1
|
Liu R, Zhang Y, Xu Y, Liu Z, Chen J, Goh KL, Zhang Y, Zheng M. Molecular docking simulation reveals the lipase-substrate binding mechanism in the enzymatic synthesis of diacylglycerol-enriched vegetable oils. Food Chem 2025; 474:143236. [PMID: 39923505 DOI: 10.1016/j.foodchem.2025.143236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Diacylglycerol (DAG) is a functional lipid that is naturally present in vegetable oils in limited concentrations (1 %-5 %). This study proposed an enzymatic method to afford high-content-DAG vegetable oils via a reaction catalyzed by an immobilized lipase, PS@OMS-C8, using high-speed homogenization and molecular distillation. Results indicated that 48.6 % DAG was initially obtained through the enzymatic glycerolysis of rapeseed oil with glycerol, of which 90.2 % was sn-1,3-DAG. PS@OMS-C8 maintained 35.5 % DAG content after 10 reuse cycles, confirming its catalytic stability; this was attributed to lipase immobilization on the ordered mesoporous silica that significantly improve the secondary protein structures, including α-helix and β-sheet, thereby strengthening the rigidity of PS@OMS-C8. In addition to producing DAG-enriched rapeseed oil, other edible oils with 39.4 %-50.2 % DAG content were obtained, as revealed via molecular docking simulation. This study offers new strategies for the sustainable synthesis of vegetable oils with a high content of functional lipids high-content functional lipids.
Collapse
Affiliation(s)
- Run Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Yuanzhi Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Zhonghui Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Jinhang Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Kheng-Lim Goh
- Newcastle University in Singapore, 567739, Republic of Singapore
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
2
|
Tacias-Pascacio VG, Abellanas-Perez P, de Andrades D, Tavano O, Mendes AA, Berenguer-Murcia Á, Fernandez-Lafuente R. A comprehensive review of lipase-catalyzed acidolysis as a method for producing structured glycerides. Int J Biol Macromol 2025; 309:142878. [PMID: 40194578 DOI: 10.1016/j.ijbiomac.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The production of structured lipids is a current trend in food technology in order to enhance the properties of fats and oils. Lipases have been utilized in many instances for this purpose, in most examples in an immobilized form. In this review, after discussing the different strategies to produce artificial lipids using lipases (esterification, transesterification, interesterification), we have focused on acidolysis. The reaction commences with hydrolysis at one position of the triglyceride molecule and is followed by the esterification between the released hydroxyl group and the target fatty acid (although other carboxylic acids can be used, such as phenolic acid derivatives). This means that water plays a double role, as substrate in the first step and as an undesired by-product in the second one. Therefore, the control of water activity becomes critical in these reactions. This review discusses the advantages, possibilities and drawbacks of this strategy to produce tailor-made designed lipids, summarizing many of the papers related to this strategy. The summarized results show the complexity of this reaction that can make the understanding and reproducibility of the reactions complex if there are no strict controls of all parameters determining the final yields.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
3
|
Zheng J, Zhang Q, Zhong N. Selective synthesis of triacylglycerols by the ADS-17-supported Candida antarctica lipase B through esterification of oleic acid and glycerol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3931-3941. [PMID: 39835430 DOI: 10.1002/jsfa.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Immobilized enzyme possessing both high activity and good selectivity is important in practice. In this study, Candida antarctica lipase B (CALB) was immobilized onto the macroporous resin ADS-17 for triacylglycerol (TAG) synthesis through esterification of oleic acid and glycerol. The reaction conditions were optimized by single-factor study and orthogonal test, and the reusability of the immobilized CALB (CALB@ADS-17) was evaluated. In addition, the mechanism of lipase immobilization was studied and the catalytic mechanism of CALB@ADS-17 was investigated. RESULTS Oleic acid conversion up to 99.20% and TAG content at 91.58 wt% could be obtained under optimal conditions. In addition, the CALB@ADS-17 retained 84.28% of its initial activity after 11 cycles of reuse. The mechanism of lipase immobilization was through hydrophobic adsorption. The relationship between temperature and oleic acid conversion was lnV0 = 6.3316 - 4.3321/T, and the activation energy (Ea) was 36.02 kJ mol-1. CALB@ADS-17 did not exhibit an obvious interfacial activation phenomenon. Its kinetic behavior can be described by the Michaelis-Menten model, whose kinetic parameters of vmax, kcat, Km, Ki, and kcat/Km were 0.01265 μmol L-1 s-1, 9310.72 s-1, 0.4907 mmol L-1, 3.997 mmol L-1, and 1.90 × 104 L mmol-1 s-1, respectively. CONCLUSION CALB@ADS-17 showed good esterification performance and exhibited good selectivity towards TAG generation. In addition, CALB@ADS-17 exhibited good reusability in esterification reactions and has potential in practical applications. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiawei Zheng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Qiangyue Zhang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| |
Collapse
|
4
|
Zhang J, Chen J, Sha Y, Deng J, Wu J, Yang P, Zou F, Ying H, Zhuang W. Water-mediated active conformational transitions of lipase on organic solvent interfaces. Int J Biol Macromol 2024; 277:134056. [PMID: 39074702 DOI: 10.1016/j.ijbiomac.2024.134056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
When it comes to enzyme stability and their application in organic solvents, enzyme biocatalysis has emerged as a popular substitute for conventional chemical processes. However, the demand for enzymes exhibiting improved stability remains a persistent challenge. Organic solvents can significantly impacts enzyme properties, thereby limiting their practical application. This study focuses on Lipase Thermomyces lanuginose, through molecular dynamics simulations and experiments, we quantified the effect of different solvent-lipase interfaces on the interfacial activation of lipase. Revealed molecular views of the complex solvation processes through the minimum distance distribution function. Solvent-protein interactions were used to interpret the factors influencing changes in lipase conformation and enzyme activity. We found that water content is crucial for enzyme stability, and the optimum water content for lipase activity was 35 % in the presence of benzene-water interface, which is closely related to the increase of its interfacial activation angle from 78° to 102°. Methanol induces interfacial activation in addition to significant competitive inhibition and denaturation at low water content. Our findings shed light on the importance of understanding solvent effects on enzyme function and provide practical insights for enzyme engineering and optimization in various solvent-lipase interfaces.
Collapse
Affiliation(s)
- Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiale Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yu Sha
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiawei Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
5
|
Waggett A, Pfaendtner J. Hydrophobic Residues Promote Interfacial Activation of Candida rugosa Lipase: A Study of Rotational Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39141441 DOI: 10.1021/acs.langmuir.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Microbial lipases constitute a class of biocatalysts with the ability to cleave ester linkages of long-chain triglycerides. This property makes them particularly attractive for industrial applications ranging from food processing to pharmaceutical preparation. Among such enzymes, Candida rugosa lipase (CRL) is one of the most frequently used in biotransformation. A notable feature of CRL, among many lipases, is its propensity for interfacial activation: these enzymes exhibit elevated catalytic rates when acting at the interface between aqueous and hydrophobic phases. Notably, this phenomenon can be attributed to the presence of a mobile lid domain, which in its closed state occludes the enzyme active site. To advance our understanding of interfacial activation, we explore the dynamics of CRL rotation at the octane-water interface in this work. To do so, we employ molecular dynamics and umbrella sampling to evaluate the free energy of rotation of the enzyme at the interface. We identify a global minimum in the rotational landscape that coincides with lid opening at the interface. Additionally, we investigate the role of surface residues outside the lid domain as they serve to instigate rotation of the lid toward the aqueous phase. In doing so, we identify a patch of leucine residues which when mutated to glycine impose a barrier to rotation that maintains the enzyme in the inactive (closed lid) state on the order of 1 μs. Importantly, this study presents a novel quantification of the rotational free energy corresponding to CRL lid opening at the octane-water interface. The accompanying mutagenesis study likewise clarifies the role of hydrophobic surface residues in the transition. As such, this work provides valuable insight into the phenomenon of interfacial activation that might open up new avenues for manipulating the microenvironment of industrially relevant lipases, affording enhanced control over the enzyme state.
Collapse
Affiliation(s)
- Ava Waggett
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Cherni O, Carballares D, Siar EH, Abellanas-Perez P, de Andrades D, de Moraes Polizeli MDLT, Rocha-Martin J, Bahri S, Fernandez-Lafuente R. Tuning almond lipase features by the buffer used during immobilization: The apparent biocatalysts stability depends on the immobilization and inactivation buffers and the substrate utilized. J Biotechnol 2024; 391:72-80. [PMID: 38876311 DOI: 10.1016/j.jbiotec.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The lipase from Prunus dulcis almonds was inactivated under different conditions. At pH 5 and 9, enzyme stability remained similar under the different studied buffers. However, when the inactivation was performed at pH 7, there were some clear differences on enzyme stability depending on the buffer used. The enzyme was more stable in Gly than when Tris was employed for inactivation. Then, the enzyme was immobilized on methacrylate beads coated with octadecyl groups at pH 7 in the presence of Gly, Tris, phosphate and HEPES. Its activity was assayed versus triacetin and S-methyl mandelate. The biocatalyst prepared in phosphate was more active versus S-methyl mandelate, while the other ones were more active versus triacetin. The immobilized enzyme stability at pH 7 depends on the buffer used for enzyme immobilization. The buffer used in the inactivation and the substrate used determined the activity. For example, glycine was the buffer that promoted the lowest or the highest stabilities depending on the substrate used to quantify the activities.
Collapse
Affiliation(s)
- Oumaima Cherni
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
| | - El Hocine Siar
- Agri-food Engineering Laboratory (GENIAAL), Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | - Sellema Bahri
- LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia.
| | | |
Collapse
|
7
|
Salas-Bruggink D, Guzmán H, Espina G, Blamey JM. Recombinant Expression and Characterization of a Novel Thermo-Alkaline Lipase with Increased Solvent Stability from the Antarctic Thermophilic Bacterium Geobacillus sp. ID17. Int J Mol Sci 2024; 25:7928. [PMID: 39063171 PMCID: PMC11277018 DOI: 10.3390/ijms25147928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Lipases are enzymes that hydrolyze long-chain carboxylic esters, and in the presence of organic solvents, they catalyze organic synthesis reactions. However, the use of solvents in these processes often results in enzyme denaturation, leading to a reduction in enzymatic activity. Consequently, there is significant interest in identifying new lipases that are resistant to denaturing conditions, with extremozymes emerging as promising candidates for this purpose. Lip7, a lipase from Geobacillus sp. ID17, a thermophilic microorganism isolated from Deception Island, Antarctica, was recombinantly expressed in E. coli C41 (DE3) in functional soluble form. Its purification was achieved with 96% purity and 23% yield. Enzymatic characterization revealed Lip7 to be a thermo-alkaline enzyme, reaching a maximum rate of 3350 U mg-1 at 50 °C and pH 11.0, using p-nitrophenyl laurate substrate. Notably, its kinetics displayed a sigmoidal behavior, with a higher kinetic efficiency (kcat/Km) for substrates of 12-carbon atom chain. In terms of thermal stability, Lip7 demonstrates stability up to 60 °C at pH 8.0 and up to 50 °C at pH 11.0. Remarkably, it showed high stability in the presence of organic solvents, and under certain conditions even exhibited enzymatic activation, reaching up to 2.5-fold and 1.35-fold after incubation in 50% v/v ethanol and 70% v/v isopropanol, respectively. Lip7 represents one of the first lipases from the bacterial subfamily I.5 and genus Geobacillus with activity and stability at pH 11.0. Its compatibility with organic solvents makes it a compelling candidate for future research in biocatalysis and various biotechnological applications.
Collapse
Affiliation(s)
| | - Hardy Guzmán
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago 9170022, Chile;
| | - Giannina Espina
- Fundación Biociencia, José Domingo Cañas 2280, Santiago 7750132, Chile;
| | - Jenny M. Blamey
- Fundación Biociencia, José Domingo Cañas 2280, Santiago 7750132, Chile;
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago 9170022, Chile;
| |
Collapse
|
8
|
Liu X, Cong F, Han M, Zhang L, Wang Z, Jiang L, Liu B, Zhang S, Yang W, Su Y, Li T, Wang Y, Liu D. Copper Phthalocyanine Improving Nonaqueous Catalysis of Pseudomonas cepacia Lipase for Ester Synthesis. Appl Biochem Biotechnol 2024; 196:1786-1802. [PMID: 37368171 DOI: 10.1007/s12010-023-04339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 06/28/2023]
Abstract
The nonaqueous catalysis of lipases is significant for synthesis of high pure esters, but they usually behave low catalytic activity due to denaturation and aggregation of enzyme protein in organic phases. To improve the nonaqueous catalysis, the inexpensive copper phthalocyanine was taken as a new carrier on which Pseudomonas cepacia lipase was immobilized by physical absorption, and used for synthesis of hexyl acetate, an important flavor, via transesterification of hexanol and vinyl acetate. Results showed that the desired loading was 10-mg lipase immobilized on 10-mg copper phthalocyanine powder. When the immobilized lipase was employed in the reaction system consisted of 1.5-mL hexanol and 1.5-mL vinyl acetate at 37°C and 160 rpm, the conversion was fivefolds of that catalyzed by native lipase after 1 h, and reached 99.0% after 8 h. In six times of 8-h reuses, the immobilized lipase behaved an activity attenuation rate 1.22% h-1, lower than 1.77% h-1 of native lipase, which meant that the immobilized lipase was more stable. Even at the room temperature and the static state without shaking or stirring, the immobilized lipase still brought conversion 42.8% after 10 h and the native lipase gave 20.1%. Obviously, the immobilized lipase is an available biocatalyst in organic phase and has great potential in food industry.
Collapse
Affiliation(s)
- Xinran Liu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Fangdi Cong
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China.
- Biccamin (Tianjin) Biotechnology R & D Stock Co., Ltd, Tianjin, 300393, People's Republic of China.
| | - Mengyao Han
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Liwang Zhang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Zhongli Wang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Lu Jiang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Bingqian Liu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Shulin Zhang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Wei Yang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Yongpeng Su
- Biccamin (Tianjin) Biotechnology R & D Stock Co., Ltd, Tianjin, 300393, People's Republic of China
| | - Tao Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Yingchao Wang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Daying Liu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| |
Collapse
|
9
|
Melo RLF, Freire TM, Valério RBR, Neto FS, de Castro Bizerra V, Fernandes BCC, de Sousa Junior PG, da Fonseca AM, Soares JM, Fechine PBA, Dos Santos JCS. Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles. Int J Biol Macromol 2024; 264:130730. [PMID: 38462111 DOI: 10.1016/j.ijbiomac.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60440-554, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Roberta Bussons Rodrigues Valério
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró, RN CEP 59625-900, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza, CE CEP 60455760, Brazil
| | - Aluísio Marques da Fonseca
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró, RN CEP 59610-090, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil.
| |
Collapse
|
10
|
Zhang H, Ye YH, Wang Y, Liu JZ, Jiao QC. A Bibliometric Analysis: Current Perspectives and Potential Trends of Enzyme Thermostability from 1991-2022. Appl Biochem Biotechnol 2024; 196:1211-1240. [PMID: 37382790 DOI: 10.1007/s12010-023-04615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Thermostability is considered a crucial parameter to evaluate the viability of enzymes in industrial applications. Over the past 31 years, many studies have been reported on the thermostability of enzymes. However, there is no systematic bibliometric analysis of publications on the thermostability of enzymes. In this study, 16,035 publications related to the thermostability of enzymes were searched and collected, showing an increasing annual trend. China contributed the most publications, while the United States had the highest citation count. International Journal of Biological Macromolecules is the most productive journal in the research field. Moreover, Chinese acad sci and Khosro Khajeh are the most active institutions and prolific authors in the field, respectively. Analysis of references with the strongest citation bursts and keyword co-occurrences, magnetic nanoparticles, metal-organic frameworks, molecular dynamics, and rational design are current hot spots and significant future research directions. This study is the first comprehensive bibliometric analysis summarizing trends and developments in enzyme thermostability research. Our findings could provide scholars with an understanding of the fundamental knowledge framework of the field and identify recent potential hotspots and research trends that could facilitate the discovery of collaboration opportunities.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yun-Hui Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jun-Zhong Liu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, CHINA CO-OP, Nanjing, 211111, China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Huang S, Li J, Lin Y, Tong L, Zhong N, Huang A, Ma X, Huang S, Yi W, Shen Y, Chen G, Ouyang G. Hydrogen-Bonded Supramolecular Nanotrap Enabling the Interfacial Activation of Hosted Enzymes. J Am Chem Soc 2024; 146:1967-1976. [PMID: 38131319 DOI: 10.1021/jacs.3c09647] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Engineering nanotraps to immobilize fragile enzymes provides new insights into designing stable and sustainable biocatalysts. However, the trade-off between activity and stability remains a long-standing challenge due to the inevitable diffusion barrier set up by nanocarriers. Herein, we report a synergetic interfacial activation strategy by virtue of hydrogen-bonded supramolecular encapsulation. The pore wall of the nanotrap, in which the enzyme is encapsulated, is modified with methyl struts in an atomically precise position. This well-designed supramolecular pore results in a synergism of hydrogen-bonded and hydrophobic interactions with the hosted enzyme, and it can modulate the catalytic center of the enzyme into a favorable configuration with high substrate accessibility and binding capability, which shows up to a 4.4-fold reaction rate and 4.9-fold conversion enhancements compared to free enzymes. This work sheds new light on the interfacial activation of enzymes using supramolecular engineering and also showcases the feasibility of interfacial assembly to access hierarchical biocatalysts featuring high activity and stability simultaneously.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiansheng Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuhong Lin
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ningyi Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Shen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Morales AH, Hero JS, Ledesma AE, Martínez MA, Navarro MC, Gómez MI, Romero CM. Tuning surface interactions on MgFe 2O 4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization. Int J Biol Macromol 2023; 253:126615. [PMID: 37652323 DOI: 10.1016/j.ijbiomac.2023.126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina.
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE- CONICET), Universidad Nacional de Santiago del Estero, RN 9, km 1125, (4206) Santiago del Estero, Argentina; Universidad Nacional de Santiago del Estero, Facultad de Ciencias Exactas y Tecnologías, Departamento Académico de Química, Av. Belgrano Sur 1912, 4200, Santiago del Estero, Argentina
| | - M Alejandra Martínez
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Ciencias Exactas yTecnología, UNT. Av. Independencia 1800, San Miguel de Tucumán 4000, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina.
| |
Collapse
|
13
|
Wafti NSA, Choong TSY, Lau HLN, Yunus R, Abd-Aziz S, Raof NA. Kinetic study on the production of biodegradable lubricant by enzymatic transesterification of high oleic palm oil. Process Biochem 2023; 131:91-100. [DOI: 10.1016/j.procbio.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
He L, Zeng C, Wei L, Xu L, Song F, Huang J, Zhong N. Fabrication of immobilized lipases for efficient preparation of 1,3-dioleoyl-2-palmitoylglycerol. Food Chem 2023; 408:135236. [PMID: 36549162 DOI: 10.1016/j.foodchem.2022.135236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
This study aims to fabricate immobilized lipases for efficient preparation of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) through acidolysis of glycerol tripalmitate (PPP). Twelve (three types) supports and five lipases were studied carefully. Among them, the immobilized Thermomyces lanuginosa lipase (TLL) samples exhibited overall better performance than that of other immobilized lipases. Particularly, organic groups functionalized SBA-15 (R-SBA-15) supported TLL (TLL@R-SBA-15) samples gave PPP conversion from 97.70 to 99.00 % and OPO content from 59.52 to 64.73 %. After optimization, PPP conversion up to 99.07 %, OPO content 73.15 % and sn-2 palmitic acid content 90.09 % were obtained with TLL@C18H37-SBA-15 as catalyst. Moreover, TLL@C18H37-SBA-15 exhibited better acidolysis performance from 50 °C than that from 60 to 80 °C, which helped inhibit acyl migration. In addition, after 5 cycles of reuse, TLL@C18H37-SBA-15 retained 81.04 % (based on OPO content) and 98.88 % (based on sn-2 palmitic acid content) of its initial activity, indicating it had an attractive prospect in future applications.
Collapse
Affiliation(s)
- Lihong He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Can Zeng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lingfeng Wei
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Fenglin Song
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jianrong Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
15
|
Kuang G, Wang Z, Luo X, Geng Z, Cui J, Bilal M, Wang Z, Jia S. Immobilization of lipase on hydrophobic MOF synthesized simultaneously with oleic acid and application in hydrolysis of natural oils for improving unsaturated fatty acid production. Int J Biol Macromol 2023; 242:124807. [PMID: 37178887 DOI: 10.1016/j.ijbiomac.2023.124807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
The hydrolysis of natural oils (vegetable oils and fats) by lipase has significant applications in food and medicine. However, free lipases are usually sensitive to temperature, pH and chemical reagents in aqueous solutions, which hinders their widespread industrial application. Excitingly, immobilized lipases have been widely reported to overcome these problems. Herein, inspired by lipase interface activation, a hydrophobic Zr-MOF (UiO-66-NH2-OA) with oleic acid was synthesized for the first time in an emulsion consisting of oleic acid and water, and the Aspergillus oryzae lipase (AOL) was immobilized onto the UiO-66-NH2-OA through hydrophobic interaction and electrostatic interaction to obtain immobilized lipase (AOL/UiO-66-NH2-OA). 1H NMR and FT-IR data indicated that oleic acid was conjugated with the 2-amino-1,4-benzene dicarboxylate (BDC-NH2) by amidation reaction. As a result, the Vmax and Kcat values of AOL/UiO-66-NH2-OA were 179.61 μM﹒min-1 and 8.27 s-1, which were 8.56 and 12.92 times higher than those of the free enzyme, respectively, due to the interfacial activation. After treated at 70 °C for 120 min, the immobilized lipase maintained 52 % of its original activity, but free AOL only retained 15 %. Significantly, the yield of fatty acids by the immobilized lipase reached 98.3 % and still exceeded 82 % after seven times of recycling.
Collapse
Affiliation(s)
- Geling Kuang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| | - Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| | - Xiuyan Luo
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| | - Zixin Geng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| |
Collapse
|
16
|
Climatic Chamber Stability Tests of Lipase-Catalytic Octyl-Sepharose Systems. Catalysts 2023. [DOI: 10.3390/catal13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The application of the climatic chamber presented in this paper to assess the storage stability of immobilized lipases is a new approach characterized by the potential of unifying the study conditions of biocatalysts created in various laboratories. The data achieved from storing lipases in the climatic chambers may be crucial for the chemical and pharmaceutical industry. Our paper describes the developed protocols for immobilization via interfacial activation of lipase B from Candida antarctica (CALB) and lipase OF from Candida rugosa (CRL-OF) on the Octyl-Sepharose CL-4B support. Optimization included buffers with different pH values of 4–9 and a wide range of ionic strength from 5 mM to 700 mM. It has been shown that the optimal medium for the CALB immobilization process on the tested support is a citrate buffer at pH 4 and high ionic strength of 500 mM. Implementing new optimal procedures enabled the hyperactivation of immobilized CALB (recovery activity 116.10 ± 1.70%) under the applicable reaction conditions using olive oil as a substrate. Importantly, CALB storage stability tests performed in a climatic chamber under drastic temperature and humidity conditions proved good stability of the developed biocatalyst (residual activity 218 ± 7.3% of dry form, after 7 days). At the same time, the low storage stability of CRL OF in a climatic chamber was demonstrated. It should be emphasized that the use of a climatic chamber to test the storage stability of a dry form of the studied lipases immobilized on Octyl-Sepharose CL-4B is, to our knowledge, described for the first time in the literature.
Collapse
|
17
|
Zhang S, Hou H, Zhao B, Zhou Q, Tang R, Chen L, Mao J, Deng Q, Zheng L, Shi J. Hollow Mesoporous Carbon-Based Enzyme Nanoreactor for the Confined and Interfacial Biocatalytic Synthesis of Phytosterol Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2014-2025. [PMID: 36688464 DOI: 10.1021/acs.jafc.2c06756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rationally designing carriers to obtain efficient and stable immobilized enzymes for the production of food raw materials is always a challenge. In this work, hollow cube carbon (HMC) as a carrier of Candida rugosa lipase (CRL) was prepared to construct a Pickering interfacial biocatalysis system, which was applied to biphasic biocatalysis. For comparison, the nonporous carbon (HC) and porous MoS2 (HMoS2) were also designed. On these grounds, p-NPP and linolenic acid were selected as the representative substrates for hydrolysis and esterification reactions. Under the optimal conditions, the protein loading amount, specific activity, and expressed activity of CRL immobilized on HMC (HMC@CRL) were 167.2 mg g-1, 5.41 U mg-1, and 32.34 U/mg protein, respectively. In the "oil-water" biphase, the relative hydrolytic activity of HMC@CRL was higher than that of HC@CRL, HMoS2@CRL, and CRL by 50, 68, and 80%, respectively, as well as itself in one phase. Compared to other reports (1.13%), HMC@CRL demonstrated a satisfactory hydrolysis rate (3.02%) and was the fastest among all other biocatalysts in the biphase. Moreover, compared with the free CRL in one-phase system, the Pickering interfacial biphasic biocatalyst, HMC@CRL, exhibited a higher esterification rate (85%, 2.7-fold enhancement). Therefore, the HMC@CRL nanoreactors had more optimal performance in the field of biomanufacturing and food industry.
Collapse
Affiliation(s)
- Shan Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
| | - Huaqing Hou
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Baozhu Zhao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
| | - Rongfeng Tang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230041, P. R. China
| | - Lin Chen
- School of Economics and Management, Chinese-German Competence Center for Teachers in Applied Universities, Hefei University, Hefei, Anhui230601, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
| | - Lei Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Jie Shi
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| |
Collapse
|
18
|
Ming J, Sun Y, Chen Y, Wang Q, Li J. Novel Lipase Reactor based on Discontinuous Interfaces in Hydrogel-Organogel Hybrid Gel: A Preliminary Exploration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2113-2123. [PMID: 36688519 DOI: 10.1021/acs.jafc.2c07472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
According to the "interfacial activation" mechanism, constructing a sufficient interface is the key strategy for lipase-catalytic system designing. Based on the "infinite interface in finite three-dimensional space" logic, in the current study, poly(N,N-dimethylacrylamide) (PDMA)-polybutyl methacrylate (PBMA) hybrid gels were prepared by a two-step crosslinking strategy, subsequently constructed as lipase-interfacial catalytic systems. The results confirm that the PDMA-PBMA hybrid gels with "networks in pores" structures could swell both the aqueous phase and organic phase. The balance between water swelling and isooctane swelling, hybrid gel space (height control), and the lipase entry manner significantly affect the interface construction and consequently the catalytic efficiency. The enzyme-substrate contact rate affected by swelling leads to three catalytic stages. Considering the spatial barrier and distribution of lipases, a potential high-performance lipase reactor can be assembled from small-size, lamellar-like, and porous hybrid gels. The reactors also show good time storage and low temperature tolerance.
Collapse
Affiliation(s)
- Jian Ming
- College of Food Science, Southwest University, Chongqing400715, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing400715, People's Republic of China
| | - Yueru Sun
- College of Food Science, Southwest University, Chongqing400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing400715, People's Republic of China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing400715, People's Republic of China
| | - Jinlong Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing100048, People's Republic of China
| |
Collapse
|
19
|
Immobilization of Lipase on the Graphene Oxides Magnetized with NiFe2O4 Nanoparticles for Biodiesel Production from Microalgae Lipids. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Richter JL, Zawadzki SF, Alves Dos Santos L, Alnoch RC, Moure VR, Mitchell DA, Krieger N. Immobilization of the metagenomic lipase, LipG9, on porous pellets of poly-hydroxybutyrate produced by the double emulsion solvent evaporation technique. Biotechnol Appl Biochem 2022. [PMID: 36580629 DOI: 10.1002/bab.2438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022]
Abstract
This work aimed to produce porous poly-hydroxybutyrate (PHB) pellets in order to evaluate the pellets as a support for immobilization of the metagenomic lipase, LipG9. Four types of pelletized PHB particles with different morphological characteristics were obtained using the double emulsion and solvent evaporation technique (DESE). The micropores of these PHB pellets had similar average diameters (about 3 nm), but the pellets had different specific surface areas: 11.7 m2 g-1 for the PHB powder, 8.4 m2 g-1 for the control pellets (Ø < 0.5 mm, produced without the pore forming agent), 10.0 m2 g-1 for the small pellets (Ø < 0.5 mm), 9.5 m2 g-1 for the medium pellets (0.5 < Ø < 0.8 mm) and 8.4 m2 g-1 for the large pellets (Ø > 1.4 mm). Purified LipG9 was immobilized by adsorption on these pellets, and the results were compared with those obtained with PHB powder. The highest immobilization yield (83%) was obtained for the medium PHB pellets, followed by large (76%) and small (55%) PHB pellets. The activity of LipG9 immobilized on the pellets, for the synthesis of ethyl oleate in n-hexane, was highest for the medium pellets (22 U g-1 ). The immobilization yield was high for PHB powder (99%) but the esterification activity was slightly lower (20 U g-1 ). These results show that pelletized PHB beads can be used for the immobilization of lipases, with the advantage that pelletized PHB will perform better than PHB powder in large-scale enzyme bioreactors.
Collapse
Affiliation(s)
- Jeferson Luiz Richter
- Programa de Pós-Graduação em Ciências-Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Sônia Faria Zawadzki
- Programa de Pós-Graduação em Química, Universidade Federal do Paraná, Paraná, Brazil.,Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Robson Carlos Alnoch
- Programa de Pós-Graduação em Ciências-Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vivian Rotuno Moure
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - David Alexander Mitchell
- Programa de Pós-Graduação em Ciências-Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.,Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Nadia Krieger
- Programa de Pós-Graduação em Ciências-Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.,Programa de Pós-Graduação em Química, Universidade Federal do Paraná, Paraná, Brazil.,Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
21
|
Xu Y, Li F, Ma J, Li J, Xie H, Wang C, Chen P, Wang L. Lipase-Catalyzed Phospha-Michael Addition Reactions under Mild Conditions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227798. [PMID: 36431898 PMCID: PMC9698776 DOI: 10.3390/molecules27227798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Organophosphorus compounds are the core structure of many active natural products. The synthesis of these compounds is generally achieved by metal catalysis requiring specifically functionalized substrates or harsh conditions. Herein, we disclose the phospha-Michael addition reaction of biphenyphosphine oxide with various substituted β-nitrostyrenes or benzylidene malononitriles. This biocatalytic strategy provides a direct route for the synthesis of C-P bonds with good functional group compatibility and simple and practical operation. Under the optimal conditions (styrene (0.5 mmol), biphenyphosphine oxide (0.5 mmol), Novozym 435 (300 U), and EtOH (1 mL)), lipase leads to the formation of organophosphorus compounds in yields up to 94% at room temperature. Furthermore, we confirm the role of the catalytic triad of lipase in this phospha-Michael addition reaction. This new biocatalytic system will have broad applications in organic synthesis.
Collapse
Affiliation(s)
- Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Jinglin Ma
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Jiapeng Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, China
| | - Peng Chen
- The Second Hospital of Jilin University Changchun, Jilin University, Changchun 130041, China
- Correspondence: (P.C.); (L.W.)
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
- Correspondence: (P.C.); (L.W.)
| |
Collapse
|
22
|
Effect of triblock copolymers on the lipase catalytic behavior at the interface of conventional O/W emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Immobilization of Thermomyces lanuginosus lipase on a new hydrophobic support (Streamline phenyl™): strategies to improve stability and reusability. Enzyme Microb Technol 2022; 163:110166. [DOI: 10.1016/j.enzmictec.2022.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
|
24
|
Alagöz D, Varan NE, Yildirim D, Fernandéz-Lafuente R. Optimization of the immobilization of xylanase from Thermomyces lanuginosus to produce xylooligosaccharides in a batch type reactor. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
A Convenient U-Shape Microreactor for Continuous Flow Biocatalysis with Enzyme-Coated Magnetic Nanoparticles-Lipase-Catalyzed Enantiomer Selective Acylation of 4-(Morpholin-4-yl)butan-2-ol. Catalysts 2022. [DOI: 10.3390/catal12091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study implements a convenient microreactor for biocatalysis with enzymes immobilized on magnetic nanoparticles (MNPs). The enzyme immobilized onto MNPs by adsorption or by covalent bonds was lipase B from Candida antarctica (CaLB). The MNPs for adsorption were obtained by covering the magnetite core with a silica shell and later with hexadecyltrimethoxysilane, while for covalent immobilization, the silica-covered MNPs were functionalized by a layer forming from mixtures of hexadecyl- and 3-(2-aminoethylamino)propyldimethoxymethylsilanes in 16:1 molar ratio, which was further activated with neopentyl glycol diglycidyl ether (NGDE). The resulting CaLB-MNPs were tested in a convenient continuous flow system, created by 3D printing to hold six adjustable permanent magnets beneath a polytetrafluoroethylene tube (PTFE) to anchor the MNP biocatalyst inside the tube reactor. The anchored CaLB-MNPs formed reaction chambers in the tube for passing the fluid through and above the MNP biocatalysts, thus increasing the mixing during the fluid flow and resulting in enhanced activity of CaLB on MNPs. The enantiomer selective acylation of 4-(morpholin-4-yl)butan-2-ol (±)-1, being the chiral alcohol constituent of the mucolytic drug Fedrilate, was carried out by CaLB-MNPs in the U-shape reactor. The CaLB-MNPs in the U-shape reactor were compared in batch reactions to the lyophilized CaLB and to the CaLB-MNPs using the same reaction composition, and the same amounts of CaLB showed similar or higher activity in flow mode and superior activity as compared to the lyophilized powder form. The U-shape permanent magnet design represents a general and easy-to-access implementation of MNP-based flow microreactors, being useful for many biotransformations and reducing costly and time-consuming downstream processes.
Collapse
|
26
|
Tailoring Lignin-Based Spherical Particles as a Support for Lipase Immobilization. Catalysts 2022. [DOI: 10.3390/catal12091031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lignin-based spherical particles have recently gained popularity due to their characteristic and the usage of biopolymeric material. In this study, lignin-based spherical particles were prepared using choline chloride at different pH values, ranging from 2 to 10. Their dispersive, microstructural, and physicochemical properties were studied by a variety of techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential analysis. The best results were obtained for the particles prepared at pH 5 and 7, which had a spherical shape without a tendency to form aggregates and agglomerates. The lignin-based spherical particles were used for the immobilization of lipase, a model enzyme capable of catalyzing a wide range of transformations. It was shown that the highest relative activity of immobilized lipase was obtained after 24 h of immobilization at 30 °C and pH 7, using 100 mg of the support. Moreover, the immobilized lipase exhibited enhanced stability under harsh process conditions, and demonstrated high reusability, up to 87% after 10 cycles, depending on the support used. In the future, the described approach to enzyme immobilization based on lignin spheres may play a significant role in the catalytic synthesis of organic and fine chemicals, with high utility value.
Collapse
|
27
|
He L, Zheng J, Feng S, Xu L, Zhong N. Immobilization of Candida antarctica Lipase A onto Macroporous Resin NKA-9: Esterification and Glycerolysis Performance Study. J Oleo Sci 2022; 71:1337-1348. [PMID: 36047241 DOI: 10.5650/jos.ess22028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, lipase A from Candida antarctica (CALA) was immobilized onto the macroporous resin NKA-9. Immobilization conditions (pH, time and CALA concentration) were studied, enzymatic activity and immobilization efficiency (IE) up to 968.89 U/g and 53.19% were respectively obtained under optimal conditions (immobilization pH 5.0, time 5 h and CALA concentration at 30 mg/mL). Then, the NKA-9 supported CALA (CALA@NKA-9) samples were used to catalyze glycerolysis in solvent-free system. With 0.25 g of the present CALA@NKA-9 (soybean oil 3.52 g and glycerol 0.184 g) and after 12 h reaction at 50 °C, diacylglycerols (DAG) content up to 64.37% and triacylglycerols (TAG) conversion at 83.33% were obtained. The relationship between temperature and TAG conversion was LnV 0 = 13.9310-6.4212/T for CALA@NKA-9. Meanwhile, the activation energy (Ea) of CALA@NKA-9 was calculated to be 53.39 kJ/mol. In addition, reusability in the glycerolysis reaction was also evaluated, and 57.82% of the initial glycerolysis activity was retained after 9 consecutive applications. Furthermore, the CALA@NKA-9 was also used to catalyze the esterification (esterification of fatty acids with glycerol), however, the present CALA@NKA-9 cannot initiate the esterification. Therefore, the present CALA@NKA-9 is shown to be potential for DAG production through glycerolysis reaction.
Collapse
Affiliation(s)
- Lihong He
- School of Food Science, Guangdong Pharmaceutical University
| | - Jiawei Zheng
- School of Food Science, Guangdong Pharmaceutical University
| | - Siting Feng
- School of Food Science, Guangdong Pharmaceutical University
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University
| |
Collapse
|
28
|
Chemical modification of clay nanocomposites for the improvement of the catalytic properties of Lipase A from Candida antarctica. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Zhang J, Wang Z, Zhuang W, Rabiee H, Zhu C, Deng J, Ge L, Ying H. Amphiphilic Nanointerface: Inducing the Interfacial Activation for Lipase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39622-39636. [PMID: 35980131 DOI: 10.1021/acsami.2c11500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graphene-based materials are widely used in the field of immobilized enzymes due to their easily tunable interfacial properties. We designed amphiphilic nanobiological interfaces between graphene oxide (GO) and lipase TL (Thermomyces lanuginosus) with tunable reduction degrees through molecular dynamics simulations and a facile chemical modulation, thus revealing the optimal interface for the interfacial activation of lipase TL and addressing the weakness of lipase TL, which exhibits weak catalytic activity due to an inconspicuous active site lid. It was demonstrated that the reduced graphene oxide (rGO) after 4 h of ascorbic acid reduction could boost the relative enzyme activity of lipase TL to reach 208%, which was 48% higher than the pristine GO and 120% higher than the rGO after 48 h of reduction. Moreover, TL-GO-4 h's tolerance against heat, organic solvent, and long-term storage environment was higher than that of free TL. The drawbacks of strong hydrophobic nanomaterials on lipase production were explored in depth with the help of molecular dynamics simulations, which explained the mechanism of enzyme activity enhancement. We demonstrated that nanomaterials with certain hydrophilicity could facilitate the lipase to undergo interfacial activation and improve its stability and protein loading rate, displaying the potential of the extensive application.
Collapse
Affiliation(s)
- Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Zhaoxin Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hesamoddin Rabiee
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiawei Deng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
30
|
Chen W, He L, Song W, Huang J, Zhong N. Encapsulation of lipases by nucleotide/metal ion coordination polymers: enzymatic properties and their applications in glycerolysis and esterification studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4012-4024. [PMID: 34997576 DOI: 10.1002/jsfa.11749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the present study, lipases of TLL (lipase from Thermomyces lanuginosus), AOL (lipase from Aspergillus oryzae), RML (lipase from Rhizomucor miehei), BCL (lipase from Burkholderia cepacia), CALA (Candida antarctica lipase A) and LU (Lecitase® Ultra) were encapsulated into nucleotide-hybrid metal coordination polymers (CPs). Enzyme concentration was optimized for encapsulation and the enzymatic properties of the obtained lipases were investigated. In addition, their performance in glycerolysis and esterification was evaluated, and glycerolysis conditions (water content, temperature and time) were optimized. RESULTS Hydrolysis activity over 10 000 U g-1 and activity recovery over 90% were observed from AOL@GMP/Tb, TLL@GMP/Tb and RML@GMP/Tb. GMP/Tb encapsulation (of AOL, TLL, RML and LU) improved their thermostability when incubated in air. The encapsulated lipases exhibited moderate [triacylglycerols (TAG) conversion 30-50%] and considerable glycerolysis activity (TAG conversion over 60%). TAG conversions from 69.37% to 82.35% and diacylglycerols (DAG) contents from 58.62% to 64.88% were obtained from CALA@GMP/metal samples (except for CALA@GMP/Cu). Interestingly, none of the encapsulated lipases initiated the esterification reaction. AOL@GMP/Tb, TLL@GMP/Tb, RML@GMP/Tb and CALA@GMP/Tb showed good reusability in glycerolysis, with 88.80%, 94.67%, 89.85% and 78.16% of their initial glycerolysis activity, respectively, remaining after five cycles of reuse. The relationships between temperature and TAG conversion were LnV0 = 6.5364-3.7943/T and LnV0 = 13.8820-6.4684/T for AOL@GMP/Tb and CALA@GMP/Tb, respectively; in addition, their activation energies were 31.55 and 53.78 kJ mol-1 , respectively. CONCLUSION Most of the present encapsulated lipases exhibited moderate and considerable glycerolysis activity. In addition, AOL@GMP/Tb, TLL@GMP/Tb, RML@GMP/Tb and CALA@GMP/Tb exhibited good reusability in glycerolysis reactions and potential in practical applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyi Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Lihong He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Wenzhu Song
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Jianrong Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| |
Collapse
|
31
|
Copper Phthalocyanine Improving Nonaqueous Catalysis of Pseudomonas cepacia Lipase for Ester Synthesis. Appl Biochem Biotechnol 2022; 194:6302-6318. [PMID: 35917103 DOI: 10.1007/s12010-022-04080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The nonaqueous catalysis of lipases is significant for synthesis of high pure esters, but they usually behave low catalytic activity due to denaturation and aggregation of enzyme protein in organic phases. To improve the nonaqueous catalysis, the inexpensive copper phthalocyanine was taken as a new carrier on which Pseudomonas cepacia lipase was immobilized by physical absorption, and used for synthesis of hexyl acetate, an important flavor, via transesterification of hexanol and vinyl acetate. Results showed that the desired loading was 10 mg lipase immobilized on 10 mg copper phthalocyanine powder. When the immobilized lipase was employed in the reaction system consisted of 1.5 mL hexanol and 1.5 mL vinyl acetate at 37℃ and 160 rpm, the conversion was five fold of that catalyzed by native lipase after 1 h, and reached 99.0% after 8 h. Undergoing six times of 8-h reuses, the immobilized lipase had an activity attenuation rate 1.22% h- 1, lower than 1.77% h- 1 of native lipase, which meant that the immobilized lipase was more stable. Even at the room temperature and the static state without shaking or stirring, the immobilized lipase could bring conversion 42.8% after 10 h and the native lipase gave 20.1%. Obviously, the immobilized lipase is an available biocatalyst in organic phase and has great potential in food industry.
Collapse
|
32
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
33
|
Dulęba J, Siódmiak T, Marszałł MP. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized Amano PS from Burkholderia cepacia lipase (APS-BCL). Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Sabi GJ, Gama RS, Fernandez-Lafuente R, Cancino-Bernardi J, Mendes AA. Decyl esters production from soybean-based oils catalyzed by lipase immobilized on differently functionalized rice husk silica and their characterization as potential biolubricants. Enzyme Microb Technol 2022; 157:110019. [PMID: 35219176 DOI: 10.1016/j.enzmictec.2022.110019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022]
Abstract
This study aimed the enzymatic decyl esters production by hydroesterification, a two-step process consisting of hydrolysis of refined soybean (RSBO) or used soybean cooking (USCO) oils to produce free fatty acids (FFA) and further esterification of purified FFA. Using free lipase from Candida rugosa (CRL), about 98% hydrolyses for both oils have been observed after 180 min of reaction using a CRL loading of 50 U g-1 of reaction mixture, 40 °C, and a mechanical stirring of 1500 rpm. FFA esterification with decanol in solvent-free systems was performed using lipase from Thermomyces lanuginosus (TLL) immobilized by physical adsorption on silica particles extracted from rice husk, an agricultural waste. For such purpose, non-functionalized (SiO2) or functionalized rice husk silica bearing octyl (Octyl-SiO2) or phenyl (Phe-SiO2) groups have been used as immobilization supports. Protein amounts between 22 and 28 mg g-1 of support were observed. When used in the esterification, they enabled a FFA conversion of 81.3-87.6% after 90-300 min of reaction. Lipozyme TL IM, a commercial immobilized TLL, exhibited similar performance compared to TLL-Octyl-SiO2 (FFA conversion ≈90% after 90-120 min of reaction). However, high operational stability after fifteen successive esterification batches was observed only for TLL immobilized on Octyl-SiO2 (activity retention of ≈90% using both FFA sources). The produced decyl esters presented good characteristics as potential biolubricants according to standard methods (ASTM) and thermal analysis.
Collapse
Affiliation(s)
- Guilherme J Sabi
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Rafaela S Gama
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Juliana Cancino-Bernardi
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil; Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
35
|
Noro J, Cavaco-Paulo A, Silva C. Chemical modification of lipases: A powerful tool for activity improvement. Biotechnol J 2022; 17:e2100523. [PMID: 35544709 DOI: 10.1002/biot.202100523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The demand for adequate and ecologically acceptable procedures to produce the most differentiated products has been growing in recent decades, with enzymes being excellent examples of the advances achieved so far. Lipases are astonishing catalysts with a vast range of applications including the synthesis of esters, flavours, biodiesel, and polymers. The broad specificity of the substrates, as well as the regio-, stereo-, and enantioselectivity, are the differentiating factors of these enzymes. Structural modification is a current approach to enhance the activity of lipases. Chemical modification of lipases to improve catalytic performance is of great interest considering the increasingly broad fields of application. Together with the physical immobilization onto solid supports, different strategies have been developed to produce catalysts with higher activity and stability. In this review, practical insights into the different strategies developed in recent years regarding the modification of lipases are described. For the first time, the impact of the modifications on the activity and stability of lipases, as well as on the biotechnological applications, is fully compiled. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jennifer Noro
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Artur Cavaco-Paulo
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Silva
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
36
|
Chen G, Khan IM, He W, Li Y, Jin P, Campanella OH, Zhang H, Huo Y, Chen Y, Yang H, Miao M. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr Rev Food Sci Food Saf 2022; 21:2688-2714. [PMID: 35470946 DOI: 10.1111/1541-4337.12965] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
The applications of lipases in esterification, amidation, and transesterification have broadened their potential in the production of fine compounds with high cumulative values. Mostly, the catalytic triad of lipases is covered by either one or two mobile peptides called the "lid" that control the substrate channel to the catalytic center. The lid holds unique conformational allostery via interfacial activation to regulate the dynamics and catalytic functions of lipases, thereby highlighting its importance in redesigning these enzymes for industrial applications. The structural characteristic of lipase, the dynamics of lids, and the roles of lid in lipase catalysis were summarized, providing opportunities for rebuilding lid region by biotechniques (e.g., metagenomic technology and protein engineering) and enzyme immobilization. The review focused on the advantages and disadvantages of strategies rebuilding the lid region. The main shortcomings of biotechnologies on lid rebuilding were discussed such as negative effects on lipase (e.g., a decrease of activity). Additionally, the main shortcomings (e.g., enzyme desorption at high temperatre) in immobilization on hydrophobic supports via interfacial action were presented. Solutions to the mentioned problems were proposed by combinations of computational design with biotechnologies, and improvements of lipase immobilization (e.g., immobilization protocols and support design). Finally, the review provides future perspectives about designing hyperfunctional lipases as biocatalysts in the food industry based on lid conformation and dynamics.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wensen He
- School of Food Science and Technology, Jiangsu University, Zhenjiang, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Food Science and Technology, Ohio State University, Columbus, Ohio, USA
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Costa-Silva T, Carvalho A, Souza C, Freitas L, De Castro H, Oliveira W. Highly effective Candida rugosa lipase immobilization on renewable carriers: integrated drying and immobilization process to improve enzyme performance. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Zhou D, Zhao M, Wang J, Faiza M, Chen X, Cui J, Liu N, Li D. A novel and efficient method for punicic acid-enriched diacylglycerol preparation: Enzymatic ethanolysis of pomegranate seed oil catalyzed by Lipozyme 435. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Characteristics of Crosslinking Polymers Play Major Roles in Improving the Stability and Catalytic Properties of Immobilized Thermomyces lanuginosus Lipase. Int J Mol Sci 2022; 23:ijms23062917. [PMID: 35328337 PMCID: PMC8953303 DOI: 10.3390/ijms23062917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/08/2023] Open
Abstract
This study aimed to improve the stability and catalytic properties of Thermomyces lanuginosus lipase (TLL) adsorbed on a hydrophobic support. At the optimized conditions (pH 5 and 25 °C without any additions), the Sips isotherm model effectively fitted the equilibrium adsorption data, indicating a monolayer and the homogenous distribution of immobilized lipase molecules. To preserve the high specific activity of adsorbed lipase, the immobilized lipase (IL) with a moderate loading amount (approximately 40% surface coverage) was selected. Polyethylenimine (PEI) and chitosan (CS) were successfully applied as bridging units to in situ crosslink the immobilized lipase molecules in IL. At the low polymer concentration (0.5%, w/w) and with 1 h incubation, insignificant changes in average pore size were detected. Short-chain PEI and CS (MW ≤ 2 kDa) efficiently improved the lipase stability, i.e., the lipase loss decreased from 40% to <2%. Notably, CS performed much better than PEI in maintaining lipase activity. IL crosslinked with CS-2 kDa showed a two- to three-fold higher rate when hydrolyzing p-nitrophenyl butyrate and a two-fold increase in the catalytic efficiency in the esterification of hexanoic acid with butanol. These in situ crosslinking strategies offer good potential for modulating the catalytic properties of TLL for a specific reaction.
Collapse
|
40
|
Welter RA, Santana HS, Carvalho BG, Melani N, Oelgemöller M, de la Torre LG, Taranto OP. Droplet microfluidics for double lipase immobilisation using TiO2 and alginate microbeads. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. Int J Biol Macromol 2022; 199:51-60. [PMID: 34973984 DOI: 10.1016/j.ijbiomac.2021.12.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
The coimmobilization of lipases from Rhizomucor miehei (RML) and Candida antarctica (CALB) has been intended using agarose beads activated with divinyl sulfone. CALB could be immobilized on this support, while RML was not. However, RML was ionically exchanged on this support blocked with ethylendiamine. Therefore, both enzymes could be coimmobilized on the same particle, CALB covalently using the vinyl sulfone groups, and RML via anionic exchange on the aminated blocked support. However, immobilized RML was far less stable than immobilized CALB. To avoid the discarding of CALB (that maintained 90% of the initial activity after RML inactivation), a strategy was developed. Inactivated RML was desorbed from the support using ammonium sulfate and 1% Triton X-100 at pH 7.0. That way, 5 cycles of RML thermal inactivation, discharge of the inactivated enzyme and re-immobilization of a fresh sample of RML could be performed. In the last cycle, immobilized CALB activity was still over 90% of the initial one. Thus, the strategy permits that enzymes can be coimmobilized on vinyl sulfone supports even if one of them cannot be immobilized on it, and also permits the reuse of the most stable enzyme (if it is irreversibly attached to the support).
Collapse
|
42
|
Akhlaghi N, Najafpour-Darzi G. Preparation of immobilized lipase on Co2+-chelated carboxymethyl cellulose based MnFe2O4 magnetic nanocomposite particles. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Kuang L, Zhang Q, Li J, Tian H. An Electrospun Sandwich-Type Lipase-Membrane Bioreactor for Hydrolysis at Macroscopic Oil-Water Interfaces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:584-591. [PMID: 34788030 DOI: 10.1021/acs.jafc.1c04042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The core task for lipase catalytic system design is to construct a suitable oil-water interface for lipase distribution. In comparison to the micro-oil-water interface, the macro-oil-water interface (top oil-bottom water) served as a simplified lipase catalytic system that is more in line with industrial applications but limited in catalytic efficiency. Based on the assumption that one potential carrier can help lipase reach to the macro-oil-water interface, in the current work, sandwich-type lipase-membrane bioreactors (SLMBs) fabricated by a facile layer-by-layer electrospinning process were reported. These SLMBs were composed of a hydrophilic polyamide 6 nanofibrous membrane (NFM) as the bottom layer, a blended electrospun lipase/PVA NFM as the middle layer, and a hydrophobic EC/PU NFM as the top layer. The lipase loading can be controlled by altering the electrospinning time of the middle layer. Under the optimized conditions, the catalytic efficiency of the SLMBs was 2.05 times higher than that of free lipase. In addition, the SLMBs exhibit much better pH (high activity over a broad pH range of 5-10), temperature (retained 62% at 80 °C), storage stability (no loss of activity after being stored at 4 °C for 11 days), and reusability (retained 23% after five cycles) than free lipase.
Collapse
Affiliation(s)
- Lei Kuang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Qianqian Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Jinlong Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Huafeng Tian
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
44
|
Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Chen W, Kou M, Li L, Li B, Huang J, Fan S, Xu L, Zhong N. Immobilization of Lecitase<sup>®</sup> Ultra onto the Organic Modified SBA-15 for Soybean Oil Degumming. J Oleo Sci 2022; 71:721-733. [DOI: 10.5650/jos.ess21353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wenyi Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Maomao Kou
- School of Food Science, Guangdong Pharmaceutical University
| | - Lin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Jianrong Huang
- School of Food Science, Guangdong Pharmaceutical University
| | | | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University
| |
Collapse
|
46
|
El-Kady K, Raslan M, Zaki AH. Effect of Different TiO 2 Morphologies on the Activity of Immobilized Lipase for Biodiesel Production. ACS OMEGA 2021; 6:35484-35493. [PMID: 34984280 PMCID: PMC8717535 DOI: 10.1021/acsomega.1c04942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Lipase catalytic activity is greatly influenced by immobilization on nanoparticles. In this study, lipase from Aspergillus niger was immobilized on TiO2 nanoparticles with different morphologies: microspheres, nanotubes, and nanosheets. All TiO2 samples were prepared by a hydrothermal method. Lipase/TiO2 nanocomposites were prepared by a physical adsorption method through hydrophobic interactions. The prepared composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The catalytic activity of free and immobilized lipases was tested using sunflower oil in the presence of methanol to produce biodiesel at 40 °C for 90 min. The lipase immobilized on TiO2 microspheres showed the highest activity compared to the lipase immobilized on TiO2 nanotubes and nanosheets. To optimize the lipase-to-microsphere ratio, lipase was immobilized on TiO2 microspheres in different microspheres/lipase, w/w, (S/L) ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25. It was noticed that the hydrolytic activity follows the order 1:0.25 > 1:0.5 > 1:75 > 1:1. The immobilization yield activities were found to be 113, 123, 125, and 130% for the microspheres/lipase (S/L) ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25, respectively.
Collapse
Affiliation(s)
- Kholoud El-Kady
- Biotechnology
& Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mai Raslan
- Biotechnology
& Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ayman H. Zaki
- Materials
Science and Nanotechnology Department, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
47
|
Souza PMP, Carballares D, Lopez-Carrobles N, Gonçalves LRB, Lopez-Gallego F, Rodrigues S, Fernandez-Lafuente R. Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. Int J Biol Macromol 2021; 191:79-91. [PMID: 34537296 DOI: 10.1016/j.ijbiomac.2021.09.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/28/2023]
Abstract
Lipase from Thermomyces lanuginosus (TLL) has been covalently immobilized on heterofunctional octyl-vinyl agarose. That way, the covalently immobilized enzymes will have identical orientation. Then, it has blocked using hexyl amine (HEX), ethylenediamine (EDA), Gly and Asp. The initial activity/stability of the different biocatalysts was very different, being the most stable the biocatalyst blocked with Gly. These biocatalysts had been utilized to analyze if the enzyme activity could decrease differently along thermal inactivation courses depending on the utilized substrate (that is, if the enzyme specificity was altered during its inactivation using 4 different substrates to determine the activity), and if this can be altered by the nature of the blocking agent and the inactivation conditions (we use pH 5, 7 and 9). Results show great changes in the enzyme specificity during inactivation (e.g., activity versus triacetin was much more quickly lost than versus the other substrates), and how this was modulated by the immobilization protocol and inactivation conditions. The difference in the changes induced by immobilization and inactivation were confirmed by fluorescence studies. That is, the functional and structural analysis of partially inactivated immobilized enzyme showed that their inactivation pathway is strongly depended on the support features and inactivation conditions.
Collapse
Affiliation(s)
- Priscila M Paiva Souza
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Federal University of Ceará, Food Engineering Department, Campus do Pici, Bloco 858, Fortaleza, CE CEP 60440-900, Brazil
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | | | - Luciana R B Gonçalves
- Federal University of Ceará, Chemical Engineering Department, Campus do Pici, Bloco 709, Fortaleza, CE CEP 60440-900, Brazil
| | - Fernando Lopez-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Sueli Rodrigues
- Federal University of Ceará, Food Engineering Department, Campus do Pici, Bloco 858, Fortaleza, CE CEP 60440-900, Brazil.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
48
|
Modification of Silica Xerogels with Polydopamine for Lipase B from Candida antarctica Immobilization. Catalysts 2021. [DOI: 10.3390/catal11121463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Silica xerogels have been proposed as a potential support to immobilize enzymes. Improving xerogels’ interactions with such enzymes and their mechanical strengths is critical to their practical applications. Herein, based on the mussel-inspired chemistry, we demonstrated a simple and highly effective strategy for stabilizing enzymes embedded inside silica xerogels by a polydopamine (PDA) coating through in-situ polymerization. The modified silica xerogels were characterized by scanning and transmission electron microscopy, Fourier tranform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and pore structure analyses. When the PDA-modified silica xerogels were used to immobilize enzymes of Candida antarctica lipase B (CALB), they exhibited a high loading ability of 45.6 mg/gsupport, which was higher than that of immobilized CALB in silica xerogels (28.5 mg/gsupport). The immobilized CALB of the PDA-modified silica xerogels retained 71.4% of their initial activities after 90 days of storage, whereas the free CALB retained only 30.2%. Moreover, compared with the immobilization of enzymes in silica xerogels, the mechanical properties, thermal stability and reusability of enzymes immobilized in PDA-modified silica xerogels were also improved significantly. These advantages indicate that the new hybrid material can be used as a low-cost and effective immobilized-enzyme support.
Collapse
|
49
|
Cold-Active Lipase-Based Biocatalysts for Silymarin Valorization through Biocatalytic Acylation of Silybin. Catalysts 2021. [DOI: 10.3390/catal11111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extremophilic biocatalysts represent an enhanced solution in various industrial applications. Integrating enzymes with high catalytic potential at low temperatures into production schemes such as cold-pressed silymarin processing not only brings value to the silymarin recovery from biomass residues, but also improves its solubility properties for biocatalytic modification. Therefore, a cold-active lipase-mediated biocatalytic system has been developed for silybin acylation with methyl fatty acid esters based on the extracellular protein fractions produced by the psychrophilic bacterial strain Psychrobacter SC65A.3 isolated from Scarisoara Ice Cave (Romania). The extracellular production of the lipase fraction was enhanced by 1% olive-oil-enriched culture media. Through multiple immobilization approaches of the cold-active putative lipases (using carbodiimide, aldehyde-hydrazine, or glutaraldehyde coupling), bio-composites (S1–5) with similar or even higher catalytic activity under cold-active conditions (25 °C) have been synthesized by covalent attachment to nano-/micro-sized magnetic or polymeric resin beads. Characterization methods (e.g., FTIR DRIFT, SEM, enzyme activity) strengthen the biocatalysts’ settlement and potential. Thus, the developed immobilized biocatalysts exhibited between 80 and 128% recovery of the catalytic activity for protein loading in the range 90–99% and this led to an immobilization yield up to 89%. The biocatalytic acylation performance reached a maximum of 67% silybin conversion with methyl decanoate acylating agent and nano-support immobilized lipase biocatalyst.
Collapse
|
50
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|