1
|
Zhang W, Chen X, Nie R, Guo A, Ling Y, Zhang B, Zhang H. Single-cell transcriptomic analysis reveals regulative mechanisms of follicular selection and atresia in chicken granulosa cells. Food Res Int 2024; 198:115368. [PMID: 39643375 DOI: 10.1016/j.foodres.2024.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Eggs are an important food source for people. Follicle selection and atresia are the two directions of pre-hierarchical follicles that affect egg production in chickens. Granulosa cells (GCs), the vital somatic cells in follicles, determine the fate of follicles. In this study, single-cell RNA sequencing was performed on the GC layers from five follicular stages (small white follicles, atretic small white follicles, small yellow follicles, atretic small yellow follicles, and F6) to map the cellular differentiation trajectories and explore the follicle fate-determining genes. The results showed that GCs were genetically heterogeneous and could be divided into four subtypes, and the presence of GCs-Ⅲ with a steroid-producing capacity in unselected small follicles is a novel finding that differs from conventional wisdom. In addition, degenerated GCs were annotated for the first time, and GC degeneration was found to be significantly related to lipid metabolism disorders. Many candidate switch genes had been marked out, among which the overexpression of transforming growth factor-beta 2 (TGFB2) and insulin like growth factor binding protein 5 (IGFBP5) could inhibit the proliferation and differentiation of GCs and induce their degeneration. This study provided new insights into the regulatory mechanisms of follicle selection and atresia, which have significant value for improving egg production and prolonging the laying period of laying hens.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuejiao Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruixue Nie
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Axiu Guo
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Ling
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
3
|
Hou Y, Hu J, Li J, Li H, Lu Y, Liu X. MFN2 regulates progesterone biosynthesis and proliferation of granulosa cells during follicle selection in hens. J Cell Physiol 2024; 239:51-66. [PMID: 37921053 DOI: 10.1002/jcp.31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Follicle selection in hens refers to a biological process that only one small yellow follicle (SYF) is selected daily or near-daily for following hierarchical development (from F5/F6 to F1) until ovulation. MFN2 is a kind of GTPases located on the mitochondrial outer membrane, which plays a crucial role in mitochondrial fusion. This study aimed to elucidate the role of MFN2 in proliferation and progesterone biosynthesis of granulosa cells (GCs) during follicle selection in hens. The results showed that GCs began to produce progesterone (P4) after follicle selection, accompanied with changes from multi-layer with flat cells to single layer with cubic cells. MFN2 was detected in GCs of follicles from SYF to F1. After follicle selection, the expression level of MFN2 in GCs upregulated significantly, accompanied with increases in P4 biosynthesis, ATP production, mitochondrial DNA (mtDNA) copy numbers of granulosa cells. FSH (80 ng/mL) facilitated the effects of P4 biosynthesis and secretion, ATP production, mtDNA copy numbers, cell proliferation and the MFN2 transcription of granulosa cells from F5 (F5G) in vitro. However, FSH treatment did not promote P4 secretion in granulosa cells from SYF (SYFG) in vitro. Meanwhile, we observed that change fold of MFN2 transcription, ATP production, mtDNA copy numbers and cell proliferation rate in F5G after treatment with FSH were greater than those in SYFG. Furthermore, expression levels of MFN2 protein and messenger RNA in F5G were significantly higher than those in SYFG after treatment with FSH. P4 biosynthesis, ATP production, mtDNA copy numbers as well as cell proliferation reduced significantly in F5G with MFN2 knockdown. Oppositely, P4 biosynthesis, ATP production, mtDNA copy numbers and cell proliferation increased significantly in SYFG after the overexpression of MFN2. Our results suggest that the upregulation of MFN2 may be involved in the initiation of P4 biosynthesis, and promotion of GCs proliferation during follicle selection.
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Wu X, Zhang N, Li J, Zhang Z, Guo Y, Li D, Zhang Y, Gong Y, Jiang R, Li H, Li G, Liu X, Kang X, Tian Y. gga-miR-449b-5p Regulates Steroid Hormone Synthesis in Laying Hen Ovarian Granulosa Cells by Targeting the IGF2BP3 Gene. Animals (Basel) 2022; 12:2710. [PMID: 36230451 PMCID: PMC9559480 DOI: 10.3390/ani12192710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
MiRNAs have been found to be involved in the regulation of ovarian function as important post-transcriptional regulators, including regulators of follicular development, steroidogenesis, cell atresia, and even the development of ovarian cancer. In this study, we evaluated the regulatory role of gga-miR-449b-5p in follicular growth and steroid synthesis in ovarian granulosa cells (GCs) of laying hens through qRT-PCR, ELISAs, western blotting and dual-luciferase reporter assays, which have been described in our previous study. We demonstrated that gga-miR-449b-5p was widely expressed in granulosa and theca layers of the different-sized follicles, especially in the granulosa layer. The gga-miR-449b-5p had no significant effect on the proliferation of GCs, but could significantly regulate the expression of key steroidogenesis-related genes (StAR and CYP19A1) (p < 0.01) and the secretion of P4 and E2 (p < 0.01 and p < 0.05). Further research showed that gga-miR-449b-5p could target IGF2BP3 and downregulate the mRNA and protein expression of IGF2BP3 (p < 0.05). Therefore, this study suggests that gga-miR-449b-5p is a potent regulator of the synthesis of steroid hormones in GCs by targeting the expression of IGF2BP3 and may contribute to a better understanding of the role of functional miRNAs in laying hen ovarian development.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Na Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
5
|
Talpur HS, Rehman ZU, Gouda M, Liang A, Bano I, Hussain MS, FarmanUllah F, Yang L. Molecular Genomic Study of Inhibin Molecule Production through Granulosa Cell Gene Expression in Inhibin-Deficient Mice. Molecules 2022; 27:5595. [PMID: 36080362 PMCID: PMC9458043 DOI: 10.3390/molecules27175595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Inhibin is a molecule that belongs to peptide hormones and is excreted through pituitary gonadotropins stimulation action on the granulosa cells of the ovaries. However, the differential regulation of inhibin and follicle-stimulating hormone (FSH) on granulosa cell tumor growth in mice inhibin-deficient females is not yet well understood. The objective of this study was to evaluate the role of inhibin and FSH on the granulosa cells of ovarian follicles at the premature antral stage. This study stimulated immature wild-type (WT) and Inhibin-α knockout (Inha-/-) female mice with human chorionic gonadotropin (hCG) and examined hCG-induced gene expression changes in granulosa cells. Also, screening of differentially expressed genes (DEGs) was performed in the two groups under study. In addition, related modules to external traits and key gene drivers were determined through Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. The results identified a number of 1074 and 931 DEGs and 343 overlapping DEGs (ODEGs) were shared in the two groups. Some 341 ODEGs had high relevance and consistent expression direction, with a significant correlation coefficient (r2 = 0.9145). Additionally, the gene co-expression network of selected 153 genes showed 122 nodes enriched to 21 GO biological processes (BP) and reproduction and 3 genes related to genomic pathways. By using principal component analysis (PCA), the 14 genes in the regulatory network were fixed and the cumulative proportion of fitted top three principal components was 94.64%. In conclusion, this study revealed the novelty of using ODEGs for investigating the inhibin and FSH hormone pathways that might open the way toward gene therapy for granulosa cell tumors. Also, these genes could be used as biomarkers for tracking the changes in inhibin and FSH hormone from the changes in the nutrition pattern.
Collapse
Affiliation(s)
- Hira Sajjad Talpur
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Department of Animal Breeding and Genetics, Sindh Agriculture University, Tandojam 70060, Sindh, Pakistan
| | - Zia ur Rehman
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Aixing Liang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Iqra Bano
- Department of Animal Breeding and Genetics, Sindh Agriculture University, Tandojam 70060, Sindh, Pakistan
| | - Mir Sajjad Hussain
- Department of Animal Breeding and Genetics, Sindh Agriculture University, Tandojam 70060, Sindh, Pakistan
| | - FarmanUllah FarmanUllah
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
6
|
Lin J, Ge L, Mei X, Niu Y, Chen C, Hou S, Liu X. Integrated ONT Full-Length Transcriptome and Metabolism Reveal the Mechanism Affecting Ovulation in Muscovy Duck (Cairina moschata). Front Vet Sci 2022; 9:890979. [PMID: 35873698 PMCID: PMC9305713 DOI: 10.3389/fvets.2022.890979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ovulation is a complicated physiological process that is regulated by a multitude of different pathways. In comparison to mammalian studies, there are few reports of ovulation in Muscovy ducks, and the molecular mechanism of ovarian development remained unclear. In order to identify candidate genes and metabolites related to Muscovy duck follicular ovulation, the study combined Oxford Nanopore Technologies (ONT) full-length transcriptome and metabolomics to analyze the differences in gene expression and metabolite accumulation in the ovaries between pre-ovulation (PO) and consecutive ovulation (CO) Muscovy ducks. 83 differentially accumulated metabolites (DAMs) were identified using metabolomics analysis, 33 of which are related to lipids. Combined with data from previous transcriptomic analyses found that DEGs and DAMs were particularly enriched in processes including the regulation of glycerophospholipid metabolism pathway, arachidonic acid metabolic pathway and the steroid biosynthetic pathway. In summary, the novel potential mechanisms that affect ovulation in Muscovy ducks may be related to lipid metabolism, and the findings provide new insights into the mechanisms of ovulation in waterfowl and will contribute to a better understanding of changes in the waterfowl ovarian development regulatory network.
Collapse
Affiliation(s)
- Junyuan Lin
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Liyan Ge
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiang Mei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yurui Niu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chu Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shuisheng Hou
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Shuisheng Hou
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Xiaolin Liu
| |
Collapse
|
7
|
Xu Z, Chen S, Chen W, Zhou X, Yan F, Huang T, Wang Y, Lu H, Zhao A. Comparative Analysis of the Follicular Transcriptome of Zhedong White Geese (Anser Cygnoides) with Different Photoperiods. Poult Sci 2022; 101:102060. [PMID: 36049293 PMCID: PMC9441338 DOI: 10.1016/j.psj.2022.102060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022] Open
Abstract
The laying performance of geese is mainly determined by follicular development and atresia, while follicular status is regulated by photoperiod. To understand the effect of photoperiod on the development of goose follicles, artificial light was used to change the photoperiod. In this study, ten healthy 220-day-old Zhedong white geese (Anser Cygnoides) with similar body weights and similar reproductive start times were reared for 60 days under long photoperiod (15 L:9 D) and short photoperiod (9 L:15 D) artificial light with the intensity controlled at 30 lux, and follicles were collected. Follicle development was analyzed by observing the morphology of follicle tissue, the localization of autophagosomes and autolysosomes, and the expression levels of apoptosis-related protein factors. Small white follicles (SWFs) were selected for RNA sequencing and bioinformatics analysis of the transcriptome. Under a long photoperiod, microtubule-associated protein 1 light chain 3 (LC3) and Caspase-3 were expressed in the granulosa cell layer and oocytes, respectively. LC3 and Caspase-3 protein expression was increased in SWF and large white follicles (LWFs), and there were more autophagosomes and autolysosomes in granulosa cells. RNA-seq found 93 differentially expressed genes (DEGs) in the short-photoperiod group, including 55 upregulated DEGs and 38 downregulated DEGs, distributed in 37 gene ontology categories. Kyoto Encyclopedia of Genes and Genomes-enriched signaling pathways revealed 5 pathways enriched in upregulated DEGs, including protein digestion and absorption, ECM-receptor interaction and regulation of lipolysis in adipocytes, and 4 pathways enriched in downregulated DEGs, such as fatty acid biosynthesis. Ten differentially expressed genes related to extracellular matrix and fatty acid metabolism (THBS2, COL12A1, MRC2, TUBA, COL1A1, COL11A1, HSPG2, FABP, MGLL, and OLAH) may be involved in the photoperiod regulation of follicle development in Zhedong white geese. The differentially expressed genes screened in this study will provide new ideas to further understand the molecular mechanism underlying photoperiod-mediated regulation of follicle development in Zhedong white geese.
Collapse
|
8
|
Casarini L, Paradiso E, Lazzaretti C, D'Alessandro S, Roy N, Mascolo E, Zaręba K, García-Gasca A, Simoni M. Regulation of antral follicular growth by an interplay between gonadotropins and their receptors. J Assist Reprod Genet 2022; 39:893-904. [PMID: 35292926 PMCID: PMC9050977 DOI: 10.1007/s10815-022-02456-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Knowledge of the growth and maturation of human antral follicles is based mainly on concepts and deductions from clinical observations and animal models. To date, new experimental approaches and in vitro data contributed to a deep comprehension of gonadotropin receptors' functioning and may provide new insights into the mechanisms regulating still unclear physiological events. Among these, the production of androgen in the absence of proper LH levels, the programming of follicular atresia and dominance are some of the most intriguing. Starting from evolutionary issues at the basis of the gonadotropin receptor signal specificity, we draw a new hypothesis explaining the molecular mechanisms of the antral follicular growth, based on the modulation of endocrine signals by receptor-receptor interactions. The "heteromer hypothesis" explains how opposite death and life signals are delivered by gonadotropin receptors and other membrane partners, mediating steroidogenesis, apoptotic events, and the maturation of the dominant follicle.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy.
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
- SIERR, Rome, Italy.
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Sara D'Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
| | - Kornelia Zaręba
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cellular Biology, Centro de Investigación en Alimentación y Desarrollo, 82112, Mazatlán, Sinaloa, Mexico
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, via P. Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
9
|
Huang Y, Luo W, Luo X, Wu X, Li J, Sun Y, Tang S, Cao J, Gong Y. Comparative Analysis Among Different Species Reveals That the Androgen Receptor Regulates Chicken Follicle Selection Through Species-Specific Genes Related to Follicle Development. Front Genet 2022; 12:752976. [PMID: 35046998 PMCID: PMC8762282 DOI: 10.3389/fgene.2021.752976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The differences in reproductive processes at the molecular level between viviparous and oviparous animals are evident, and the site in the ovary that synthesizes sex hormones (androgens and oestrogens) and the trends for enriching sex hormones during follicle development in chickens are different from those in mammals, suggesting that the effect of sex hormones on follicle development in chickens is probably different from that in viviparous animals. To explore the specific role of androgen receptors (ARs) on chicken follicular development, we matched the correspondence of follicular development stages among chickens, humans, cows and identified chicken-specific genes related to follicle development (GAL-SPGs) by comparing follicle development-related genes and their biological functions among species (chickens, humans, and cows). A comparison of the core transcription factor regulatory network of granulosa cells (or ovaries) based on super-enhancers among species (chicken, human, and mouse) revealed that AR is a core transcriptional regulator specific to chickens. In vivo experiments showed that inhibition of AR significantly reduced the number of syf (selected stage follicles) in chickens and decreased the expression of GAL-SPGs in F5 follicles, while in vitro experiments showed that inhibition of AR expression in chicken granulosa cells (GCs) significantly down-regulated the expression levels of GAL-SPGs, indicating that AR could regulate follicle selection through chicken-specific genes related to follicle development. A comparison among species (77 vertebrates) of the conserved genomic regions, where chicken super-enhancers are located, revealed that the chicken AR super-enhancer region is conserved in birds, suggesting that the role of AR in follicle selection maybe widespread in birds. In summary, we found that AR can regulate follicle selection through chicken-specific genes related to follicle development, which also emphasizes the important role of AR in follicle selection in chickens and provides a new perspective for understanding the unique process of follicle development in chickens. Our study will contribute to the application of androgens to the control of egg production in chickens and suggests that researchers can delve into the mechanisms of follicle development in birds based on androgen/androgen receptors.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China.,Guilin Medical University, Guilin, China
| | - Xuliang Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Xiaohui Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jinqiu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China.,Central Laboratory, Affiliated Hospital of Putian University, Putian, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
10
|
Guo Y, Cheng L, Li X, Tang S, Zhang X, Gong Y. Transcriptional regulation of CYP19A1 expression in chickens: ESR1, ESR2 and NR5A2 form a functional network. Gen Comp Endocrinol 2022; 315:113939. [PMID: 34710471 DOI: 10.1016/j.ygcen.2021.113939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 11/04/2022]
Abstract
Aromatase, encoded by CYP19A1, is responsible for the conversion of androgen to estrogen, which plays a vital role in the development and function of the ovary and functions in many other physiological processes in both sexes. Instead of being expressed in ovarian granulosa cells, as in mammals, CYP19A1 is expressed in chickens in the theca cells of ovarian follicles, and the mechanism of CYP19A1 expression regulation remains unknown. Here, using immunofluorescence and western blotting assay, we first confirmed that CYP19A1 and FOXL2 (Forkheadbox L2) were coexpressed in pre-granulosa cells of female chicken embryonic gonads, while FOXL2 did not affect aromatase expression at embryonic stages. Second, our research showed that CYP19A1, ESR1 (estrogen receptor alpha), ESR2 (estrogen receptor beta) and NR5A2 (liver receptor homologue-1) were coexpressed in the theca cell layers of chicken small yellow follicles. There was cross-talk between CYP19A1 and candidate transcription factors (ESR1, ESR2 and NR5A2), which was identified by generating a reliable theca cell culture model. Using luciferase assays in theca cells and chicken embryonic fibroblast (DF-1) cells, the results suggested that ESR1 and NR5A2 had potential effects on CYP19A1 promoter activity in chickens. Overexpression of ESR1, ESR2 and NR5A2 in chicken embryonic fibroblast (DF-1) cells upregulated the protein expression of CYP19A1, mutually restricted each other and formed a potential regulatory network to coordinate the expression of CYP19A1. To conclude, our results indicated that FOXL2 cannot regulate the expression of CYP19A1 at chicken embryonic stages and after sexual maturity, ESR1, ESR2 and NR5A2 form a functional network to affect the expression of CYP19A1. These results laid a foundation for further research on the transcriptional regulation of chicken aromatase.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Lu Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Xiaxia Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
11
|
Słowińska M, Paukszto Ł, Pardyak L, Jastrzębski JP, Liszewska E, Wiśniewska J, Kozłowski K, Jankowski J, Bilińska B, Ciereszko A. Transcriptome and Proteome Analysis Revealed Key Pathways Regulating Final Stage of Oocyte Maturation of the Turkey ( Meleagris gallopavo). Int J Mol Sci 2021; 22:ijms221910589. [PMID: 34638931 PMCID: PMC8508634 DOI: 10.3390/ijms221910589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
In birds, the zona pellucida (ZP) matrix that surrounds the ovulated oocyte—called the inner perivitelline layer—is involved in sperm–zona interaction and successful fertilization. To identify the important genes and proteins connected with the final step of egg development, next-generation sequencing and two-dimensional electrophoresis, combined with mass spectrometry, were used for the analysis of mature oocytes at the F1 developmental stage. A total of 8161 genes and 228 proteins were annotated. Six subfamilies of genes, with codes ZP, ZP1–4, ZPD, and ZPAX, were identified, with the dominant expression of ZPD. The main expression site for ZP1 was the liver; however, granulosa cells may also participate in local ZP1 secretion. A ubiquitination system was identified in mature oocytes, where ZP1 was found to be the main ubiquitinated protein. Analysis of transcripts classified in estrogen receptor (ESR) signaling indicated the presence of ESR1 and ESR2, as well as a set of estrogen-dependent genes involved in both genomic and nongenomic mechanisms for the regulation of gene expression by estrogen. Oxidative phosphorylation was found to be a possible source of adenosine triphosphate, and the nuclear factor erythroid 2-related factor 2 signaling pathway could be involved in the response against oxidative stress. Oocyte–granulosa cell communication by tight, adherens, and gap junctions seems to be essential for the final step of oocyte maturation.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
- Correspondence: ; Tel.: +48-89-539-3173
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland;
| | - Jan P. Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland;
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| |
Collapse
|
12
|
Zhong C, Liu Z, Qiao X, Kang L, Sun Y, Jiang Y. Integrated transcriptomic analysis on small yellow follicles reveals that sosondowah ankyrin repeat domain family member A inhibits chicken follicle selection. Anim Biosci 2020; 34:1290-1302. [PMID: 33152230 PMCID: PMC8255886 DOI: 10.5713/ajas.20.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/02/2020] [Indexed: 01/26/2023] Open
Abstract
Objective Follicle selection is an important process in chicken egg laying. Among several small yellow (SY) follicles, the one exhibiting the highest expression of follicle stimulation hormone receptor (FSHR) will be selected to become a hierarchal follicle. The role of lncRNA, miRNA and other non-coding RNA in chicken follicle selection is unclear. Methods In this study, the whole transcriptome sequencing of SY follicles with different expression levels of FSHR in Jining Bairi hens was performed, and the expression of 30 randomly selected mRNAs, lncRNAs and miRNAs was validated by quantitative real-time polymerase chain reaction. Preliminary studies and bioinformatics analysis were performed on the selected mRNA, lncRNA, miRNA and their target genes. The effect of identified gene was examined in the granulosa cells of chicken follicles. Results Integrated transcriptomic analysis on chicken SY follicles differing in FSHR expression revealed 467 differentially expressed mRNA genes, 134 differentially expressed lncRNA genes and 34 differentially expressed miRNA genes, and sosondowah ankyrin repeat domain family member A (SOWAHA) was the common target gene of three miRNAs and one lncRNA. SOWAHA was mainly expressed in small white (SW) and SY follicles and was affected by follicle stimulation hormone (FSH) treatment in the granulosa cells. Knockdown of SOWAHA inhibited the expression of Wnt family member 4 (Wnt4) and steroidogenic acute regulatory protein (StAR) in the granulosa cells of prehierarchal follicles, while stimulated Wnt4 in hierarchal follicles. Overexpression of SOWAHA increased the expression of Wnt4 in the granulosa cells of prehierarchal follicles, decreased that of StAR and cytochrome P450 family 11 subfamily A member 1 in the granulosa cells of hierarchal follicles and inhibited the proliferation of granulosa cells. Conclusion Integrated analysis of chicken SY follicle transcriptomes identified SOWAHA as a network gene that is affected by FSH in granulosa cells of ovarian follicles. SOWAHA affected the expression of genes involved in chicken follicle selection and inhibited the proliferation of granulosa cells, suggesting an inhibitory role in chicken follicle selection.
Collapse
Affiliation(s)
- Conghao Zhong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
| | - Zemin Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
| | - Xibo Qiao
- Shandong Jihua Poultry Breeding Co. Ltd., Rizhao 276800, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
| |
Collapse
|
13
|
Shen M, Li T, Chen F, Wu P, Wang Y, Chen L, Xie K, Wang J, Zhang G. Transcriptomic Analysis of circRNAs and mRNAs Reveals a Complex Regulatory Network That Participate in Follicular Development in Chickens. Front Genet 2020; 11:503. [PMID: 32499821 PMCID: PMC7243251 DOI: 10.3389/fgene.2020.00503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Follicular development plays a key role in poultry reproduction, affecting clutch traits and thus egg production. Follicular growth is determined by granulosa cells (GCs), theca cells (TCs), and oocyte at the transcription, translation, and secretion levels. With the development of bioinformatic and experimental techniques, non-coding RNAs have been shown to participate in many life events. In this study, we investigated the transcriptomes of GCs and TCs in three different physiological stages: small yellow follicle (SYF), smallest hierarchical follicle (F6), and largest hierarchical follicle (F1) stages. A differential expression (DE) analysis, weighted gene co-expression network analysis (WGCNA), and bioinformatic analyses were performed. A total of 18,016 novel circular RNAs (circRNAs) were detected in GCs and TCs, 8127 of which were abundantly expressed in both cell types. and more circRNAs were differentially expressed between GCs and TCs than mRNAs. Enrichment analysis showed that the DE transcripts were mainly involved in cell growth, proliferation, differentiation, and apoptosis. In the WGCNA analysis, we identified six specific modules that were related to the different cell types in different stages of development. A series of central hub genes, including MAPK1, CITED4, SOD2, STC1, MOS, GDF9, MDH1, CAPN2, and novel_circ0004730, were incorporated into a Cytoscape network. Notably, using both DE analysis and WGCNA, ESR1 was identified as a key gene during follicular development. Our results provide valuable information on the circRNAs involved in follicle development and identify potential genes for further research to determine their roles in the regulation of different biological processes during follicle growth.
Collapse
Affiliation(s)
- Manman Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Pengfeng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Zhang K, Gao G, Zhao X, Li Q, Zhong H, Xie Y, Wang Q. The direct effects of gonadotropin-releasing hormone on proliferation of granulosa cells and development of follicles in goose. Br Poult Sci 2020; 61:242-250. [PMID: 32019334 DOI: 10.1080/00071668.2020.1724877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The study objectives were to determine the direct effects of gonadotropin-releasing hormone (GnRH) on the proliferation of ovarian granulosa cells (GCs) and the development of follicles in geese (Anser cygnoides) by colorimetry and ethynyl-2'-deoxyuridine (EdU) cell proliferation assays, in which primary GCs were treated with different concentrations of GnRH agonist (alarelin acetate) and an antagonist (cetrorelix acetate). Differently expressed genes (DEGs) were identified by RNA-sequencing and validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting. 2. The EdU assays showed that the proliferation of GCs was affected by the GnRH agonist and antagonist in a dose-dependent manner. The effect of treatment on cell proliferation was statistically significant at the concentrations of 10-5 mol/l alarelin and 1 mg/l cetrorelix acetate. A total of 134 DEGs (76 downregulated and 58 upregulated for alarelin treatment) and 226 DEGs (90 downregulated and 136 upregulated for cetrorelix) were identified by RNA-sequencing analysis, respectively. Enrichment analysis indicated that DEGs were enriched in the GO terms of cell-cell signalling and cell junctions. The pathways that regulate the development of follicles were identified, including the biological progress of cAMP accumulation, ovulation cycle and vasculature that are essential to follicular selection. 3. The results suggested that GnRH might directly regulate GC proliferation via autocrine or paracrine pathways related to cell junctions. In particular, it was confirmed that the mRNA and protein expression levels of the oestrogen receptor 2 (ESR2) gene, a negative transcription factor involved in follicular maturation and ovulation, were affected by GnRH agonist or antagonist in GCs. 4. In conclusion, GnRH might play an important role in follicular development by changing the expression of genes that participate in cAMP accumulation, ovulation cycle and cell junctions in ovarian GCs.
Collapse
Affiliation(s)
- K Zhang
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - G Gao
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - X Zhao
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Q Li
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - H Zhong
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Y Xie
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| | - Q Wang
- Poultry Science Department, Chongqing Academy of Animal Science , Chongqing, P. R. China.,Chongqing Engineering Research Center of Goose Genetic Improvement , Chongqing, P. R. China
| |
Collapse
|