 DOI: 10.1002/cssc.202401516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The electro-catalytic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) provides an attractive route to produce 2, 5-furandicarboxylic acid (FDCA) as a substitute for terephthalic acid used in the plastics industry. Herein, we prepared MoNi4 alloy on nickel foam (NF) using a simple hydrothermal method followed by hydrogen reduction. Applied MoNi4/NF as the bifunctional electrodes for the electro-catalytic HMF oxidation reaction (HMFOR) and HER, 98.7 % FDCA yield and 97.3 % Faraday efficiency (FE) can be achieved even with HMF concentration as high as 200 mM. Notably, no obvious deactivation was observed after ten consecutive cycles. In-situ Raman, XANES and EXAFS results show that the nickel species of MoNi4/NF is first oxidized to Ni3+ species under the applied voltage, and after undergoing the electro-catalytic HMFOR, then reduced to Ni2-δ state (with a valence between 0 and +2) due to the electron-donating effect from Mo. MoNi4/NF with more than one electron transfer between Ni3+ and Ni2-δ during the HMFOR enables it to have excellent electro-catalytic oxidation ability toward HMFOR.
Collapse
Affiliation(s)
- Hao Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jie Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongfeng Hu
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Mohsen Shakouri
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7 N 2 V3, Canada
| | - Haoran Wu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jingye Chen
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7 N 5 A9, Canada
| | - Haifeng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
7
|
Mukadam Z, Scott SB, Titirici MM, Stephens IEL. An alternative to petrochemicals: biomass electrovalorization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230262. [PMID: 39307165 PMCID: PMC11448837 DOI: 10.1098/rsta.2023.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 10/06/2024]
Abstract
Replacing petrochemicals with refined waste biomass as a sustainable chemical source has become an attractive option to lower global carbon emissions. Popular methods of refining lignocellulosic waste biomass use thermochemical processes, which have significant environmental downsides. Using electrochemistry instead would overcome many of these downsides, directly driving chemical reactions with renewable electricity and revolutionizing the way many chemicals are produced today. This review mainly focuses on two furanic platform chemicals that are produced from the dehydration of cellulose, 5-hydroxymethylfurfural and furfural, which can be electrochemically reduced or oxidized to replace fuels and monomers that today are obtained from petrochemicals. Critical parameters such as electrode materials and electrolyte pH are discussed in relation to their influence on conversion efficiency and product distribution.This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
Collapse
Affiliation(s)
- Zamaan Mukadam
- Department of Materials, Imperial College London, London, UK
| | - Soren B. Scott
- Department of Materials, Imperial College London, London, UK
- Department of Chemistry, University of Copenhagen, Copenhagen2100, Denmark
| | | | | |
Collapse
|
8
|
Zhu Y, Wei J, Wu J, Chen R, Tsiakaras P, Yin S. Built-in electric field in NiO-CuO heterostructures to regulate the hydroxide adsorption sites for 5-hydroxymethylfurfural electrooxidation assisted hydrogen production. J Colloid Interface Sci 2024; 673:301-311. [PMID: 38878365 DOI: 10.1016/j.jcis.2024.05.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 07/26/2024]
Abstract
The development of catalysts with suitable adsorption behavior for the reaction molecules and the elucidation of their internal structure-adsorption-catalytic activity relationships are crucial for the electrooxidation of 5-hydroxymethylfurfural (HMF). In this work, NiO-CuO heterostructures with a spontaneous built-in electric field (BEF) are specifically designed and used to regulate the OH- adsorption site for freeing up the active site of HMF for the HMF oxidation reaction (HMFOR). The mechanism driving electron pumping/accumulation of the BEF is examined by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Electrochemical data and theoretical calculations show that BEF modulates the adsorption energy and adsorption site of substrate molecules, thereby enhancing the performance of HMFOR and hydrogen evolution reaction (HER). Notably, the NiO-CuO electrode demonstrates high 2,5-Furandicarboxylic acid (FDCA) selectivity (99.76 %) and generation rate (13.79 mmol gcat-1 h-1). It only requires 1.33 V to obtain a current density of 10 mA cm-2 for HMFOR-coupled H2 evolution. This research introduces a novel approach by regulating the adsorption of reactive molecules for HMFOR-assisted H2 evolution.
Collapse
Affiliation(s)
- Yumei Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jinlv Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jia Wu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Rong Chen
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| |
Collapse
|
9
|
Asfia MP, Cuomo A, Kloth R, Mayrhofer KJJ, Nikolaienko P. The Role of Alkali Cations on the Selectivity of 5-Hydroxymethylfurfural Electroreduction on Glassy Carbon. CHEMSUSCHEM 2024; 17:e202400535. [PMID: 38728590 DOI: 10.1002/cssc.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
In the past decade, organic electrosynthesis has emerged as an atom- and energy-efficient strategy for harvesting renewable electricity that provides exceptional control over the reaction parameters. A profound and fundamental understanding of electrochemical interfaces becomes imperative to advance the knowledge-based development of electrochemical processes. The major strategy toward an efficient electrochemical system is based on the advancement in material science for electrocatalysis. Studies on the complex interplay among electrode surface, electrolyte, and transformation intermediates have only recently started to emerge. It involves acquiring atomic-scale insights into the electrochemical double layer, for which the identity and concentration of composing ions play a crucial role. In this study, we present how the identity and concentration of alkali cations impact the selectivity of aldehyde functionality electroreduction. As a case-study transformation, we set the electrochemical conversion of 5-hydroxymethylfurfural (HMF), a promising biomass-derived feedstock for the sustainable production of polymer or fuel precursors. Our findings reveal a consistent trend of the selectivity shift towards 2,5-bis(hydroxymethyl)furan (BHMF) as a function of cation size and concentration, rationalized by specific cation adsorption at the glassy carbon (GC), followed by the increase in the electrode surface charge density.
Collapse
Affiliation(s)
- Mohammad Peirow Asfia
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Angelina Cuomo
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Ricarda Kloth
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Karl J J Mayrhofer
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Pavlo Nikolaienko
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
| |
Collapse
|
10
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Singh B, Gupta H. Metal-organic frameworks (MOFs) for hybrid water electrolysis: structure-property-performance correlation. Chem Commun (Camb) 2024; 60:8020-8038. [PMID: 38994743 DOI: 10.1039/d4cc02729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Hybrid water electrolysis (HWE) is a promising pathway for the simultaneous production of high-value chemicals and clean H2 fuel. Unlike conventional electrochemical water splitting, which relies on the oxygen evolution reaction (OER), HWE involves the anodic oxidation reaction (AOR). The AORs facilitate the conversion of organic or inorganic compounds at the anode into valuable chemicals, while the cathode carries out the hydrogen evolution reaction (HER) to produce H2. Recent literature has witnessed a surge in papers investigating various AORs with organic and inorganic substrates using a series of transition metal-based catalysts. Over the past two decades, metal-organic frameworks (MOFs) have garnered significant attention for their exceptional performance in electrochemical water splitting. These catalysts possess distinct attributes such as highly porous architectures, customizable morphologies, open facets, high electrochemical surface areas, improved electron transport, and accessible catalytic sites. While MOFs have demonstrated efficiency in electrochemical water splitting, their application in hybrid water electrolysis has only recently been explored. In recent years, a series of articles have been published; yet there is no comprehensive article summarizing MOFs for hybrid water electrolysis. This article aims to fill this gap by delving into the recent progress in MOFs specifically tailored for hybrid water electrolysis. In this article, we systematically discuss the structure-property-performance relationships of various MOFs utilized in hybrid water electrolysis, supported by pioneering examples. We explore how the structure, morphology, and electronic properties of MOFs impact their performance in hybrid water electrolysis, with particular emphasis on value-added chemical generation, H2 production, potential improvement, conversion efficiency, selectivity, faradaic efficiency, and their potential for industrial-scale applications. Furthermore, we address future advancements and challenges in this field, providing insights into the prospects and challenges associated with the continued development and deployment of MOFs for hybrid water electrolysis.
Collapse
Affiliation(s)
- Baghendra Singh
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Harshit Gupta
- Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
12
|
Bühler J, Muntwyler A, Roithmeyer H, Adams P, Besmer ML, Blacque O, Tilley SD. Immobilised Ruthenium Complexes for the Electrooxidation of 5-Hydroxymethylfurfural. Chemistry 2024; 30:e202304181. [PMID: 38285807 DOI: 10.1002/chem.202304181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Abundantly available biomass-based platform chemicals, including 5-hydroxymethylfurfural (HMF), are essential stepping stones in steering the chemical industry away from fossil fuels. The efficient catalytic oxidation of HMF to its diacid derivative, 2,5-furandicarboxylic acid (FDCA), is a promising research area with potential applications in the polymer industry. Currently, the most encouraging approaches are based on solid-state catalysts and are often conducted in basic aqueous media, conditions where HMF oxidation competes with its decomposition. Efficient molecular catalysts are practically unknown for this reaction. In this study, we report on the synthesis and electrocatalysis of surface-bound molecular ruthenium complexes for the transformation of HMF to FDCA under acidic conditions. Catalyst immobilisation on mesoporous indium tin oxide electrodes is achieved through the incorporation of phosphonic acid anchoring groups. Screening experiments with HMF and further reaction intermediates revealed the catalytic route and bottlenecks in the catalytic synthesis of FDCA. Utilising these immobilised electrocatalysts, FDCA yields of up to 85 % and faradaic efficiencies of 91 % were achieved, without any indication of substrate decomposition. Surface analysis by X-ray photoelectron spectroscopy (XPS) post-electrocatalysis unveiled the desorption of the catalyst from the electrode surface as a limiting factor in terms of catalytic performance.
Collapse
Affiliation(s)
- Jan Bühler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Alissa Muntwyler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Helena Roithmeyer
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Pardis Adams
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Manuel Luca Besmer
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
13
|
Wu J, Wang K, Yu T, Huang S, Zhai Z, Wen H, Yin S. Amorphous-crystalline heterostructure: Efficient catalyst for biomass oxidation coupled with hydrogen evolution. J Colloid Interface Sci 2024; 655:676-684. [PMID: 37976740 DOI: 10.1016/j.jcis.2023.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The development of catalysts with high activity, selectivity, and stability is critical for biomass upgrading coupled with hydrogen evolution. In this study, we present a simple method for fabricating crystalline-amorphous phase heterostructures using the etching effect of the acidic medium generated during cobalt salt hydrolysis, resulting in the formation of NiCo(OH)x-modified Ni/NiMoO4 nanosheets electrode (NiCo(OH)x/Ni/NiMoO4/NF). The nanosheets array formed during the synthesis process enlarges the surface area of the prepared catalyst, which facilitates the exposure of electrochemically active sites and improves mass transfer. Unexpectedly, the strong coupling interactions between the amorphous-crystalline heterointerface optimize the adsorption of reaction molecules and the corresponding charge transfer process, consequently boosting the catalytic activity for the 5-hydroxymethylfurfural oxidation reaction (HMFOR) and hydrogen evolution reaction (HER). Specifically, NiCo(OH)x/Ni/NiMoO4/NF catalyst requires only 1.34 V to obtain a current density of 10 mA cm-2 for HMFOR-coupled H2 evolution, and operates stably for 13 consecutive cycles with good product selectivity. This work thus provides insights into the design of efficient and robust catalysts for HMFOR-assisted H2 evolution.
Collapse
Affiliation(s)
- Jia Wu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Ke Wang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Tianqi Yu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shuaiqin Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Zhixiang Zhai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Huan Wen
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China.
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China.
| |
Collapse
|
14
|
Tao Y, Fan S, Li X, Yang J, Wang J, Chen G. Interfacial coupling effect promotes selective electrocatalytic oxidation of 5-hydroxymethylfurfural into the value-added products under neutral conditions. J Colloid Interface Sci 2024; 654:731-739. [PMID: 37866045 DOI: 10.1016/j.jcis.2023.10.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Owing to the sluggish reaction kinetics, it is a promising yet challenging task to achieve the adequate electricity-driven catalytic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) in neutral conditions. Herein, we have prepared an elelctrocatalyst with interfacial coupling effect through in-situ growth of Cu phthalocyanine (CuPc) on Co3O4 spinel (Co3O4/CuPc), which constructs an effective electrocatalytic system of HMF oxidation with overall oxidation value-added products yield and total Faraday efficiency up to 80% and 70%, respectively. The interfacial coupling effect between CuPc and Co3O4 spinel improve catalytic activity by effectively boosting the interfacial charge transfer and reducing the formation energy of key *C6H3O4 in the catalytic pathway according to the in situ Raman spectroscopy and DFT simulation. This work illustrates the significance of interfacial coupling effect for developing highly efficient electrocatalysts applied for neutral system of biomass oxidation.
Collapse
Affiliation(s)
- Yiyuan Tao
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jing Yang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingang Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guohua Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
15
|
Yang Y, Lie WH, Unocic RR, Yuwono JA, Klingenhof M, Merzdorf T, Buchheister PW, Kroschel M, Walker A, Gallington LC, Thomsen L, Kumar PV, Strasser P, Scott JA, Bedford NM. Defect-Promoted Ni-Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305573. [PMID: 37734330 DOI: 10.1002/adma.202305573] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Ni-based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value-added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts' deprotonation propensity and Faradic efficiency of 5-hydroxymethylfurfural (5-HMF)-to-2,5 furandicarboxylic acid (FDCA, FEFDCA ) is revealed by thorough density functional theory (DFT) simulations and atomic-scale characterizations, including in situ synchrotron diffraction and spectroscopy methods. The deprotonation capability of ultrathin layer-double hydroxides (UT-LDHs) is regulated by tuning the covalency of metal (M)-oxygen (O) motifs through defect site engineering and selection of M3+ co-chemistry. NiMn UT-LDHs show an ultrahigh FEFDCA of 99% at 1.37 V versus reversible hydrogen electrode (RHE) and retain a high FEFDCA of 92.7% in the OER-operating window at 1.52 V, about 2× that of NiFe UT-LDHs (49.5%) at 1.52 V. Ni-O and Mn-O motifs function as dual active sites for HMF electrooxidation, where the continuous deprotonation of Mn-OH sites plays a dominant role in achieving high selectivity while suppressing OER at high potentials. The results showcase a universal concept of modulating competing anodic reactions in aqueous biomass electrolysis by electronically engineering the deprotonation behavior of metal hydroxides, anticipated to be translatable across various biomass substrates.
Collapse
Affiliation(s)
- Yuwei Yang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - William Hadinata Lie
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Jodie A Yuwono
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Malte Klingenhof
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Thomas Merzdorf
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Paul Wolfgang Buchheister
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Matthias Kroschel
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Anne Walker
- US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD, 21010, USA
| | | | - Lars Thomsen
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, VIC, 3168, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jason A Scott
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Ramos NC, Manyé Ibáñez M, Mittal R, Janik MJ, Holewinski A. Combining Renewable Electricity and Renewable Carbon: Understanding Reaction Mechanisms of Biomass-Derived Furanic Compounds for Design of Catalytic Nanomaterials. Acc Chem Res 2023; 56:2631-2641. [PMID: 37718487 DOI: 10.1021/acs.accounts.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
ConspectusDespite the growing deployment of renewable energy conversion technologies, a number of large industrial sectors remain challenging to decarbonize. Aviation, heavy transport, and the production of steel, cement, and chemicals are heavily dependent on carbon-containing fuels and feedstocks. A hopeful avenue toward carbon neutrality is the implementation of renewable carbon for the synthesis of critical fuels, chemicals, and materials. Biomass provides an opportune source of renewable carbon, naturally capturing atmospheric CO2 and forming multicarbon linkages and useful chemical functional groups. The constituent molecules nonetheless require various chemical transformations, often best facilitated by catalytic nanomaterials, in order to access usable final products.Catalyzed transformations of renewable biomass compounds may intersect with renewable energy production by offering a means to utilize excess intermittent electricity and store it within chemical bonds. Electrochemical catalytic processes can often offer advantages in energy efficiency, product selectivity, and modular scalability compared to thermal-driven reactions. Electrocatalytic reactions with renewable carbon feedstocks can further enable related processes such as water splitting, where value-adding organic oxidation reactions may replace the evolution of oxygen. Organic electroreduction reactions may also allow desirable hydrogenations of bonds without intermediate formation of H2 and need for additional reactors.This Account highlights recent work aimed at gaining a fundamental understanding of transformations involving biomass-derived molecules in electrocatalytic nanomaterials. Particular emphasis is placed on the oxidation of biomass derived furanic compounds such as furfural and 5-hydroxymethylfurfural (HMF), which can yield value-added chemicals, including furoic acid (FA), maleic acid (MA), and 2,5-furandicarboxylic acid (FDCA) for renewable materials and other commodities. We highlight advanced implementations of online electrochemical mass spectrometry (OLEMS) and vibrational spectroscopies such as attenuated total reflectance surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS), combined with microkinetic models (MKMs) and quantum chemical calculations, to shed light on the elementary mechanistic pathways involved in electrochemical biomass conversion and how these paths are influenced by catalytic nanomaterials. Perspectives are given on the potential opportunities for materials development toward more efficient and selective carbon-mitigating reaction pathways.
Collapse
Affiliation(s)
- Nathanael C Ramos
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Marc Manyé Ibáñez
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Rupali Mittal
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael J Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
Thuriot-Roukos J, Ferraz CP, K. Al Rawas H, Heyte S, Paul S, Itabaiana Jr I, Pietrowski M, Zieliński M, Ghazzal MN, Dumeignil F, Wojcieszak R. Supported Gold Catalysts for Base-Free Furfural Oxidation: The State of the Art and Machine-Learning-Enabled Optimization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6357. [PMID: 37834493 PMCID: PMC10573714 DOI: 10.3390/ma16196357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve as catalysts by providing surfaces for furfural molecules to adsorb onto and facilitating electron transfer between the substrate and the oxidizing agent. The role of the support in this reaction has been widely studied, and gold-support interactions have been found to be beneficial. However, the exact mechanism of furfural oxidation under base-free conditions remains an active area of research and is not yet fully understood. In this review, we delve into the essential factors that influence the selectivity of furfural oxidation. We present an optimization process that highlights the significant role of machine learning in identifying the best catalyst for this reaction. The principal objective of this study is to provide a comprehensive review of research conducted over the past five years concerning the catalytic oxidation of furfural under base-free conditions. By conducting tree decision making on experimental data from recent articles, a total of 93 gold-based catalysts are compared. The relative variable importance chart analysis reveals that the support preparation method and the pH of the solution are the most crucial factors determining the yield of furoic acid in this oxidation process.
Collapse
Affiliation(s)
- Joëlle Thuriot-Roukos
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Camila Palombo Ferraz
- Department of Inorganic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 221941-910, Brazil;
| | - Hisham K. Al Rawas
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Svetlana Heyte
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Sébastien Paul
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Ivaldo Itabaiana Jr
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-910, Brazil;
| | - Mariusz Pietrowski
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.P.); (M.Z.)
| | - Michal Zieliński
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.P.); (M.Z.)
| | - Mohammed N. Ghazzal
- Institut de Chimie Physique (ICP), UMR 8000 CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Franck Dumeignil
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| | - Robert Wojcieszak
- Université de Lille, CNRS, Centrale Lille, Université d’Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France; (J.T.-R.); (H.K.A.R.); (S.H.); (S.P.); (F.D.)
| |
Collapse
|
18
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
19
|
Bondue CJ, Spallek M, Sobota L, Tschulik K. Electrochemical Aldehyde Oxidation at Gold Electrodes: gem-Diol, non-Hydrated Aldehyde, and Diolate as Electroactive Species. CHEMSUSCHEM 2023; 16:e202300685. [PMID: 37477393 DOI: 10.1002/cssc.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
To date the electroactive species of selective aldehyde oxidation to carboxylates at gold electrodes is usually assumed to be the diolate. It forms with high concentration only in very alkaline electrolytes, when OH- binds to the carbonyl carbon atom. Accordingly, the electrochemical upgrading of biomass-derived aldehydes to carboxylates is believed to be limited to very alkaline electrolytes at many electrode materials. However, OH- -induced aldehyde decomposition in these electrolytes prevents application of electrochemical aldehyde oxidation for the sustainable upgrading of biomass to value-added chemicals at industrial scale. Here, we demonstrate the successful oxidation of aliphatic aldehydes at a rotating gold electrode at pH 12, where only 1 % of the aldehyde resides as the diolate species. This concentration is too small to account for the observed current, which shows that also other aldehyde species (i. e., the geminal diol and the non-hydrated aldehyde) are electroactive. This insight allows developing strategies to omit aldehyde decomposition while achieving high current densities for the selective aldehyde oxidation, making its future industrial application viable.
Collapse
Affiliation(s)
- Christoph J Bondue
- Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany
| | - Marius Spallek
- Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany
| | - Lennart Sobota
- Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany
| | - Kristina Tschulik
- Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| |
Collapse
|
20
|
Wei L, Hossain MD, Boyd MJ, Aviles-Acosta J, Kreider ME, Nielander AC, Stevens MB, Jaramillo TF, Bajdich M, Hahn C. Insights into Active Sites and Mechanisms of Benzyl Alcohol Oxidation on Nickel–Iron Oxyhydroxide Electrodes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Lingze Wei
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Md Delowar Hossain
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael J. Boyd
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jaime Aviles-Acosta
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Melissa E. Kreider
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam C. Nielander
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F. Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michal Bajdich
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Christopher Hahn
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
21
|
Guo L, Zhang X, Gan L, Pan L, Shi C, Huang Z, Zhang X, Zou J. Advances in Selective Electrochemical Oxidation of 5-Hydroxymethylfurfural to Produce High-Value Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205540. [PMID: 36480314 PMCID: PMC9896064 DOI: 10.1002/advs.202205540] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The conversion of biomass is a favorable alternative to the fossil energy route to solve the energy crisis and environmental pollution. As one of the most versatile platform compounds, 5-hydroxymethylfural (HMF) can be transformed to various value-added chemicals via electrolysis combining with renewable energy. Here, the recent advances in electrochemical oxidation of HMF, from reaction mechanism to reactor design are reviewed. First, the reaction mechanism and pathway are summarized systematically. Second, the parameters easy to be ignored are emphasized and discussed. Then, the electrocatalysts are reviewed comprehensively for different products and the reactors are introduced. Finally, future efforts on exploring reaction mechanism, electrocatalysts, and reactor are prospected. This review provides a deeper understanding of mechanism for electrochemical oxidation of HMF, the design of electrocatalyst and reactor, which is expected to promote the economical and efficient electrochemical conversion of biomass for industrial applications.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiaoxue Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Li Gan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
22
|
Sur S, Mondal R, Thimmappa R, Mukhopadhyay S, Thotiyl MO. Aqueous OH−/H+ dual-ion gradient assisted electricity effective electro-organic synthesis of 2,5-furandicarboxylic acid paired with hydrogen fuel generation. J Colloid Interface Sci 2023; 630:477-483. [DOI: 10.1016/j.jcis.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
|
23
|
Qu D, He S, Chen L, Ye Y, Ge Q, Cong H, Jiang N, Ha Y. Paired electrocatalysis in 5-hydroxymethylfurfural valorization. Front Chem 2022; 10:1055865. [PMID: 36339046 PMCID: PMC9634479 DOI: 10.3389/fchem.2022.1055865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 08/02/2024] Open
Abstract
5-Hydroxymethylfurfural (HMF) has aroused considerable interest over the past years as an important biomass-derived platform molecule, yielding various value-added products. The conventional HMF conversion requires noble metal catalysts and harsh operating conditions. On the other hand, the electrocatalytic conversion of HMF has been considered as an environmentally benign alternative. However, its practical application is limited by low overall energy efficiency and incomplete conversion. Paired electrolysis and highly efficient electrocatalysts are two viable strategies to address these limitations. Herein, an overview of coupled electrocatalytic HMF hydrogenation or hydrogen evolution reaction (HER) with HMF oxidation as well as the associated electrocatalysts are reviewed and discussed. In this mini-review, a brief introduction of electrocatalytic HMF upgrading is given, followed by the recent advances and challenges of paired electrolysis with an emphasis on the integration HMF electrohydrogenation with HMF electrooxidation. Finally, a perspective for a future sustainable biomass upgrading community based on electrocatalysis is proposed.
Collapse
Affiliation(s)
- Dalong Qu
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Lianhua Chen
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Qingmei Ge
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Hang Cong
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Nan Jiang
- Country Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
24
|
Bender MT, Yuan X, Goetz MK, Choi KS. Electrochemical Hydrogenation, Hydrogenolysis, and Dehydrogenation for Reductive and Oxidative Biomass Upgrading Using 5-Hydroxymethylfurfural as a Model System. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael T. Bender
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xin Yuan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - McKenna K. Goetz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Guo M, Lu X, Xiong J, Zhang R, Li X, Qiao Y, Ji N, Yu Z. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review. CHEMSUSCHEM 2022; 15:e202201074. [PMID: 35790081 DOI: 10.1002/cssc.202201074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.
Collapse
Affiliation(s)
- Mengyan Guo
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University Guangzhou, Guangdong, 510275, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
26
|
Chai X, Jiang K, Wang J, Ren Z, Liu X, Chen L, Zhuang X, Wang T. Efficient Catalytic Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ruthenium Cluster-Embedded Ni(OH) 2 Catalyst. CHEMSUSCHEM 2022; 15:e202200863. [PMID: 35716074 DOI: 10.1002/cssc.202200863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
5-Hydroxymethylfurfural (HMF) can be oxidized to 2,5-furandicarboxylic acid (FDCA) for the production of biorenewable plastics to replace fossil resourced polyethylene terephthalate (PET). Development of a highly efficient electrocatalyst using renewable electricity as energy input is highly desired. In this work, Ru cluster-embedded Ni(OH)2 nanosheets [Ru/Ni(OH)2 ] were synthesized and exploited as electrochemical catalysts for the conversion of HMF to FDCA. Ru/Ni(OH)2 exhibited significantly improved current density (40 mA cm-2 at 1.41 V vs. reversible hydrogen electrode) of over 7.7 times in comparison with Ni(OH)2 , and nearly 100 % conversion degree for HMF and 98.5 % selectivity towards FDCA were obtained. Operando Raman experiments revealed the catalysis was facilitated by the interconversion between Ni3+ and Ni2+ . Density functional theory calculations further revealed the effect of Ru clusters of Ni(OH)2 , thereby promoting HMF adsorption capacity on Ni sites to boost HMF oxidation activity. This work provides a novel strategy using Ru clusters to modify earth abundant Ni based catalyst for HMF oxidation to obtain high-value biomass-derived products.
Collapse
Affiliation(s)
- Xinyu Chai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| | - Kaiyue Jiang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| | - Jianying Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| | - Xiaodong Zhuang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| |
Collapse
|
27
|
5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid on Noble Metal-Free Nanocrystalline Mixed Oxide Catalysts. Catalysts 2022. [DOI: 10.3390/catal12080814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Noble metal-free catalysts based on earth-abundant and inexpensive mixed oxides are active catalysts of all steps of the reaction cascade leading from 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using tert-butyl hydroperoxide (TBHP) as oxidation agent. Catalysts covering the whole range of composition in the Cu-Mn and Co-Fe series have been prepared and characterised. The nature and composition of the catalyst strongly affect conversion and selectivity. The distribution of products indicates that radical-type oxygen species, deriving from the activation of TBHP, play a determining role in the reaction. The early steps of reaction mainly follow the pattern expected for heterogeneous Fenton catalysts. Mixed oxide catalysts are the most effective in further oxidation steps, leading to the formation of FDCA, both in the Cu-Mn and Co-Fe systems. This behaviour can be related to the distribution of charge in the mixed oxides, suggesting a possible implication of the lattice oxygen in the last reaction steps. The results provide indications on how to optimize the reaction and minimize the formation of byproducts (humins and oligomers).
Collapse
|
28
|
Ayoub N, Toufaily J, Guénin E, Enderlin G. Metal vs. Metal-Free Catalysts for Oxidation of 5-Hydroxymethylfurfural and Levoglucosenone to Biosourced Chemicals. CHEMSUSCHEM 2022; 15:e202102606. [PMID: 35073445 DOI: 10.1002/cssc.202102606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic feedstocks, such as forestry biomass and agricultural crop residues, can be utilized to generate biofuels and biochemicals. Converting these organic waste materials into biochemicals is widely regarded as a remedial approach to develop a sustainable, clean, and green energy source. Nevertheless, are these methods sustainable and clean? Prior studies have shown that most such conversions use metals - including heavy metals or noble metals - as catalysts. In addition to the fact that many metals (e. g., aluminum, cobalt, titanium, platinum) have been listed as critical minerals, these methods suffer from high cost, deactivation, and leakage problems and the release of toxic wastes. This Review summarizes catalytic methods using metal and metal-free catalysts for the oxidation of the platform molecules 5-hydroxymethylfurfural and levoglucosenone and demonstrates the potential and effectiveness of metal-free catalysts.
Collapse
Affiliation(s)
- Nadim Ayoub
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| | - Joumana Toufaily
- Laboratoire de Matériaux, Catalyse, Environnement et Méthodes analytiques (MCEMA-CHAMSI), EDST Université Libanaise, Campus Rafic Hariri, Hadath, Beyrouth, Lebanon
| | - Erwann Guénin
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| | - Gérald Enderlin
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| |
Collapse
|
29
|
Meng Y, Yang S, Li H. Electro- and Photocatalytic Oxidative Upgrading of Bio-based 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202102581. [PMID: 35050546 DOI: 10.1002/cssc.202102581] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Conversion of biomass into biofuels and high value-added chemicals is a promising strategy to solve the increasingly deteriorating environmental problems caused by fossil energy consumption. The development of efficient technologies and methods is the premise and guarantee to realize the high-value conversion of biomass. 5-Hydroxymethylfurfural (HMF), as a versatile biomass platform compound, is generated via dehydration of hexoses (e. g., fructose and glucose) derived from cellulosic biomass. This Review gives an overview of the advances and challenges of electro- and photocatalytic oxidation of biomass-derived HMF to high-value chemicals such as 2,5-formylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). These strategies and methods for the preparation of high-value chemicals by electro- and photocatalytic oxidation of HMF, coupled with, for example, hydrogen evolution reaction, organic substrate reduction, CO2 reduction reaction, or N2 reduction reaction, were summarized and discussed. Moreover, the catalytic efficiency and mechanism of different types of catalysts were also introduced in these conversion systems.
Collapse
Affiliation(s)
- Ye Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| |
Collapse
|
30
|
Woo J, Moon BC, Lee U, Oh HS, Chae KH, Jun Y, Min BK, Lee DK. Collaborative Electrochemical Oxidation of the Alcohol and Aldehyde Groups of 5-Hydroxymethylfurfural by NiOOH and Cu(OH) 2 for Superior 2,5-Furandicarboxylic Acid Production. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jongin Woo
- Clean Energy Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Cheul Moon
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ung Lee
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yongseok Jun
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
| | - Byoung Koun Min
- Clean Energy Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
| | - Dong Ki Lee
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
31
|
Chamberlain TW, Degirmenci V, Walton RI. Oxidation of 5‐Hydroxymethyl Furfural to 2,5‐Furan Dicarboxylic Acid Under Mild Aqueous Conditions Catalysed by MIL‐100(Fe) Metal‐organic Framework. ChemCatChem 2022. [DOI: 10.1002/cctc.202200135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Richard Ian Walton
- The University of Warwick Department of Chemistry Gibbet Hill Road CV4 7AL Coventry UNITED KINGDOM
| |
Collapse
|
32
|
Chen ZH, Li YH, Qi MY, Tang ZR, Xu YJ. Benzyl alcohol oxidation and hydrogen generation over MoS2/ZnIn2S4 composite photocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04636-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Lu X, Qi K, Wang D, Dai X, Qi W. The highly efficient electrocatalytic oxidation of 5-hydroxymethylfurfural on copper nanocrystalline/carbon hybrid catalysts: structure–function relations. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu species in Cu(NSD)/CP exhibit a high electrochemical specific surface area, which allows efficient transformation from Cu0 and Cu1+ species to Cu2+ with high catalytic capacity, resulting in excellent catalytic performance (96% yield of FDCA).
Collapse
Affiliation(s)
- Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, 110016, P. R. China
| | - Ke Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, 110016, P. R. China
| | - Di Wang
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, 110016, P. R. China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xueya Dai
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, 110016, P. R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, 110016, P. R. China
| |
Collapse
|
34
|
Le THH, Vo TG, Chiang CY. Highly efficient amorphous binary cobalt-cerium metal oxides for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Etim UJ, Bai P, Gazit OM, Zhong Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1919044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| | - Peng Bai
- College of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- Technion Israel Institute of Technology (IIT), Haifa, Israel
| |
Collapse
|
36
|
Photoelectrochemical Oxidation in Ambient Conditions Using Earth-Abundant Hematite Anode: A Green Route for the Synthesis of Biobased Polymer Building Blocks. Catalysts 2021. [DOI: 10.3390/catal11080969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study demonstrates the use of a photoelectrochemical device comprising earth-abundant hematite photoanode for the oxidation of 5-hydroxymethylfurfural (5-HMF), a versatile bio-based platform chemical, under ambient conditions in the presence of an electron mediator. The results obtained in this study showed that the hematite photoanode, upon doping with fluorine, can oxidize water even at lower pH (4.5 and 9.0). For 5-HMF oxidation, three different pH conditions were investigated, and complete oxidation to 2,5-furandicarboxylic acid (FDCA) via 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) was achieved at pH above 12. At lower pH, the oxidation followed another route via 2,5-diformylfuran (DFF), yielding 5-formyl-2-furancarboxylic acid (FFCA) as the main product. Using the oxidized intermediates as substrates showed DFF to be most efficiently oxidized to FDCA. We also show that, at pH 4.5, the addition of the laccase enzyme promoted the oxidation of 5-HMF to FFCA.
Collapse
|
37
|
Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over niobium incorporated MCM-41 catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Lu X, Wu K, Zhang B, Chen J, Li F, Su B, Yan P, Chen J, Qi W. Highly Efficient Electro‐reforming of 5‐Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angew Chem Int Ed Engl 2021; 60:14528-14535. [DOI: 10.1002/anie.202102359] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Kuang‐Hsu Wu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
- School of Chemical Engineering The University of New South Wales Sydney, Kensington NSW 2052 Australia
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Fan Li
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Bing‐Jian Su
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Pengqiang Yan
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Jin‐Ming Chen
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| |
Collapse
|
39
|
Lu X, Wu K, Zhang B, Chen J, Li F, Su B, Yan P, Chen J, Qi W. Highly Efficient Electro‐reforming of 5‐Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Kuang‐Hsu Wu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
- School of Chemical Engineering The University of New South Wales Sydney, Kensington NSW 2052 Australia
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Fan Li
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Bing‐Jian Su
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Pengqiang Yan
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Jin‐Ming Chen
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| |
Collapse
|
40
|
Wöllner S, Nowak T, Zhang G, Rockstroh N, Ghanem H, Rosiwal S, Brückner A, Etzold BJM. Avoiding Pitfalls in Comparison of Activity and Selectivity of Solid Catalysts for Electrochemical HMF Oxidation. ChemistryOpen 2021; 10:600-606. [PMID: 34028203 PMCID: PMC8142396 DOI: 10.1002/open.202100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) offers a renewable approach to produce the value-added platform chemical 2,5-furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high-performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free-standing Cu-foam, and CuCoO modified with NaPO2 H2 and Ni, which were immobilized on boron-doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed.
Collapse
Affiliation(s)
- Sebastian Wöllner
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAlarich-Weiss-Straße 864287DarmstadtGermany
| | - Timothy Nowak
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAlarich-Weiss-Straße 864287DarmstadtGermany
| | - Gui‐Rong Zhang
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAlarich-Weiss-Straße 864287DarmstadtGermany
| | - Nils Rockstroh
- Leibniz Institut für Katalyse e.V. (LIKAT Rostock)18059RostockGermanyAlbert-Einstein-Straße 29a
| | - Hanadi Ghanem
- Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)Friedrich-Alexander-Universität Erlangen-Nürnberg91058ErlangenGermanyMartensstraße 5
| | - Stefan Rosiwal
- Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)Friedrich-Alexander-Universität Erlangen-Nürnberg91058ErlangenGermanyMartensstraße 5
| | - Angelika Brückner
- Leibniz Institut für Katalyse e.V. (LIKAT Rostock)18059RostockGermanyAlbert-Einstein-Straße 29a
| | - Bastian J. M. Etzold
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAlarich-Weiss-Straße 864287DarmstadtGermany
| |
Collapse
|
41
|
Simoska O, Rhodes Z, Weliwatte S, Cabrera-Pardo JR, Gaffney EM, Lim K, Minteer SD. Advances in Electrochemical Modification Strategies of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2021; 14:1674-1686. [PMID: 33577707 DOI: 10.1002/cssc.202100139] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The development of electrochemical catalytic conversion of 5-hydroxymethylfurfural (HMF) has recently gained attention as a potentially scalable approach for both oxidation and reduction processes yielding value-added products. While the possibility of electrocatalytic HMF transformations has been demonstrated, this growing research area is in its initial stages. Additionally, its practical applications remain limited due to low catalytic activity and product selectivity. Understanding the catalytic processes and design of electrocatalysts are important in achieving a selective and complete conversion into the desired highly valuable products. In this Minireview, an overview of the most recent status, advances, and challenges of oxidation and reduction processes of HMF was provided. Discussion and summary of voltammetric studies and important reaction factors (e. g., catalyst type, electrode material) were included. Finally, biocatalysts (e. g., enzymes, whole cells) were introduced for HMF modification, and future opportunities to combine biocatalysts with electrochemical methods for the production of high-value chemicals from HMF were discussed.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Utah, 315 S 1400 E, RM 2020, Salt Lake City, UT, 84112, USA
| | - Zayn Rhodes
- Department of Chemistry, University of Utah, 315 S 1400 E, RM 2020, Salt Lake City, UT, 84112, USA
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 S 1400 E, RM 2020, Salt Lake City, UT, 84112, USA
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 S 1400 E, RM 2020, Salt Lake City, UT, 84112, USA
| | - Erin M Gaffney
- Department of Chemistry, University of Utah, 315 S 1400 E, RM 2020, Salt Lake City, UT, 84112, USA
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 S 1400 E, RM 2020, Salt Lake City, UT, 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, RM 2020, Salt Lake City, UT, 84112, USA
| |
Collapse
|
42
|
Feng Y, Long S, Tang X, Sun Y, Luque R, Zeng X, Lin L. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chem Soc Rev 2021; 50:6042-6093. [PMID: 34027943 DOI: 10.1039/d0cs01601b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.
Collapse
Affiliation(s)
- Yunchao Feng
- College of Energy, Xiamen University, Xiamen 361102, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Electrosynthesis is to use electricity to drive chemical reactions for chemical synthesis and is potentially a green approach to fuel and energy sustainability. Nanostructured catalysts play an important role in promoting electrochemical reactions under green chemistry conditions. This perspective first provides a brief tutorial on electrosynthesis and the roles the nanocatalysts play in the synthesis. It then outlines the common strategies used to develop nanocatalysts for hydrogen evolution reaction, CO2 reduction reaction, and biomass upgrading. The perspective further summarizes the current methodologies that have been developed for scaling-up synthesis of nanocatalysts, which will be essential for the electrosynthesis to become a viable industry approach.
Collapse
Affiliation(s)
- Honghong Lin
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Zhouyang Yin
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
44
|
Hu K, Zhang M, Liu B, Yang Z, Li R, Yan K. Efficient electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using the facilely synthesized 3D porous WO3/Ni electrode. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 2021; 49:4273-4306. [PMID: 32453311 DOI: 10.1039/d0cs00041h] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Furans represent one of the most important classes of intermediates in the conversion of non-edible lignocellulosic biomass into bio-based chemicals and fuels. At present, bio-furan derivatives are generally obtained from cellulose and hemicellulose fractions of biomass via the acid-catalyzed dehydration of their relative C6-C5 sugars and then converted into a wide range of products. Furfural (FUR) and 5-hydroxymethylfurfural (HMF) are surely the most used furan-based feedstocks since their chemical structure allows the preparation of various high-value-added chemicals. Among several well-established catalytic approaches, hydrogenation and oxygenation processes have been efficiently adopted for upgrading furans; however, harsh reaction conditions are generally required. In this review, we aim to discuss the conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems. The reaction conditions adopted, the chemical nature and the physico-chemical properties of the most employed heterogeneous systems in enhancing the catalytic activity and in driving the selectivity to desired products are presented and compared. At the same time, the latest results in the production of FUR and HMF through novel environmental friendly processes starting from lignocellulose as well as from wastes and by-products obtained in the processing of biomass are also overviewed.
Collapse
Affiliation(s)
- C Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, P. R. China
| | - E Paone
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy. and Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Italy
| | - D Rodríguez-Padrón
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain.
| | - R Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain. and Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| | - F Mauriello
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy.
| |
Collapse
|
46
|
Su T, Zhao D, Wang Y, Lü H, Varma RS, Len C. Innovative Protocols in the Catalytic Oxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2021; 14:266-280. [PMID: 33200564 DOI: 10.1002/cssc.202002232] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Indexed: 06/11/2023]
Abstract
5-Hydroxymethylfurfural (HMF) has been identified as one of the most promising biomass-based multi-purpose platform molecules. Innovative protocols, namely electrocatalysis, photocatalysis, and microwave (MW)-assisted chemistry, as well as continuous-flow systems, add a new dimension and another promising toolbox for the oxidation of HMF in recent years. This Minireview deals with recent progress in the catalytic oxidation of HMF to 2,5-furandicarboxylic acid (FDCA) and other intermediates using noble, non-noble, and metal-free systems deploying emerging protocols. Selective HMF downstream oxidation products could be obtained not only via common catalyst modifications, namely nature of the metal, preparative method, and the property of deployed support, but also by using innovative processes.
Collapse
Affiliation(s)
- Ting Su
- Green Chemistry Center, College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P.R. China
| | - Deyang Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, P.R. China
| | - Yantao Wang
- School of Resources Environmental & Chemical Engineering, Nanchang University, No 999 Xuefu Avenue, Honggutan New District, Nanchang, 330031, P.R. China
| | - Hongying Lü
- Green Chemistry Center, College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Christophe Len
- Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, CNRS, 11 rue Pierre et Marie Curie, 75005, Paris, France
- Sorbonne Universités, Université de Technologie de Compiegne, Centre de recherches Royallieu, CS, 60319, 60203 Compiegne cedex, France
| |
Collapse
|
47
|
Zhong Y, Ren RQ, Qin L, Wang JB, Peng YY, Li Q, Fan YM. Electrodeposition of hybrid nanosheet-structured NiCo 2O 4 on carbon fiber paper as a non-noble electrocatalyst for efficient electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. NEW J CHEM 2021. [DOI: 10.1039/d1nj01489g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hybrid nanosheet-structured NiCo2O4 on CFP as a self-supporting electrode for electrochemical oxidation of HMF to FDCA.
Collapse
Affiliation(s)
- Yan Zhong
- Key Laboratory of Lignocellulosic Chemistry
- College of Material Science and Technology
- Beijing Forestry University
- Beijing
- China
| | - Ru-Quan Ren
- Key Laboratory of Lignocellulosic Chemistry
- College of Material Science and Technology
- Beijing Forestry University
- Beijing
- China
| | - Lei Qin
- Key Laboratory of Lignocellulosic Chemistry
- College of Material Science and Technology
- Beijing Forestry University
- Beijing
- China
| | - Jian-Bo Wang
- Key Laboratory of Lignocellulosic Chemistry
- College of Material Science and Technology
- Beijing Forestry University
- Beijing
- China
| | - Yi-Yi Peng
- Key Laboratory of Lignocellulosic Chemistry
- College of Material Science and Technology
- Beijing Forestry University
- Beijing
- China
| | - Qiang Li
- College of Science
- Beijing Forestry University
- Beijing 100083
- China
| | - Yong-Ming Fan
- Key Laboratory of Lignocellulosic Chemistry
- College of Material Science and Technology
- Beijing Forestry University
- Beijing
- China
| |
Collapse
|
48
|
Wang T, Song Y, Zhao W, Zhou C, Jin Y, Wan X, Dai Y, Yang Y. Electro-catalytic oxidation of HMF to FDCA over RuO 2/MnO 2/CNT catalysts in base-free solution. NEW J CHEM 2021. [DOI: 10.1039/d1nj03292e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Up to 72% yield of 2,5-furandicarboxylic acid was achieved in a neutral electrolyte through the electro-oxidation of 5-hydroxymethylfurfural over a ruthenium–manganese mixed oxide catalyst.
Collapse
Affiliation(s)
- Tianci Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yu Song
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wanna Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Chunmei Zhou
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yuguang Jin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiaoyue Wan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
49
|
Lhermitte CR, Plainpan N, Canjura P, Boudoire F, Sivula K. Direct photoelectrochemical oxidation of hydroxymethylfurfural on tungsten trioxide photoanodes. RSC Adv 2020; 11:198-202. [PMID: 35423063 PMCID: PMC8690328 DOI: 10.1039/d0ra09989a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
An important target reaction for solar-powered biomass valorization is the conversion of 2,5-hydroxymethylfurfural (HMF) into key monomers for polyester production. Herein, photoanodes of WO3 are demonstrated to directly photo-oxidize HMF in aqueous electrolyte (pH 4) under simulated solar illumination. The addition of 5 mM HMF increases the saturation photocurrent by 26% and suppresses the water oxidation reaction, as determined by rotating ring-disk electrode experiments. Prolonged photoelectrochemical oxidation (64 h) illustrates system robustness and confirms the production of furandicarboxaldehyde (DFF), furandicarboxylic acid (FDCA), and related intermediates. Quantification of the reaction rate constants via a kinetic model gives insight into the modest DFF and FDCA yields (up to 4% and 1%, respectively)-which is due to the formation of by-products-and suggests routes for improvement.
Collapse
Affiliation(s)
- Charles R Lhermitte
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lauanne (EPFL) Station 6 1015 Lausanne Switzerland
| | - Nukorn Plainpan
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lauanne (EPFL) Station 6 1015 Lausanne Switzerland
| | - Pamela Canjura
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lauanne (EPFL) Station 6 1015 Lausanne Switzerland
| | - Florent Boudoire
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lauanne (EPFL) Station 6 1015 Lausanne Switzerland
| | - Kevin Sivula
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lauanne (EPFL) Station 6 1015 Lausanne Switzerland
| |
Collapse
|
50
|
Schade OR, Stein F, Reichenberger S, Gaur A, Saraҫi E, Barcikowski S, Grunwaldt J. Selective Aerobic Oxidation of 5‐(Hydroxymethyl)furfural over Heterogeneous Silver‐Gold Nanoparticle Catalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Oliver R. Schade
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany 44820
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| | - Frederic Stein
- Technical Chemistry I University of Duisburg-Essen 45141 Essen Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen 47057 Duisburg Germany
| | - Sven Reichenberger
- Technical Chemistry I University of Duisburg-Essen 45141 Essen Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen 47057 Duisburg Germany
| | - Abhijeet Gaur
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany 44820
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| | - Erisa Saraҫi
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany 44820
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| | - Stephan Barcikowski
- Technical Chemistry I University of Duisburg-Essen 45141 Essen Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen 47057 Duisburg Germany
| | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany 44820
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|