1
|
Lim KRG, Shirman T, Toops TJ, Alvarenga J, Aizenberg M, Aizenberg J. Active and Stable PtPd Diesel Oxidation Catalysts under Industry-Defined Test Protocols. CHEMSUSCHEM 2025:e202500295. [PMID: 40019308 DOI: 10.1002/cssc.202500295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Nanoparticle-supported Pt and Pd catalysts are employed industrially to convert CO and hydrocarbon residue from incomplete diesel fuel combustion into more environmentally-benign products. However, these catalysts deactivate over time due to sintering, especially for Pt nanoparticles which readily generate volatile species under high operating temperatures. Here, we turned the detrimental vapor-mediated sintering of Pt into an advantage by using a physical mixture of Pt and Pd catalysts prepared using a raspberry-colloid-templating (RCT) method. The RCT method produced Pt/Al2O3 and Pd/Al2O3 catalysts with partially embedded NPs to inhibit surface-mediated sintering pathways. As validated using an industry-defined emission control test protocol, aging a physical mixture of Pt/Al2O3 and Pd/Al2O3 at high temperature produced an alloyed PtPd/Al2O3 catalyst that outperformed the fresh catalyst mixture and both individual catalysts for hydrocarbon conversion, while exhibiting high catalytic stability and resistance to sintering and to SO2 poisoning. X-ray photoelectron spectroscopy revealed that in the aged catalyst mixture, half of the Pd content existed in the more active metallic state, compared to the less active oxide forms in the fresh mixture and both individual catalysts, explaining the unusual activity enhancement. Our results represent a practical approach to producing active and stable PtPd/Al2O3 diesel oxidation catalysts for emission control applications.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, Massachusetts, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, Massachusetts, United States
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, Massachusetts, United States
- Current address: Metalmark Innovations Inc., Cambridge, 02138, Massachusetts, United States
| | - Todd J Toops
- Oak Ridge National Laboratory, Applied Catalysis and Emissions Research Group, Oak Ridge, 37831, Tennessee, United States
| | - Jack Alvarenga
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, Massachusetts, United States
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, Massachusetts, United States
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, Massachusetts, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, Massachusetts, United States
| |
Collapse
|
2
|
Lim KRG, Kaiser SK, Herring CJ, Kim TS, Perich MP, Garg S, O’Connor CR, Aizenberg M, van der Hoeven JES, Reece C, Montemore MM, Aizenberg J. Partial PdAu nanoparticle embedding into TiO 2 support accentuates catalytic contributions from the Au/TiO 2 interface. Proc Natl Acad Sci U S A 2025; 122:e2422628122. [PMID: 39786932 PMCID: PMC11745314 DOI: 10.1073/pnas.2422628122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Despite the broad catalytic relevance of metal-support interfaces, controlling their chemical nature, the interfacial contact perimeter (exposed to reactants), and consequently, their contributions to overall catalytic reactivity, remains challenging, as the nanoparticle and support characteristics are interdependent when catalysts are prepared by impregnation. Here, we decoupled both characteristics by using a raspberry-colloid-templating strategy that yields partially embedded PdAu nanoparticles within well-defined SiO2 or TiO2 supports, thereby increasing the metal-support interfacial contact compared to nonembedded catalysts that we prepared by attaching the same nanoparticles onto support surfaces. Between nonembedded PdAu/SiO2 and PdAu/TiO2, we identified a support effect resulting in a 1.4-fold higher activity of PdAu/TiO2 than PdAu/SiO2 for benzaldehyde hydrogenation. Notably, partial nanoparticle embedding in the TiO2 raspberry-colloid-templated support increased the metal-support interfacial perimeter and consequently, the number of Au/TiO2 interfacial sites by 5.4-fold, which further enhanced the activity of PdAu/TiO2 by an additional 4.1-fold. Theoretical calculations and in situ surface-sensitive desorption analyses reveal facile benzaldehyde binding at the Au/TiO2 interface and at Pd ensembles on the nanoparticle surface, explaining the connection between the number of Au/TiO2 interfacial sites (via the metal-support interfacial perimeter) and catalytic activity. Our results demonstrate partial nanoparticle embedding as a synthetic strategy to produce thermocatalytically stable catalysts and increase the number of catalytically active Au/TiO2 interfacial sites to augment catalytic contributions arising from metal-support interfaces.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Selina K. Kaiser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Connor J. Herring
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA70118
| | - Taek-Seung Kim
- Rowland Institute at Harvard, Harvard University, Cambridge, MA02142
| | - Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht3584 CG, Netherlands
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | | | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Jessi E. S. van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht3584 CG, Netherlands
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, MA02142
| | - Matthew M. Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA70118
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
3
|
Lim KRG, Aizenberg M, Aizenberg J. Colloidal Templating in Catalyst Design for Thermocatalysis. J Am Chem Soc 2024; 146:22103-22121. [PMID: 39101642 PMCID: PMC11328140 DOI: 10.1021/jacs.4c07167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Conventional catalyst preparative methods commonly entail the impregnation, precipitation, and/or immobilization of nanoparticles on their supports. While convenient, such methods do not readily afford the ability to control collective ensemble-like nanoparticle properties, such as nanoparticle proximity, placement, and compartmentalization. In this Perspective, we illustrate how incorporating colloidal templating into catalyst design for thermocatalysis confers synthetic advantages to facilitate new catalytic investigations and augment catalytic performance, focusing on three colloid-templated catalyst structures: 3D macroporous structures, hierarchical macro-mesoporous structures, and discrete hollow nanoreactors. We outline how colloidal templating decouples the nanoparticle and support formation steps to devise modular catalyst platforms that can be flexibly tuned at different length scales. Of particular interest is the raspberry colloid templating (RCT) method which confers high thermomechanical stability by partially embedding nanoparticles within its support, while retaining high levels of reactant accessibility. We illustrate how the high modularity of the RCT approach allows one to independently control collective nanoparticle properties, such as nanoparticle proximity and localization, without concomitant changes to other catalytic descriptors that would otherwise confound analyses of their catalytic performance. We next discuss how colloidal templating can be employed to achieve spatially disparate active site functionalization while directing reactant transport within the catalyst structure to enhance selectivity in multistep catalytic cascades. Throughout this Perspective, we highlight developments in advanced characterization that interrogate transport phenomena and/or derive new insights into these catalyst structures. Finally, we offer our outlook on the future roles, applications, and challenges of colloidal templating in catalyst design for thermocatalysis.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Bijl M, Lim KRG, Garg S, Nicolas NJ, Visser NL, Aizenberg M, van der Hoeven JES, Aizenberg J. Controlling nanoparticle placement in Au/TiO 2 inverse opal photocatalysts. NANOSCALE 2024; 16:13867-13873. [PMID: 38979601 DOI: 10.1039/d4nr01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Gold nanoparticle-loaded titania (Au/TiO2) inverse opals are highly ordered three-dimensional photonic structures with enhanced photocatalytic properties. However, fine control over the placement of the Au nanoparticles in the inverse opal structures remains challenging with traditional preparative methods. Here, we present a multi-component co-assembly strategy to prepare high-quality Au/TiO2 inverse opal films in which Au nanoparticles are either located on, or inside the TiO2 matrix, as verified using electron tomography. We report that Au nanoparticles embedded in the TiO2 support exhibit enhanced thermal and mechanical stability compared to non-embedded nanoparticles that are more prone to both leaching and sintering.
Collapse
Affiliation(s)
- Marianne Bijl
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Natalie J Nicolas
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands.
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA
| |
Collapse
|
5
|
Lim KRG, Kaiser SK, Wu H, Garg S, O'Connor CR, Reece C, Aizenberg M, Aizenberg J. Deconvoluting the Individual Effects of Nanoparticle Proximity and Size in Thermocatalysis. ACS NANO 2024; 18:15958-15969. [PMID: 38836504 DOI: 10.1021/acsnano.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nanoparticle (NP) size and proximity are two physical descriptors applicable to practically all NP-supported catalysts. However, with conventional catalyst design, independent variation of these descriptors to investigate their individual effects on thermocatalysis remains challenging. Using a raspberry-colloid-templating approach, we synthesized a well-defined catalyst series comprising Pd12Au88 alloy NPs of three distinct sizes and at two different interparticle distances. We show that NP size and interparticle distance independently control activity and selectivity, respectively, in the hydrogenation of benzaldehyde to benzyl alcohol and toluene. Surface-sensitive spectroscopic analysis indicates that the surfaces of smaller NPs expose a greater fraction of reactive Pd dimers, compared to inactive Pd single atoms, thereby increasing intrinsic catalytic activity. Computational simulations reveal how a larger interparticle distance improves catalytic selectivity by diminishing the local benzyl alcohol concentration profile between NPs, thus suppressing its readsorption and consequently, undesired formation of toluene. Accordingly, benzyl alcohol yield is maximized using catalysts with smaller NPs separated by larger interparticle distances, overcoming activity-selectivity trade-offs. This work exemplifies the high suitability of the modular raspberry-colloid-templating method as a model catalyst platform to isolate individual descriptors and establish clear structure-property relationships, thereby bridging the materials gap between surface science and technical catalysts.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Selina K Kaiser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haichao Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sadhya Garg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher R O'Connor
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Raspberry Colloid Templated Catalysts Fabricated Using Spray Drying Method. Catalysts 2022. [DOI: 10.3390/catal13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of industrial chemical processes—from production of organic and inorganic compounds to air and water treatment—rely on heterogeneous catalysts. The performance of these catalysts has improved over the past several decades; in parallel, many innovations have been presented in publications, demonstrating increasingly higher efficiency and selectivity. One common challenge to adopting novel materials in real-world applications is the need to develop robust and cost-effective synthetic procedures for their formation at scale. Herein, we focus on the scalable production of a promising new class of materials—raspberry-colloid-templated (RCT) catalysts—that have demonstrated exceptional thermal stability and high catalytic activity. The unique synthetic approach used for the fabrication of RCT catalysts enables great compositional flexibility, making these materials relevant to a wide range of applications. Through a series of studies, we identified stable formulations of RCT materials that can be utilized in the common industrial technique of spray drying. Using this approach, we demonstrate the production of highly porous Pt/Al2O3 microparticles with high catalytic activity toward complete oxidation of toluene as a model reaction.
Collapse
|
7
|
Hoeven JESVD, Shneidman AV, Nicolas NJ, Aizenberg J. Evaporation-Induced Self-Assembly of Metal Oxide Inverse Opals: From Synthesis to Applications. Acc Chem Res 2022; 55:1809-1820. [PMID: 35700186 PMCID: PMC9260962 DOI: 10.1021/acs.accounts.2c00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Inverse opals (IOs) are highly interconnected three-dimensional
macroporous structures with applications in a variety of disciplines
from optics to catalysis. For instance, when the pore size is on the
scale of the wavelength of visible light, IOs exhibit structural color
due to diffraction and interference of light rather than due to absorption
by pigments, making these structures valuable as nonfading paints
and colorants. When IO pores are in an ordered arrangement, the IO
is a 3D photonic crystal, a structure with a plethora of interesting
optical properties that can be used in a multitude of applications,
from sensors to lasers. IOs also have interesting fluidic properties
that arise from the re-entrant geometry of the pores, making them
excellent candidates for colorimetric sensors based on fluid surface
tension. Metal oxide IOs, in particular, can also be photo- and thermally
catalytically active due to the catalytic activity of the background
matrix material or of functional nanoparticles embedded within the
structure. Evaporation-induced self-assembly of sacrificial
particles has
been developed as a scalable method for forming IOs. The pore size
and shape, surface chemistry, matrix material, and the macroscopic
shape of the IO, as well as the inclusion of functional components,
can be designed through the choice of deposition conditions such as
temperature and humidity, types and concentrations of components in
the self-assembly mixture, and the postassembly processing. These
parameters allow researchers to tune the optical, mechanical, and
thermal transport properties of IOs for optimum functionality. In this Account, we focus on experimental and
theoretical studies to understand the self-assembly process and properties
of metal oxide IOs without (bare) and with (hybrid) plasmonic or catalytic
metal nanoparticles incorporated. Several synthetic approaches are
first presented, together with a discussion of the various forces
involved in the assembly process. The visualization of the deposition
front with time-lapse microscopy is then discussed together with analytical
theory and numerical simulations to determine the conditions needed
for the deposition of a continuous IO film. Subsequently, we present
high-resolution scanning electron microscopy (SEM) of assembled colloids
over large areas, which provides a detailed view of the evolution
of the assembly process, showing that the organization of the colloids
is initially dictated by the meniscus of the evaporating suspension
on the substrate, but that gradually all grains rotate to occupy the
thermodynamically most favorable orientation. High-resolution 3D transmission
electron microscopy (TEM) is then presented together with analysis
of the wetting of the templating colloids by the matrix precursor
to provide a detailed picture of the embedding of metallic nanoparticles
at the pore–matrix interface. Finally, the resulting properties
and applications in optics, wetting, and catalysis are discussed,
concluding with an outlook on the future of self-assembled metal-oxide-based
IOs.
Collapse
Affiliation(s)
- Jessi E S van der Hoeven
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anna V Shneidman
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Natalie J Nicolas
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Filie A, Shirman T, Foucher AC, Stach EA, Aizenberg M, Aizenberg J, Friend CM, Madix RJ. Dilute Pd-in-Au alloy RCT-SiO2 catalysts for enhanced oxidative methanol coupling. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
van der Hoeven JES, Ngan HT, Taylor A, Eagan NM, Aizenberg J, Sautet P, Madix RJ, Friend CM. Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessi E. S. van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Austin Taylor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nathaniel M. Eagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Robert J. Madix
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
11
|
Filie A, Shirman T, Aizenberg M, Aizenberg J, Friend CM, Madix RJ. The dynamic behavior of dilute metallic alloy PdxAu1−x/SiO2 raspberry colloid templated catalysts under CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00469g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dilute palladium-in-gold alloys have potential as efficient oxidation catalysts; controlling the Pd surface distribution is critical.
Collapse
Affiliation(s)
- Amanda Filie
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Cynthia M. Friend
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Robert J. Madix
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| |
Collapse
|
12
|
Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-Atom Alloy Catalysis. Chem Rev 2020; 120:12044-12088. [DOI: 10.1021/acs.chemrev.0c00078] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|