1
|
Liu XZ, Du XY, Xie WS, Ding J, Zhu MZ, Feng ZQ, Wang H, Feng Y, Yu MJ, Liu SM, Liu WT, Zhu XH, Liang JH. Redesigning Berberines and Sanguinarines to Target Soluble Epoxide Hydrolase for Enhanced Anti-Inflammatory Efficacy. J Med Chem 2024; 67:22168-22190. [PMID: 39658523 DOI: 10.1021/acs.jmedchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Amino-berberine has remained underexplored due to limited biological evaluation and total synthesis approaches. In inflammation therapy, soluble Epoxide Hydrolase (sEH) is a promising target, yet natural scaffolds remain underutilized. Our study advances the field by redesigning natural compounds─berberine and sanguinarine─with strategic urea modifications and hydrogenated frameworks, creating novel sEH inhibitors with enhanced in vivo efficacy. Through total synthesis and structure-activity relationship studies of amino-berberine derivatives, chiral tetrahydroberberine (R)-14i (coded LXZ-42) emerged as the most potent lead, with an IC50 value of 1.20 nM. (R)-14i showed reduced CYP enzyme impact, potent therapeutic effects on acute pancreatitis, no acute in vivo toxicity, and superior pharmacokinetic properties, with an oral bioavailability of 89.3%. Structural insights from crystallography of (R)-14i bound to sEH revealed key interactions: three with the tetrahydroberberine framework and three hydrogen bonds with the urea group, highlighting (R)-14i as a novel lead for sEH-targeted therapies in inflammation.
Collapse
Affiliation(s)
- Xing-Zhou Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Yu Du
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Song Xie
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Zi-Qiang Feng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
2
|
Butz H, Vereczki V, Budai B, Rubovszky G, Gyebrovszki R, Vida R, Szőcs E, Gerecs B, Kohánka A, Tóth E, Likó I, Kacskovics I, Patócs A. Glucocorticoid Receptor Isoforms in Breast Cancer Raise Implications for Personalised Supportive Therapies. Int J Mol Sci 2024; 25:11813. [PMID: 39519365 PMCID: PMC11546579 DOI: 10.3390/ijms252111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Glucocorticoid receptor (GR) activation may promote metastasis in oestrogen receptor-negative and triple-negative breast cancer (TNBC). However, the role of the GRβ isoform, which has opposing effects to the main isoform, has not been studied in clinical samples. We aimed to analyse the intracellular localisation of total GR and GRβ in vitro using plasmid constructs and fluorescent immunocytochemistry. Additionally, our goal was to perform immunostaining for total GR and GRβ on two cohorts: (i) on 194 clinical breast cancer samples to compare the expression in different molecular subtypes, and (ii) on 161 TNBC samples to analyse the association of GR with survival. We supplemented our analysis with RNA data from 1097 TNBC cases. We found that in the absence of the ligand, GR resided in the cytoplasm of breast cancer cells, while upon ligand activation, it translocated to the nucleus. A negative correlation was found between cytoplasmic GRtotal and Ki67 in luminal A tumours, while the opposite trend was observed in TNBC samples. Tumours with strong lymphoid infiltration showed higher cytoplasmic GRtotal staining compared to those with weaker infiltration. Patients with high nuclear GRtotal staining had shorter progression-free survival in univariate analysis. High cytoplasmic GRβ was a marker for better overall survival in multivariate analysis (10-year overall survival HR [95% CI]: 0.46 [0.22-0.95], p = 0.036). As a conclusions, this study is the first to investigate GRβ expression in breast tumours. Different expression and cellular localisation of GRtotal and GRβ were observed in the context of molecular subtypes, underscoring the complex role of GR in breast cancer. An inverse association between cytoplasmic GRtotal and the Ki67 proliferation index was observed in luminal A and TNBC. Regarding the impact of GR on outcomes in TNBC patients, while cytoplasmic GRβ was associated with a better prognosis, patients with nuclear GRtotal staining may be at a higher risk of disease progression, as it negatively affects survival. Caution should be exercised when using glucocorticoids in patients with nuclear GR staining, as it may negatively impact survival.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics, The National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary; (V.V.); (B.B.); (A.P.)
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Centre, 1122 Budapest, Hungary
- HUN-REN-SU Hereditary Tumours Research Group, Hungarian Research Network, 1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Viktória Vereczki
- Department of Molecular Genetics, The National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary; (V.V.); (B.B.); (A.P.)
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Barna Budai
- Department of Molecular Genetics, The National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary; (V.V.); (B.B.); (A.P.)
| | - Gábor Rubovszky
- Department of Thoracic and Abdominal Tumours and Clinical Pharmacology, National Institute of Oncology, Comprehensive Cancer Centre, 1122 Budapest, Hungary;
| | - Rebeka Gyebrovszki
- Department of Laboratory Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Ramóna Vida
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Centre, 1122 Budapest, Hungary
| | - Erika Szőcs
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Centre, 1122 Budapest, Hungary
| | - Bence Gerecs
- Department of Surgical and Molecular Pathology and the National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary
| | - Andrea Kohánka
- Department of Surgical and Molecular Pathology and the National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary
| | - Erika Tóth
- Department of Surgical and Molecular Pathology and the National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary
| | - István Likó
- HUN-REN-SU Hereditary Tumours Research Group, Hungarian Research Network, 1089 Budapest, Hungary
| | - Imre Kacskovics
- Department of Immunology, Institute of Biology, Eötvös Loránd University, 1053 Budapest, Hungary;
- ImmunoGenes-ABS Ltd., 2092 Budakeszi, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, The National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary; (V.V.); (B.B.); (A.P.)
- HUN-REN-SU Hereditary Tumours Research Group, Hungarian Research Network, 1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
3
|
Aghaali Z, Naghavi MR. Developing benzylisoquinoline alkaloid-enriched opium poppy via CRISPR-directed genome editing: A review. BMC PLANT BIOLOGY 2024; 24:700. [PMID: 39048937 PMCID: PMC11267691 DOI: 10.1186/s12870-024-05412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Among plant-derived secondary metabolites are benzylisoquinoline alkaloids (BIAs) that play a vital role in medicine. The most conspicuous BIAs frequently found in opium poppy are morphine, codeine, thebaine, papaverine, sanguinarine, and noscapine. BIAs have provided abundant clinically useful drugs used in the treatment of various diseases and ailments With an increasing demand for these herbal remedies, genetic improvement of poppy plants appears to be essential to live up to the expectations of the pharmaceutical industry. With the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9), the field of metabolic engineering has undergone a paradigm shift in its approach due to its appealing attributes, such as the transgene-free editing capability, precision, selectivity, robustness, and versatility. The potentiality of the CRISPR system for manipulating metabolic pathways in opium poppy was demonstrated, but further investigations regarding the use of CRISPR in BIA pathway engineering should be undertaken to develop opium poppy into a bioreactor synthesizing BIAs at the industrial-scale levels. In this regard, the recruitment of RNA-guided genome editing for knocking out miRNAs, flower responsible genes, genes involved in competitive pathways, and base editing are described. The approaches presented here have never been suggested or applied in opium poppy so far.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
4
|
Wang X, Zhang T, Li W, Zhang M, Zhao L, Wang N, Zhang X, Zhang B. Dietary supplementation with Macleaya cordata extract alleviates intestinal injury in broiler chickens challenged with lipopolysaccharide by regulating gut microbiota and plasma metabolites. Front Immunol 2024; 15:1414869. [PMID: 39100674 PMCID: PMC11294198 DOI: 10.3389/fimmu.2024.1414869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction The prevention and mitigation of intestinal immune challenge is crucial for poultry production. This study investigated the effects of dietary Macleaya cordata extract (MCE) supplementation on the prevention of intestinal injury in broiler chickens challenged with lipopolysaccharide (LPS). Methods A total of 256 one-day-old male Arbor Acres broilers were randomly divided into 4 treatment groups using a 2×2 factorial design with 2 MCE supplemental levels (0 and 400 mg/kg) and 2 LPS challenge levels (0 and 1 mg/kg body weight). The experiment lasted for 21 d. Results and discussion The results showed that MCE supplementation increased the average daily feed intake during days 0-14. MCE supplementation and LPS challenge have an interaction on the average daily gain during days 15-21. MCE supplementation significantly alleviated the decreased average daily gain of broiler chickens induced by LPS. MCE supplementation increased the total antioxidant capacity and the activity of catalase and reduced the level of malondialdehyde in jejunal mucosa. MCE addition elevated the villus height and the ratio of villus height to crypt depth of the ileum. MCE supplementation decreased the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the jejunum. MCE addition mitigated LPS-induced mRNA up-expression of pro-inflammatory factors IL-1β and IL-17 in the jejunum. MCE supplementation increased the abundance of probiotic bacteria (such as Lactobacillus and Blautia) and reduced the abundance of pathogenic bacteria (such as Actinobacteriota, Peptostretococcaceae, and Rhodococcus), leading to alterations in gut microbiota composition. MCE addition altered several metabolic pathways such as Amino acid metabolism, Nucleotide metabolism, Energy metabolism, Carbohydrate metabolism, and Lipid metabolism in broilers. In these pathways, MCE supplementation increased the levels of L-aspartic acid, L-Glutamate, L-serine, etc., and reduced the levels of phosphatidylcholine, phosphatidylethanolamine, thromboxane B2, 13-(S)-HODPE, etc. In conclusion, dietary supplementation of 400 mg/kg MCE effectively improved the growth performance and intestinal function in LPS-challenged broiler chickens, probably due to the modulation of gut microbiota and plasma metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Aghaali Z, Naghavi MR, Zargar M. Promising approaches for simultaneous enhancement of medicinally significant benzylisoquinoline alkaloids in opium poppy. FRONTIERS IN PLANT SCIENCE 2024; 15:1377318. [PMID: 38633462 PMCID: PMC11022600 DOI: 10.3389/fpls.2024.1377318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Benzylisoquinoline alkaloids (BIAs) produced in opium poppy have been evidenced to heal patients suffering from various diseases. They, therefore, hold an integral position in the herbal drug industry. Despite the adoption of several approaches for the large-scale production of BIAs, opium poppy remains the only platform in this purpose. The only disadvantage associated with producing BIAs in the plant is their small quantity. Thus, recruiting strategies that boost their levels is deemed necessary. All the methods which have been employed so far are just able to enhance a maximum of two BIAs. Thus, if these methods are utilized, a sizable amount of time and budget must be spent on the synthesis of all BIAs. Hence, the exploitation of strategies which increase the content of all BIAs at the same time is more commercially effective and time-saving, avoiding the laborious step of resolving the biosynthetic pathway of each compound. Exposure to biotic and abiotic elicitors, development of a synthetic auto-tetraploid, overexpression of a WRKY transcription factor, formation of an artificial metabolon, and suppression of a gene in the shikimate pathway and miRNA are strategies that turn opium poppy into a versatile bioreactor for the concurrent and massive production of BIAs. The last three strategies have never been applied for BIA biosynthetic pathways.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
- Department of Agrobiotechnology, Agrarian Technological Institute, Peoples' Friendship University of Russia (RUDN) University, Moscow, Russia
| | - Meisam Zargar
- Department of Agrobiotechnology, Agrarian Technological Institute, Peoples' Friendship University of Russia (RUDN) University, Moscow, Russia
| |
Collapse
|
6
|
Correa-Barbosa J, Sodré DF, Nascimento PHC, Dolabela MF. Activity of the genus Zanthoxylum against diseases caused by protozoa: A systematic review. Front Pharmacol 2023; 13:873208. [PMID: 36699053 PMCID: PMC9868958 DOI: 10.3389/fphar.2022.873208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/15/2022] [Indexed: 01/12/2023] Open
Abstract
Neglected diseases (NDs) are treated with a less varied range of drugs, with high cost and toxicity, which makes the search for therapeutic alternatives important. In this context, plants, such as those from the genus Zanthoxylum, can be promising due to active substances in their composition. This study evaluates the potential of species from this genus to treat NDs. Initially, a protocol was developed to carry out a systematic review approved by Prospero (CRD42020200438). The databases PubMed, BVS, Scopus, Science Direct, and Web of Science were used with the following keywords: "zanthoxylum," "xanthoxylums," "fagaras," "leishmaniasis," "chagas disease," "malaria," and "African trypanosomiasis." Two independent evaluators analyzed the title and abstract of 166 articles, and 122 were excluded due to duplicity or for not meeting the inclusion criteria. From the 44 selected articles, results of in vitro/in vivo tests were extracted. In vitro studies showed that Z. rhoifolium, through the alkaloid nitidine, was active against Plasmodium (IC50 <1 μg/ml) and Leishmania (IC50 <8 μg/ml), and selective for both (>10 and >30, respectively). For Chagas disease, the promising species (IC50 <2 μg/ml) were Z. naranjillo and Z. minutiflorum, and for sleeping sickness, the species Z. zanthoxyloides (IC50 <4 μg/ml) stood out. In the in vivo analysis, the most promising species were Z. rhoifolium and Z. chiloperone. In summary, the species Z. rhoifolium, Z. naranjillo, Z. minutiflorum, Z. zanthoxyloides, and Z. chiloperone are promising sources of active molecules for the treatment of NDs.
Collapse
Affiliation(s)
- Juliana Correa-Barbosa
- Pharmaceutical Science Post-graduation Programx, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Maria Fâni Dolabela
- Pharmaceutical Science Post-graduation Programx, Federal University of Pará, Belém, Pará, Brazil,Faculty of Pharmacy, Federal University of Pará, Belém, Brazil,*Correspondence: Maria Fâni Dolabela,
| |
Collapse
|
7
|
Wang M, Huang X, Liu Y, Zeng J. Effects of Macleaya cordata Extract on Blood Biochemical Indices and Intestinal Flora in Heat-Stressed Mice. Animals (Basel) 2022; 12:ani12192589. [PMID: 36230331 PMCID: PMC9558519 DOI: 10.3390/ani12192589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) leads to disturbance of homeostasis and gut microbiota. Macleaya cordata extract (MCE) has anti-inflammatory, antibacterial, and gut health maintenance properties. Still, the specific effects of MCE on blood biochemical indices and gut microbiota homeostasis in heat-stressed mice are not entirely understood. This study aimed to investigate the impact of MCE on blood biochemical indices and gut microbiota in heat-stressed mice. A control group (CON) (25 °C, n = 6) and HS group (42 °C, n = 6) were gavaged with normal saline 0.2 mL/g body weight/day, and HS plus MCE group (HS-MCE) (42 °C, n = 6) was gavaged with 5 mg MCE/kg/day. HS (2 h/d) on 8–14 d. The experiment lasted 14 days. The results showed that HS increased mice’ serum aspartate transaminase, alanine transferase activities, heat shock protein 70 level, and malondialdehyde concentrations, and decreased serum catalase and superoxide dismutase activities. HS also disrupted microbiota diversity and community structure in mice, increasing the Bacteroidetes and decreasing Firmicutes and Lactobacillus; however, MCE can alleviate the disturbance of biochemical indicators caused by HS and regulate the flora homeostasis. Furthermore, MCE was able to moderate HS-induced metabolic pathways changes in gut microbiota. The Spearman correlation analysis implied that changes in serum redox status potentially correlate with gut microbiota alterations in HS-treated mice.
Collapse
Affiliation(s)
- Mingcan Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Xiuqiong Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Jianguo Zeng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
- Correspondence: ; Tel.: +86-731-84686560
| |
Collapse
|
8
|
Effects of Dietary Macleaya cordata Extract on Growth Performance, Biochemical Indices, and Intestinal Microbiota of Yellow-Feathered Broilers Subjected to Chronic Heat Stress. Animals (Basel) 2022; 12:ani12172197. [PMID: 36077916 PMCID: PMC9454434 DOI: 10.3390/ani12172197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effect of dietary Macleaya cordata extract (MCE) supplementation on the growth performance, serum parameters, and intestinal microbiota of yellow-feather broilers under heat stress. A total of 216 yellow-feather broilers (28-days-old) were randomly allotted into three groups. A control group (CON) (24 ± 2 °C) and heat stress group (HS) (35 ± 2 °C) received a basal diet, and heat-stressed plus MCE groups (HS-MCE) (35 ± 2 °C) were fed the basal diet with 1000 mg/kg MCE for 14 consecutive days. The results revealed that MCE supplementation improved the final body weight, average daily feed intake, average daily gain, and spleen index when compared with the HS group (p < 0.05). In addition, MCE supplementation decreased (p < 0.05) the activities of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatinine, and increased (p < 0.05) the glucose level and alkaline phosphatase activity in heat-stressed yellow-feathered broilers. Moreover, MCE treatment alleviated heat-stress-induced intestinal flora disturbances, decreased the Bacteroidota and Bacteroides relative abundances, and increased Firmicutes. A linear discriminant analysis effect size analysis found five differentially abundant taxa in the HS-MCE group, including Alistipes, Rikenellaceae, Mogibacterium, Butyrivibrio, and Lachnospira. These results suggest that MCE can alleviate HS-induced decline in growth performance by modulating blood biochemical markers and cecal flora composition in broilers.
Collapse
|
9
|
Liang Y, Zhang T, Zhao J, Li C, Zou H, Li F, Zhang J, Ren L. Glucocorticoid receptor-mediated alleviation of inflammation by berberine: in vitro, in silico and in vivo investigations. Food Funct 2021; 12:11974-11986. [PMID: 34747965 DOI: 10.1039/d1fo01612a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a natural dietary ingredient, berberine possesses multiple biological activities including anti-inflammatory effects. In this work, glucocorticoid receptor (GR)-mediated alleviation of inflammation by berberine was investigated by a combination of in vitro, in silico, and in vivo approaches. The fluorescence polarization assay showed that berberine bound to GR with an IC50 value of 9.14 ± 0.16 pM. Molecular docking and molecular dynamics simulation suggested that berberine bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. Berberine induced GR nuclear translocation but did not activate the glucocorticoid response element in HeLa cells. Furthermore, both gene and protein expressions of PEPCK were significantly attenuated by berberine in HepG2 cells. Interestingly, berberine downregulated CBG mRNA and protein levels without up-regulating TAT mRNA and protein levels in HepG2 cells, demonstrating its dissociated characteristics that could separate transrepression from transactivation. In addition, the in vitro and in vivo anti-inflammatory effects of berberine were confirmed in lipopolysaccharide-induced RAW 264.7 cells and in a mouse model of allergic contact dermatitis, respectively. In conclusion, berberine might serve as a potential selective GR modulator.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chenfei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Fangyu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
10
|
Wnt-Signaling Regulated by Glucocorticoid-Induced miRNAs. Int J Mol Sci 2021; 22:ijms222111778. [PMID: 34769207 PMCID: PMC8584097 DOI: 10.3390/ijms222111778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) are pleiotropic hormones which regulate innumerable physiological processes. Their comprehensive effects are due to the diversity of signaling mechanism networks. MiRNAs, small, non-coding RNAs contribute to the fine tuning of signaling pathways and reciprocal regulation between GCs and miRNAs has been suggested. Our aim was to investigate the expressional change and potential function of GC mediated miRNAs. The miRNA expression profile was measured in three models: human adrenocortical adenoma vs. normal tissue, steroid-producing H295R cells and in hormonally inactive HeLa cells before and after dexamethasone treatment. The gene expression profile in 82 control and 57 GC-affected samples was evaluated in GC producing and six different GC target tissue types. Tissue-specific target prediction (TSTP) was applied to identify the most relevant miRNA-mRNA interactions. Glucocorticoid treatment resulted in cell type-dependent miRNA expression changes. However, 19.5% of the influenced signaling pathways were common in all three experiments, of which the Wnt-signaling pathway seemed to be the most affected. Transcriptome data and TSTP showed similar results, as the Wnt pathway was significantly altered in both the GC-producing adrenal gland and all investigated GC target tissue types. In different cell types, different miRNAs led to the regulation of similar pathways. Wnt signaling may be one of the most important signaling pathways affected by hypercortisolism. It is, at least in part, regulated by miRNAs that mediate the glucocorticoid effect. Our findings on GC producing and GC target tissues suggest that the alteration of Wnt signaling (together with other pathways) may be responsible for the leading symptoms observed in Cushing's syndrome.
Collapse
|
11
|
Valipour M, Zarghi A, Ebrahimzadeh MA, Irannejad H. Therapeutic potential of chelerythrine as a multi-purpose adjuvant for the treatment of COVID-19. Cell Cycle 2021; 20:2321-2336. [PMID: 34585628 PMCID: PMC8506812 DOI: 10.1080/15384101.2021.1982509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multifunctional nature of phytochemicals and their chemical diversity has attracted attention to develop leads originated from nature to fight COVID-19. Pharmacological activities of chelerythrine and its congeners have been studied and reported in the literature. This compound simultaneously has two key therapeutic effects for the treatment of COVID-19, antiviral and anti-inflammatory activities. Chelerythrine can prevent hyper-inflammatory immune response through regulating critical signaling pathways involved in SARS-CoV-2 infection, such as alteration in Nrf2, NF-κB, and p38 MAPK activities. In addition, chelerythrine has a strong protein kinase C-α/-β inhibitory activity suitable for cerebral vasospasm prevention and eryptosis reduction, as well as beneficial effects in suppressing pulmonary inflammation and fibrosis. In terms of antiviral activity, chelerythrine can fight with SARS-CoV-2 through various mechanisms, such as direct-acting mechanism, viral RNA-intercalation, and regulation of host-based antiviral targets. Although chelerythrine is toxic in vitro, the in vivo toxicity is significantly reduced due to its structural conversion to alkanolamine. Its multifunctional action makes chelerythrine a prominent compound for the treatment of COVID-19. Considering precautions related to the toxicity at higher doses, it is expected that this compound is useful in combination with proper antivirals to reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Falese BA, Kolawole AN, Sarumi OA, Kolawole AO. Probing the interaction of iminium form of sanguinarine with human salivary α-amylase by multi-spectroscopic techniques and molecular docking. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Influence of sanguinarine-based phytobiotic supplementation on post necrotic enteritis challenge recovery. Heliyon 2020; 6:e05361. [PMID: 33163676 PMCID: PMC7609478 DOI: 10.1016/j.heliyon.2020.e05361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
In the animal production industry, plant-derived antimicrobial phytobiotics are used as an alternative to antibiotics. Here we investigated the role sanguinarine-based phytobiotic in broiler recovery from Necrotic Enteritis (NE) infection. A total of 100 one-day-old broiler chicks (Ross 308) were randomly allocated to four treatments: negative control CTR (no challenge, no phytobiotic supplementation); positive control NE (NE challenged); phytobiotic SG (sanguinarine phytobiotic, 0.12 g/kg); and SG + NE, (sanguinarine phytobiotic, 0.12 g/kg and NE challenge). Sanguinarine-based phytobiotic supplementation caused significant changes between the groups in performance, livability and histological measurements, however, these changes were not significantly different between SG + NE and NE groups. Significant improvement was detected in NE lesion score of the duodenum and ileum of SG + NE birds compared to NE challenged birds at the end of the production cycle at 40 days old, indicating improved post-NE recovery with the addition of phytobiotic. Sanguinarine-based phytobiotic supplementation in NE challenged birds significantly compensated for a NE associated reduction of Firmicutes and an increase in Bacteroidetes. Functional profile of sanguinarine-based phytobiotic supplemented birds microbiota was distinct from CTR functional profile. NE challenge was associated with a significant increase in cecal propionic acid, while sanguinarine-based phytobiotic supplementation resulted in an increase in cecal acetic acid.
Collapse
|
14
|
Yarmohammadi F, Rezaee R, Karimi G. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytother Res 2020; 35:1163-1175. [PMID: 32985744 DOI: 10.1002/ptr.6882] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Cardiotoxicity is the main concern for long-term use of the doxorubicin (DOX). Reactive oxygen species (ROS) generation leads to oxidative stress that significantly contributes to the cardiac damage induced by DOX. The nuclear factor erythroid 2-related factor (Nrf2) acts as a protective player against DOX-induced myocardial oxidative stress. Several natural compounds (NCs) with anti-oxidative effects, were examined to suppress DOX cardiotoxicity such as asiatic acid, α-linolenic acid, apigenin, baicalein, β-lapachone, curdione, dioscin, ferulic acid, Ganoderma lucidum polysaccharides, genistein, ginsenoside Rg3, indole-3-carbinol, naringenin-7-O-glucoside, neferine, p-coumaric acid, pristimerin, punicalagin, quercetin, sulforaphane, and tanshinone IIA. The present article, reviews NCs that showed protective effects against DOX-induced cardiac injury through induction of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Meng Z, Yu Y, Zhang Y, Yang X, Lv X, Guan F, Hatch GM, Zhang M, Chen L. Highly bioavailable Berberine formulation improves Glucocorticoid Receptor-mediated Insulin Resistance via reduction in association of the Glucocorticoid Receptor with phosphatidylinositol-3-kinase. Int J Biol Sci 2020; 16:2527-2541. [PMID: 32792855 PMCID: PMC7415432 DOI: 10.7150/ijbs.39508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 07/03/2020] [Indexed: 11/05/2022] Open
Abstract
Excess glucocorticoid (GC) production is known to induce obesity and insulin resistance through increased activation of the glucocorticoid receptor (GR). The molecular mechanism for the non-genomic effects of excessive circulating GC on the insulin-signalling pathway in skeletal muscle is unknown. The plant alkaloid berberine has been shown to attenuate insulin resistance and inhibit gluconeogenesis in type 2 diabetic animals. A highly bioavailable berberine formulation termed Huang-Gui solid dispersion (HGSD), is a preparation of berberine coupled to sodium caprate and this markedly improving berberines bioavailability. Here we examined how HGSD treatment attenuated GR-mediated alteration in PI3K signalling and insulin resistance in diabetic rats, dexamethasone-treated mice and in insulin resistant C2C12 skeletal muscle cells. Blood glucose and skeletal muscle GC levels were increased and insulin signalling impaired in skeletal muscle of type 2 diabetic rats compared to controls. Treatment of these animals with HGSD restored blood glucose and skeletal muscle GC levels to that of controls. Insulin resistant C2C12 skeletal muscle cells exhibited impaired insulin signalling compared to controls and treatment of HGSD and RU486, an antagonist of GR, restored insulin signalling to that of control cells. Administration of dexamethasone to mice increased GR/GRα-associated PI3K and reduced IRS1-associated PI3K, phosphorylated-AKT, and membrane GLUT4 translocation resulting in a higher blood glucose concentration compared to controls. HGSD treatment of these mice improved insulin resistance by reducing the association of GR/GRα with PI3K. Excess GC-induced insulin resistance is mediated by increased association of GR with PI3K and treatment with HGSD attenuates these effects. We hypothesize that HGSD may be a promising candidate drug for the treatment of type 2 diabetes by reducing the association of GR with PI3K in skeletal muscle.
Collapse
Affiliation(s)
- Zhaojie Meng
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of American
| | - Yang Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Yining Zhang
- The First Hospital, Jilin University, Changchun, China
| | - Xuehan Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiaoyan Lv
- The Second Hospital, Jilin University, Changchun, China
| | - Fengying Guan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, Center for Research and Treatment of Atherosclerosis, DREAM Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Abstract
Antibiotic growth promoters (AGPs) have been used for many years as supplements in various livestock diets, including those for poultry. However, the use of AGPs in feed was also associated with an increasing number of antibiotic-resistant bacteria in livestock. In this study, the in vitro antibacterial efficacies of eight commercially available non-AGPs suitable for use in poultry were investigated. Assessments included a combination of antibacterial activity assays and estimations of the minimal inhibitory and bactericidal concentrations along with scanning electron microscopy analysis. The results showed that the probiotic, CloStat® exerted a bacteriostatic effect against all tested bacteria, namely Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus, and Clostridium perfringens, whereas Gallipro Tect® and Bacillus Blend® demonstrated bacteriostatic activity towards most of the pathogens tested. Other commercial non-AGPs, Sangrovit®, Fysal®, and Mix oil blend® showed a stronger or equal antibacterial activity compared to the positive control (AGP Maxus® G100) againsts all bacteria tested, except C. perfringens. Nor-Spice AB® and Varium™ did not show any significant effect against the tested bacteria. Several of the tested AGP substitutes exhibited good antibacterial efficiency against pathogenic bacteria and thus may be good candidates for second-stage in vivo investigations into reducing pathogen colonization in broilers.
Collapse
|
17
|
Liu F, Zhang X, Zhang B, Mao W, Liu T, Sun M, Wu Y. TREM1: A positive regulator for inflammatory response via NF-κB pathway in A549 cells infected with Mycoplasma pneumoniae. Biomed Pharmacother 2018; 107:1466-1472. [DOI: 10.1016/j.biopha.2018.07.176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022] Open
|
18
|
Zhong M, Wang YH, Wang L, Long RQ, Chen CL. Preparation and application of magnetic molecularly imprinted polymers for the isolation of chelerythrine from Macleaya cordata. J Sep Sci 2018; 41:3318-3327. [DOI: 10.1002/jssc.201800245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ming Zhong
- School of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Yueyang Hunan P. R. China
| | - Yan-Hong Wang
- School of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Yueyang Hunan P. R. China
| | - Lu Wang
- School of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Yueyang Hunan P. R. China
| | - Rui-Qing Long
- School of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Yueyang Hunan P. R. China
| | - Chun-Lin Chen
- Ningbo Institute of Materials Technology & Engineering; Chinese Academy of Sciences; Ningbo P. R. China
| |
Collapse
|
19
|
The capability of minor quaternary benzophenanthridine alkaloids to inhibit TNF-α secretion and cyclooxygenase activity. ACTA VET BRNO 2017. [DOI: 10.2754/avb201786030223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Quaternary benzophenanthridine alkaloids are known to have a wide range of biological effects, including antimicrobial, antifungal, anti-inflammatory, and antitumour activities. However, only sanguinarine and chelerythrine have been studied intensively. The aim of this study was to evaluate the anti-inflammatory potential of the five minor quaternary benzophenanthridine alkaloids sanguilutine, sanguirubine, chelirubine, chelilutine, and macarpine in vitro and to compare them with more thoroughly studied sanguinarine and chelerythrine. Before making cell-based assays, the cytotoxicity of the alkaloids was evaluated. The anti-inflammatory potential of the chosen alkaloids was evaluated as for their ability to modulate the lipopolysaccharide-induced secretion of tumour necrosis factor α (TNF-α) in the macrophage-like cell line THP-1. The cyclooxygenase (COX)-1 and COX-2 inhibitory activities were also measured. The results indicate that the presence of a methylenedioxy ring attached at carbon (C)7-C8 is important for reducing the secretion of TNF-α. Interestingly, this effect did not show a simple dependence on concentration. The selected alkaloids showed little or no anti-COX activity. The results obtained from the present experiments may provide additional information useful in understanding the structure-to-activity relationship of the quaternary benzophenanthridine alkaloids. The anti-inflammatory potential and the cytotoxic effect are driven by the presence of a methylenedioxy ring attached at C7-C8 and C2-C3, respectively.
Collapse
|
20
|
Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Simanek V, Liu L. Carcinogenic potential of sanguinarine, a phytochemical used in 'therapeutic' black salve and mouthwash. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:46-56. [PMID: 29173498 DOI: 10.1016/j.mrrev.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023]
Abstract
Black salves are escharotic skin cancer therapies in clinical use since the mid 19th century. Sanguinaria canadensis, a major ingredient of black salve formulations, contains a number of bioactive phytochemicals including the alkaloid sanguinarine. Despite its prolonged history of clinical use, conflicting experimental results have prevented the carcinogenic potential of sanguinarine from being definitively determined. Sanguinarine has a molecular structure similar to known polyaromatic hydrocarbon carcinogens and is a DNA intercalator. Sanguinarine also generates oxidative and endoplasmic reticulum stress resulting in the unfolded protein response and the formation of 8-hydroxyguanine genetic lesions. Sanguinarine has been the subject of contradictory in vitro and in vivo genotoxicity and murine carcinogenesis test results that have delayed its carcinogenic classification. Despite this, epidemiological studies have linked mouthwash that contains sanguinarine with the development of oral leukoplakia. Sanguinarine is also proposed as an aetiological agent in gallbladder carcinoma. This literature review investigates the carcinogenic potential of sanguinarine. Reasons for contradictory genotoxicity and carcinogenesis results are explored, knowledge gaps identified and a strategy for determining the carcinogenic potential of sanguinarine especialy relating to black salve are discussed. As patients continue to apply black salve, especially to skin regions suffering from field cancerization and skin malignancies, an understanding of the genotoxic and carcinogenic potential of sanguinarine is of urgent clinical relevance.
Collapse
Affiliation(s)
- Andrew Croaker
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia; Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - John H Pyne
- School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Shailendra Anoopkumar-Dukie
- Quality Use of Medicines Network, Queensland, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Vilim Simanek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia.
| |
Collapse
|
21
|
Swart AC, Smith C. Modulation of glucocorticoid, mineralocorticoid and androgen production in H295 cells by Trimesemine™, a mesembrine-rich Sceletium extract. JOURNAL OF ETHNOPHARMACOLOGY 2016; 177:35-45. [PMID: 26608706 DOI: 10.1016/j.jep.2015.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stress-related illnesses rate among the most prevalent non-fatal diseases globally. With the global trend for consumer bias towards natural medicine, the Sceletium plant has become more prominent in the field of natural products. Although potentially useful effects of Sceletium tortuosum on the central nervous system have been reported, limited data is available on effects of the plant in the peripheral compartment. AIM OF THE STUDY The current study aimed to elucidate the effect(s) of a Sceletium extract (TRI) rich in mesembrine (1% of plant extract w/w), on adrenal steroid biosynthesis. MATERIALS AND METHODS Steroidogenesis was assessed basally and in response to stimuli (forskolin, angiotensin II, KCl), in human adrenocortical carcinoma cells (H295R). Steroid hormone levels were assessed using UPLC-MS/MS. UPLC-MS analyses of TRI identified major alkaloids Δ7-mesembrenone, mesembrenone and mesembrine. RESULTS Highest dose TRI treatment (1 mg/ml, 34.5 μM mesembrine) increased pregnenolone and decreased 16-hydroxyprogesterone levels (both P<0.00001) in forskolin-stimulated conditions only, suggesting CYP17 enzyme inhibition. This led to significant inhibition of forskolin-associated increases in cortisol levels at the highest dose (P<0.001) and basal cortisol levels across all doses (P<0.0001). Independently of forskolin, TRI inhibited androstenedione and testosterone production across all doses (both P<0.00001), suggesting inhibition of 3βHSD and 17βHSD respectively. TRI decreased both the angiotensin II- (P<0.05) and forskolin-induced (P<0.0001) increases in aldosterone production. CONCLUSIONS Our data suggest potentially beneficial effects of TRI in the context of stress and hypertension. These should be further investigated in a whole organism model, while the effects on the androgenic pathway should also be further elucidated.
Collapse
Affiliation(s)
- A C Swart
- Dept Biochemistry, Stellenbosch University, South Africa.
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
22
|
Lin X, Chen Y, Lv S, Tan S, Zhang S, Huang R, Zhuo L, Liang S, Lu Z, Huang Q. Gypsophila elegans isoorientin attenuates CCl4-induced hepatic fibrosis in rats via modulation of NF-κB and TGF-β1/Smad signaling pathways. Int Immunopharmacol 2015; 28:305-12. [DOI: 10.1016/j.intimp.2015.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 01/07/2023]
|
23
|
Li GX, Wang XM, Jiang T, Gong JF, Niu LY, Li N. Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 19:1-7. [PMID: 25605990 PMCID: PMC4297756 DOI: 10.4196/kjpp.2015.19.1.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/17/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B (NF-κB), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-α (TNF-α ) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.
Collapse
Affiliation(s)
- Guo-Xun Li
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, Tianjin 300121, P.R. China
| | - Xi-Mo Wang
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, Tianjin 300121, P.R. China
| | - Tao Jiang
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, Tianjin 300121, P.R. China
| | - Jian-Feng Gong
- Department of General Surgery, Nanjing Jinling Hospital, Nanjing University, Nanjing 210002, P.R. China
| | - Ling-Ying Niu
- Department of General Surgery, Nanjing Jinling Hospital, Nanjing University, Nanjing 210002, P.R. China
| | - Ning Li
- Department of General Surgery, Nanjing Jinling Hospital, Nanjing University, Nanjing 210002, P.R. China
| |
Collapse
|
24
|
Hu J, Shi X, Mao X, Chen J, Li H. Cytotoxic Mannopyranosides of Indole Alkaloids fromZanthoxylum nitidum. Chem Biodivers 2014; 11:970-4. [DOI: 10.1002/cbdv.201300381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Indexed: 11/11/2022]
|
25
|
Blackford JA, Brimacombe KR, Dougherty EJ, Pradhan M, Shen M, Li Z, Auld DS, Chow CC, Austin CP, Simons SS. Research resource: modulators of glucocorticoid receptor activity identified by a new high-throughput screening assay. Mol Endocrinol 2014; 28:1194-206. [PMID: 24850414 DOI: 10.1210/me.2014-1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoid steroids affect almost every type of tissue and thus are widely used to treat a variety of human pathological conditions. However, the severity of numerous side effects limits the frequency and duration of glucocorticoid treatments. Of the numerous approaches to control off-target responses to glucocorticoids, small molecules and pharmaceuticals offer several advantages. Here we describe a new, extended high-throughput screen in intact cells to identify small molecule modulators of dexamethasone-induced glucocorticoid receptor (GR) transcriptional activity. The novelty of this assay is that it monitors changes in both GR maximal activity (A(max)) and EC(50) (the position of the dexamethasone dose-response curve). Upon screening 1280 chemicals, 10 with the greatest changes in the absolute value of A(max) or EC(50) were selected for further examination. Qualitatively identical behaviors for 60% to 90% of the chemicals were observed in a completely different system, suggesting that other systems will be similarly affected by these chemicals. Additional analysis of the 10 chemicals in a recently described competition assay determined their kinetically defined mechanism and site of action. Some chemicals had similar mechanisms of action despite divergent effects on the level of the GR-induced product. These combined assays offer a straightforward method of identifying numerous new pharmaceuticals that can alter GR transactivation in ways that could be clinically useful.
Collapse
Affiliation(s)
- John A Blackford
- Steroid Hormones Section (J.A.B., E.J.D., M.P., S.S.S.), Laboratory of Endocrinology and Receptor Biology, and Laboratory of Biological Modeling (C.C.C.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and National Center for Advancing Translational Sciences (K.R.B., M.S., Z.L., D.S.A., C.P.A.), National Institutes of Health, Rockville, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hu J, Shi X, Mao X, Chen J, Zhu L, Zhao Q. Antinociceptive activity of Rhoifoline A from the ethanol extract of Zanthoxylum nitidum in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:828-34. [PMID: 23669135 DOI: 10.1016/j.jep.2013.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 05/15/2023]
Abstract
AIM OF THE STUDY Antinociceptive activity of Rhoifoline A (RA), a benzophenanthridine alkaloid obtained from the ethanol extract of Zanthoxylum nitidum, was evaluated in mice using chemical and thermal models of nociception. MATERIALS AND METHODS RA was evaluated on anti-nociceptive activity in mice using chemical and thermal models of nociception. RESULTS RA administered intraperitoneally at doses of 10, 20, 40 and 80 mg/kg exhibited significant inhibitions on chemical nociception induced by intraperitoneal acetic acid and subplantar formalin, and on thermal nociception in the tail-flick test and the hot plate test. RA neither significantly impaired motor coordination in the rotarod test nor did spontaneous locomotion in the open-field test. RA did not enhance the pentobarbital sodium induced sleep time. These results indicated that the observed antinociceptive activity of RA was unrelated to sedation or motor abnormality. Core body temperature measurement showed that RA did not affect temperature during a 2-hour period. Furthermore, RA-induced antinociception in the hot plate test was insensitive to naloxone or glibenclamide but significantly antagonized by L-NAME, methylene blue and nimodipine. CONCLUSIONS Therefore, it is reasonable that the analgesic mechanism of RA possibly involved the NO-cGMP signaling pathway and L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Jiang Hu
- College of Biological Resources and Environment Science, Qujing Normal University, Qujing 655011, China; Institue of Characteristic Medicinal Resource of Ethnic Minorities, Qujing Normal University, Qujing 655011, China.
| | | | | | | | | | | |
Collapse
|
27
|
Shen S, Zhang Y, Zhang R, Gong X. Sarsasapogenin induces apoptosis via the reactive oxygen species-mediated mitochondrial pathway and ER stress pathway in HeLa cells. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2013.10.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2866-2878. [PMID: 23872422 DOI: 10.1016/j.bbamcr.2013.07.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/08/2013] [Indexed: 01/07/2023]
Abstract
Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear. Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells. Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.
Collapse
|
29
|
Cellular responses induced by Cu(II) quinolinonato complexes in human tumor and hepatic cells. Chem Cent J 2012; 6:160. [PMID: 23256754 PMCID: PMC3556092 DOI: 10.1186/1752-153x-6-160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/18/2012] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED BACKGROUND Inspired by the unprecedented historical success of cisplatin, one of the most important research directions in bioinorganic and medicinal chemistry is dedicated to the development of new anticancer compounds with the potential to surpass it in antitumor activity, while having lower unwanted side-effects. Therefore, a series of copper(II) mixed-ligand complexes of the type [Cu(qui)(L)]Y · xH2O (1-6), where Hqui = 2-phenyl-3-hydroxy-4(1H)-quinolinone, Y = NO3 (1, 3, 5) or BF4 (2, 4, 6), and L = 1,10-phenanthroline (phen) (1, 2), 5-methyl-1,10-phenanthroline (mphen) (3, 4) and bathophenanthroline (bphen) (5, 6), was studied for their in vitro cytotoxicity against several human cancer cell lines (A549 lung carcinoma, HeLa cervix epitheloid carcinoma, G361 melanoma cells, A2780 ovarian carcinoma, A2780cis cisplatin-resistant ovarian carcinoma, LNCaP androgen-sensitive prostate adenocarcinoma and THP-1 monocytic leukemia). RESULTS The tested complexes displayed a stronger cytotoxic effect against all the cancer cells as compared to cisplatin. The highest cytotoxicity was found for the complexes 4 (IC50 = 0.36 ± 0.05 μM and 0.56 ± 0.15 μM), 5 (IC50 = 0.66 ± 0.07 μM and 0.73 ± 0.08 μM) and 6 (IC50 = 0.57 ± 0.11 μM and 0.70 ± 0.20 μM) against A2780, and A2780cis respectively, as compared with the values of 12.0 ± 0.8 μM and 27.0 ± 4.6 μM determined for cisplatin. Moreover, the tested complexes were much less cytotoxic to primary human hepatocytes than to the cancer cells. The complexes 5 and 6 exhibited significantly high ability to modulate secretion of the pro-inflammatory cytokines TNF-α (2873 ± 238 pg/mL and 3284 ± 139 pg/mL for 5, and 6 respectively) and IL-1β (1177 ± 128 pg/mL and 1087 ± 101 pg/mL for 5, and 6 respectively) tested on the lipopolysaccharide (LPS)-stimulated THP-1 cells as compared with the values of 1173 ± 85 pg/mL and 118.5 ± 4.8 pg/mL found for the commercially used anti-inflammatory drug prednisone. The ability of the tested complexes to interact with sulfur-containing biomolecules (cysteine and reduced glutathione) at physiological levels was proved by electrospray-ionization mass spectrometry. CONCLUSIONS Overall positive results of the biological activity studies revealed that the presented complexes may represent good candidates for non-platinum anticancer drugs, however, we are aware of the fact that further and deeper studies mainly in relation to the elucidation of their mechanisms of antiproliferative action will be necessary.
Collapse
|
30
|
Rahigude A, Kaulaskar S, Bhutada P. Possible therapeutic potential of berberine in diabetic osteopathy. Med Hypotheses 2012; 79:440-4. [DOI: 10.1016/j.mehy.2012.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/22/2012] [Indexed: 12/12/2022]
|
31
|
Pěnčíková K, Kollár P, Müller Závalová V, Táborská E, Urbanová J, Hošek J. Investigation of sanguinarine and chelerythrine effects on LPS-induced inflammatory gene expression in THP-1 cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:890-895. [PMID: 22592163 DOI: 10.1016/j.phymed.2012.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/27/2012] [Accepted: 04/11/2012] [Indexed: 05/31/2023]
Abstract
Quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine have been used in folk medicine for their wide range of useful properties. One of their major effect is also anti-inflammatory activity, that is not clarified in detail. This study focused on the ability of these alkaloids to modulate the gene expression of pro-inflammatory tumour necrosis factor α (TNF-α), monocyte chemoattractant protein 1 (MCP-1, also known as CCL-2), interleukin (IL)-6, IL-1β and anti-inflammatory cytokines IL-1 receptor antagonist (IL-1RA) and IL-10. The effect of these alkaloids was compared with that of conventional drug prednisone. Human monocyte-derived macrophages were pre-treated with alkaloids or prednisone and inflammatory reaction was induced by lipopolysaccharide. Changes of gene expression at the transcriptional level of mentioned cytokines were measured. In our study mainly affected pro-inflammatory cytokines were CCL-2 and IL-6. Two hours after LPS stimulation, cells influenced by sanguinarine and chelerythrine significantly declined the CCL-2 expression by a factors of 3.5 (p<0.001) and 1.9 (p<0.01); for those treated with prednisone the factor was 5.3 (p<0.001). Eight hours after LPS induction, both alkaloids significantly diminished the CCL-2 expression. The lower expression was found for sanguinarine--lower by a factor of 4.3 than for cells treated with the vehicle (p<0.001). Two hours after LPS stimulation, cells treated with sanguinarine decreased the IL-6 mRNA level by a factor of 3.9 (p<0.001) compared with cells treated with the vehicle. Chelerythrine decreased the level of IL-6 mRNA by a factor of 1.6 (p<0.001). Sanguinarine decreased gene expression of CCL-2 and IL-6 more than chelerythrine and its effect was quite similar to prednisone. Four hours after LPS stimulation, cells pre-treated with sanguinarine exhibited significantly higher expression (a factor of 1.7, p<0.001) of IL-1RA than cells without sanguinarine treatment. Our results help to clarify possible mechanisms of action of these alkaloids in the course of inflammation.
Collapse
Affiliation(s)
- K Pěnčíková
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5/A16, 62500 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
32
|
Dvořák Z, Štarha P, Šindelář Z, Trávníček Z. Evaluation of in vitro cytotoxicity of one-dimensional chain [Fe(salen)(L)]n complexes against human cancer cell lines. Toxicol In Vitro 2012; 26:480-4. [DOI: 10.1016/j.tiv.2012.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
|
33
|
Vrba J, Orolinova E, Ulrichova J. Induction of heme oxygenase-1 by Macleaya cordata extract and its constituent sanguinarine in RAW264.7 cells. Fitoterapia 2012; 83:329-35. [DOI: 10.1016/j.fitote.2011.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/16/2011] [Accepted: 11/25/2011] [Indexed: 11/17/2022]
|
34
|
Shen X, Eichhorn T, Greten HJ, Efferth T. Effects of Scrophularia ningpoensis Hemsl. on Inhibition of Proliferation, Apoptosis Induction and NF-κB Signaling of Immortalized and Cancer Cell Lines. Pharmaceuticals (Basel) 2012; 5:189-208. [PMID: 24288088 PMCID: PMC3763631 DOI: 10.3390/ph5020189] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022] Open
Abstract
Scrophularia ningpoensis has been used in China for centuries as a herbal tea to treat various diseases. Based on the numerous animal studies on its pharmaceutical effects and the long time clinical experiences, we studied the molecular and cellular mechanism underlying the bioactivity of aqueous extract of Scrophularia and its isolated compounds. Seven isolated compounds, unlike Scrophularia extract, failed to induce cytotoxicity on HaCaT cells, but their combination improved the effect of extract. Tumor cell line selectivity was not observed, when we studied its cytotoxic effect on melanoma cell lines. The apoptotic and anti-inflammatory effects of Scrophularia extract have been demonstrated on HaCaT cells. The extract induced those effects potentially through affecting the MAPK pathway and inhibition of the NF-κB pathway, Microarray-based bioinformatical analyses on the compound acetoside from Scrophularia revealed a gene expression profile which confirmed our findings with the extract on proliferation inhibition, anti-inflammation and apoptosis. With DNA alkylation as major proposed mechanism of action, we assume acetoside as one of the active compounds in Scrophularia.
Collapse
Affiliation(s)
- Xiao Shen
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| | | | | | | |
Collapse
|
35
|
Lee JS, Jung WK, Jeong MH, Yoon TR, Kim HK. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway. Int J Toxicol 2012; 31:70-7. [PMID: 22215411 DOI: 10.1177/1091581811423845] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sanguinarine is an alkaloid obtained from the bloodroot plant Sanguinaria canadensis and has beneficial effects on oxidative stress and inflammatory disorders. Previous reports have demonstrated that sanguinarine also exhibit anticancer properties. In the current study, we investigated the effects of sanguinarine on HT-29 human colon cancer cells. It was observed that sanguinarine treatment induces a dose-dependent increase in apoptosis of human colon cancer cells. We also investigated the effects of sanguinarine on the expression of apoptosis-associated proteins, and the results revealed that there was an increase in Bax and a decrease in B-cell lymphoma 2 (Bcl-2) protein levels. Moreover, sanguinarine treatment significantly increases the activation of caspases 3 and 9 that are the key executioners in apoptosis. Our results suggest that sanguinarine induces apoptosis of HT-29 human colon cancer cells and may have a potential therapeutic use in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Jun Sik Lee
- Heart Research Center of Chonnam National University Hospital, Cardiovascular Research Institute of Chonnam National University, Gwangju 501-757, Korea.
| | | | | | | | | |
Collapse
|
36
|
Eftekharzadeh B, Ramin M, Khodagholi F, Moradi S, Tabrizian K, Sharif R, Azami K, Beyer C, Sharifzadeh M. Inhibition of PKA attenuates memory deficits induced by β-amyloid (1–42), and decreases oxidative stress and NF-κB transcription factors. Behav Brain Res 2012; 226:301-8. [DOI: 10.1016/j.bbr.2011.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/02/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
|
37
|
Peschel W, Kump A, Prieto JM. Effects of 20-hydroxyecdysone, Leuzea carthamoides extracts, dexamethasone and their combinations on the NF-κB activation in HeLa cells. J Pharm Pharmacol 2011; 63:1483-95. [DOI: 10.1111/j.2042-7158.2011.01349.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The plant steroid 20-hydroxyecdysterone (20E) and 20E-containing extracts from Leuzea carthamoides (Willd.) DC are sold with claims of anabolic and immunomodulatory effects. Yet their effect on the activation of nuclear factor kappa B (NF-κB), a key player in immune response and cell fate, and their influence on the NF-κB-inhibiting activity of steroidal anti-inflammatory drugs is still unknown.
Methods
The ability of 20E, Leuzea extracts and selected steroidal/non-steroidal anti-inflammatory drugs to influence the activation of NF-κB was explored using, as the experimental model, human cervical cancer HeLa-IL-6 cells stably transfected with an IL-6-bound reporter gene. Effects on cell viability and proliferation were monitored (MTT assay). HPLC-DAD was used to establish links between chemical patterns of Leuzea extracts and their bioactivities.
Key findings
20E inhibited NF-κB activation (IC50 31.8 µm) but was less active than other plant metabolites (xanthohumol 3.8 µm, withaferin A 1.4 µm). Leuzea extracts with high content in 20E had a fair activating effect, but in contrast, some extracts with low 20E content significantly inhibited NF-κB activation at IC50s ranging from 3.5 to 6.2 µg/ml. Combination tests confirmed that 20E does not explain the NF-κB modulation achieved by Leuzea extracts. The extracts but not 20E itself showed a significant modulation of the NF-κB inhibitory effect of dexamethasone.
Conclusions
20E is unlikely a major player in the NF-κB inhibitory effects displayed by some Leuzea extracts in vitro. If confirmed in vivo, caution should prevail towards marketed Leuzea extracts that are non-standardised or standardised on 20E only, since different starting materials and extracts may even cause opposite effects. More importantly, our results indicate the interaction potential of Leuzea with steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Wieland Peschel
- Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London, London, UK
| | - Alfred Kump
- Botanische Arbeitsgemeinschaft am Oberösterreichischen Landesmuseum, Biologiezentrum, Linz, Austria
| | - José Maria Prieto
- Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London, London, UK
| |
Collapse
|
38
|
Mahata S, Bharti AC, Shukla S, Tyagi A, Husain SA, Das BC. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol Cancer 2011; 10:39. [PMID: 21496227 PMCID: PMC3098825 DOI: 10.1186/1476-4598-10-39] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 04/15/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. RESULTS We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. CONCLUSION These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and blocking viral oncoproteins E6 and E7 expression. Inhibition of AP-1 activity by berberine may be one of the mechanisms responsible for the anti-HPV effect of berberine. We propose that berberine is a potentially promising compound for the treatment of cervical cancer infected with HPV.
Collapse
Affiliation(s)
- Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (Indian Council of Medical Research), I-7, Sector-39, Noida, Gautam Budh Nagar - 201301 India
| | | | | | | | | | | |
Collapse
|
39
|
Nouhi F, Tusi SK, Abdi A, Khodagholi F. Dietary supplementation with tBHQ, an Nrf2 stabilizer molecule, confers neuroprotection against apoptosis in amyloid β-injected rat. Neurochem Res 2011; 36:870-8. [PMID: 21293924 DOI: 10.1007/s11064-011-0417-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2011] [Indexed: 12/31/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) coordinates the up-regulation of cytoprotective genes via the antioxidant response element (ARE). There is significant evidence that oxidative stress is a critical event in the pathogenesis of AD. Considering the protective role of Nrf2 against oxidative injury, we studied to determine whether in vivo toxicity of amyloid β (Aβ) can be attenuated by tBHQ, an Nrf2 stabilizer, Using an Aβ injection model. We demonstrated that pre-activation of endogenous Nrf2 by tBHQ attenuated Aβ-induced caspase-3 expression. tBHQ enhanced GSH, decreased MDA level, and inhibited NF-κB. This investigation provides the first documentation of tBHQ's neuroprotective effect through decrease of Aβ accumulation in rat brain. Our results show the involvement of Hsp-70 in this protective effect. In summary tBHQ treatment for 1 week prior to Aβ injection protected against the oxidative damage, apoptosis and Aβ accumulation in rats.
Collapse
Affiliation(s)
- Fatemeh Nouhi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
40
|
Niu XF, Zhou P, Li WF, Xu HB. Effects of chelerythrine, a specific inhibitor of cyclooxygenase-2, on acute inflammation in mice. Fitoterapia 2011; 82:620-5. [PMID: 21291962 DOI: 10.1016/j.fitote.2011.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 01/31/2023]
Abstract
Chelerythrine (CHE), a quaternary benzo[c]phenanthridine alkaloid, which is an agent in traditional Chinese medicine exhibits a wide spectrum of pharmacological effects. In this study, we examined the anti-inflammatory activities and mechanism of CHE in vivo and in vitro, respectively. Further, in the analgesic test, CHE also showed pronounced inhibition of the acetic acid-induced writhing response. These results clearly suggested that CHE is a bioactive agent which has a significant anti-inflammatory action, which may be relevant to the inhibition of the release/production of exudates and prostaglandin E(2) mediated through cyclooxygenase-2 regulation.
Collapse
Affiliation(s)
- Xiao-Feng Niu
- School of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | | | | |
Collapse
|
41
|
Dvorak Z, Vrzal R. Berberine reduces insulin resistance: the roles for glucocorticoid receptor and aryl hydrocarbon receptor. Fertil Steril 2010; 95:e7; author reply e8-9. [PMID: 21130434 DOI: 10.1016/j.fertnstert.2010.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
42
|
Zhang Q, Piao XL, Piao XS, Lu T, Wang D, Kim SW. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem Toxicol 2010; 49:61-9. [PMID: 20932871 DOI: 10.1016/j.fct.2010.09.032] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 09/09/2010] [Accepted: 09/29/2010] [Indexed: 02/03/2023]
Abstract
Coptis chinensis has been used in traditional Chinese medicine to treat inflammatory symptoms. Berberine is the main alkaloid compound of C. chinensis. This study utilized a typical lipopolysaccharide (LPS) injured model to investigate the effects of C. chinensis aqueous extract (CCAE) and berberine (major active ingredient in CCAE) in the gut-derived sepsis. In rats, pretreatment with different doses of berberine (30 or 120 mg/kg bw, i.g.; BBR30 or BBR120) or CCAE (containing 9.9% berberine; 300 mg/kg bw, i.g.; CCAE300) prior to the administration of LPS (20 mg/kg bw, i.p.) significantly suppressed the increased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nitrite oxide (NO) in plasma as well as the activation of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) in ileum. In addition, CCAE300 and BBR30 markedly elevated the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); significantly prevented the increased malondialdehyde (MDA), NO and villi injury in ileum compared with the negative control. Collectively, CCAE300 and BBR30 reduced the LPS-induced intestinal damage by elevating the activities of SOD and GSH-Px and by suppressing the activation of TLR4 and NF-κB in ileum. These results indicate that CCAE and berberine are promising agents for preventing sepsis and its complications.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
43
|
Vrzal R, Gerbal-Chaloin S, Maurel P, Dvorák Z. Comparative effects of microtubules disruption on glucocorticoid receptor functions in proliferating and quiescent cells. Int J Toxicol 2010; 29:326-35. [PMID: 20448266 DOI: 10.1177/1091581810366486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have recently demonstrated that the alkaloid colchicine (COL) inhibits glucocorticoid receptor (GR) transcriptional activity. In addition, we described proteasome-mediated degradation of GR in COL-treated HeLa cells. While these effects were previously attributed to cell cycle arrest in G2/M phase, this explanation is not applicable for nonproliferating cells such as human hepatocytes (HH). In the current study, we compared COL-mediated microtubule disruption and cell cycle arrest with selected GR functions in HeLa cells and HH as models of proliferating and quiescent cells, respectively. Microtubule disruption led to irreversible decrease in GR binding capacity and protein level in HeLa cells. None of the parameters was restored 24 hours after COL withdrawal. In contrast, dexamethasone (DEX) binding was increased in HH at the beginning of the treatment, with following transient activation of extracellular signal-regulated kinase (ERK). The findings of these investigations emphasize the GR-signaling differences between primary and transformed cells.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Slechtitelů 11, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
44
|
Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N. Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 2009; 4:e5848. [PMID: 19513126 PMCID: PMC2689653 DOI: 10.1371/journal.pone.0005848] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 05/15/2009] [Indexed: 01/07/2023] Open
Abstract
miRNAs have emerged as important players in the regulation of gene expression and their deregulation is a common feature in a variety of diseases, especially cancer. Currently, many efforts are focused on studying miRNA expression patterns, as well as miRNA target validation. Here, we show that the over expression of miR-23a approximately 27a approximately 24-2 cluster in HEK293T cells induces apoptosis by caspase-dependent as well as caspase-independent pathway as proved by the annexin assay, caspase activation, release of cytochrome-c and AIF (apoptosis inducing factor) from mitochondria. Furthermore, the over expressed cluster modulates the expression of a number of genes involved in apoptosis including FADD (Fas Associated protein with Death Domain). Bioinformatically, FADD is predicted to be the target of hsa-miR-27a and interestingly, FADD protein was found to be up regulated consistent with very less expression of hsa-miR-27a in HEK293T cells. This effect was direct, as hsa-miR-27a negatively regulated the expression of FADD 3'UTR based reporter construct. Moreover, we also showed that over expression of miR-23a approximately 27a approximately 24-2 sensitized HEK293T cells to TNF-alpha cytotoxicity. Taken together, our study demonstrates that enhanced TNF-alpha induced apoptosis in HEK293T cells by over expression of miR-23a approximately 27a approximately 24-2 cluster provides new insights in the development of novel therapeutics for cancer.
Collapse
Affiliation(s)
| | | | | | - Vinod Scaria
- Institute of Genomics and Integrative Biology, Delhi, India
| | - Neeru Saini
- Institute of Genomics and Integrative Biology, Delhi, India
- * E-mail:
| |
Collapse
|
45
|
Jones JO, An WF, Diamond MI. AR inhibitors identified by high-throughput microscopy detection of conformational change and subcellular localization. ACS Chem Biol 2009; 4:199-208. [PMID: 19175331 PMCID: PMC2776083 DOI: 10.1021/cb900024z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Signaling via the androgen receptor (AR) plays an important role in human health and disease. All currently available anti-androgens prevent ligand access to the receptor, either by limiting androgen synthesis or by competitive antagonism at the ligand binding domain. It is unknown to what extent various steps of receptor activation may be separable and distinctly targeted by inhibitors. We have previously described the use of fluorescent protein fusions to AR to monitor its subcellular distribution and ligand-induced conformational change by fluorescence resonance energy transfer (FRET). We have now used a microscopy-based screen to identify inhibitors that prevent AR conformational change or nuclear accumulation after ligand activation. Hits were secondarily selected on the basis of their ability to inhibit AR transcription at a PSA-luciferase promoter and were tested for effects on (3)H-DHT binding to AR in cells. We find a strong correlation between compounds that block DHT binding and those that inhibit nuclear accumulation. These compounds are structurally distinct from known antagonists. Additional compounds blocked AR conformational change but did not affect DHT binding or nuclear localization of AR. One compound increased ligand-induced FRET yet functioned as a potent inhibitor. These results suggest that multiple inhibitory conformations of AR are possible and can be induced by diverse mechanisms. The lead compounds described here may be candidates for the development of novel antiandrogens and may help identify new therapeutic targets.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Neurology, UCSF, San Francisco, California, USA
| | | | | |
Collapse
|
46
|
Senchina DS, Flinn GN, McCann DA, Kohut ML, Shearn CT. Bloodroot (Sanguinaria canadensis L., Papaveraceae) Enhances Proliferation and Cytokine Production by Human Peripheral Blood Mononuclear Cells in an In Vitro Model. ACTA ACUST UNITED AC 2009; 15:45. [PMID: 20111671 DOI: 10.1080/10496470902787485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previous studies have suggested that phytomedicinal preparations from bloodroot (Sanguinaria canadensis L.) may harbor immunomodulatory properties. The purpose of this investigation was to determine the effects of alcohol tinctures and water infusions generated from bloodroot flowers, leaves, rhizomes, and roots on human peripheral blood mononuclear cell (PBMC) cytokine production and proliferation in vitro. PBMCs were collected from 16 healthy young adults and cultured with bloodroot extracts or respective controls for interleukins-1β, -2, -8, -10, interferon-γ, and tumor necrosis factor. Proliferative capabilities of both PBMCs and K562 cells (an immortalized human myelogenous leukemia cell line) following extract treatment were determined. High-pressure liquid chromatography was used to quantify berberine, chelerythrine, and sanguinarine in the extracts and to correlate extract composition with observed effects. Overall, infusions demonstrated greater immunomodulatory capabilities than tinctures, and flower- and root-based extracts showed greater immunomodulatory properties than leaf- or rhizome-based extracts (some effects seen with root-based extracts may be due to endotoxin). Several extracts were able to augment PBMC proliferation and diminish K562 proliferation, suggesting a selective anti-carcinogenic activity. The rhizome alcohol tincture had a markedly stronger effect against K562 cells than other extracts. Chelerythrine, sanguinarine, and endotoxin (but not berberine) sometimes correlated with observed effects. The in vitro activities demonstrated here suggest bloodroot extracts may have potential as therapeutic immunomodulators.
Collapse
|
47
|
Goel A, Prasad AK, Parmar VS, Ghosh B, Saini N. Apoptogenic effect of 7,8-diacetoxy-4-methylcoumarin and 7,8-diacetoxy-4-methylthiocoumarin in human lung adenocarcinoma cell line: role of NF-kappaB, Akt, ROS and MAP kinase pathway. Chem Biol Interact 2008; 179:363-74. [PMID: 19061872 DOI: 10.1016/j.cbi.2008.10.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Coumarin (1,2-benzopyrone) is a naturally occurring fragrant compound found in a variety of plants and spices. Coumarins have attracted intense interest in recent years because of their diverse pharmacological activities. This study examines the antioxidant coumarin 7,8-diacetoxy-4-methylcoumarin (DAMC) and its thiocoumarin derivative 7,8-diacetoxy-4-methylthiocoumarin (DAMTC) for their effect on human non-small cell lung cancer A549 cells. Here we show that both DAMC and DAMTC not only inhibited cell proliferation, but also induced apoptosis with an IC(50) of 160 microg/ml as confirmed by morphological examination, annexin-V assay and flow cytometric analysis. Interestingly, it was observed that these two coumarin compounds exhibited little cytotoxicity towards peripheral blood mononuclear cells but induced apoptosis in malignant cells. DAMC/DAMTC treatment also resulted in pronounced release of apoptogenic cytochrome c from mitochondria to cytosol, alteration of mitochondrial membrane potential (DeltaPsi(m)), and activation of caspase-9 and caspase-3. Although an increase in the levels of reactive oxygen species (ROS) was observed, pre-treatment with antioxidant showed no protective effect against DAMC/DAMTC-induced apoptosis. Results of present study suggest that downregulation of Bcl-xl, Cox-2 and mitogen activated protein kinase pathway and upregulation of p53, Akt and NF-kappaB pathway are involved in the underlying molecular mechanism of apoptosis induction by DAMC and DAMTC in A549 cells.
Collapse
Affiliation(s)
- Anita Goel
- Molecular Immunogenetics Laboratory, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | | | | | |
Collapse
|
48
|
Serafim TL, Matos JAC, Sardão VA, Pereira GC, Branco AF, Pereira SL, Parke D, Perkins EL, Moreno AJM, Holy J, Oliveira PJ. Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells--nuclear vs. mitochondrial effects. Biochem Pharmacol 2008; 76:1459-75. [PMID: 18692024 DOI: 10.1016/j.bcp.2008.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 12/14/2022]
Abstract
Sanguinarine (SANG) is an alkaloid recognized to have anti-proliferative activity against various human tumour cell lines. No data is available on the susceptibility of advanced malignant melanoma to SANG, although this disease has a very poor prognosis if not detected in time due to the resistance to conventional chemotherapy. The present work was designed to study the nuclear and mitochondrial involvement in the pro-apoptotic effect of SANG in an invasive mouse melanoma cell line. The results obtained show that SANG is primarily accumulated by the cell nuclei, causing inhibition of cell proliferation and inducing cell death, as confirmed by an increase in sub-G1 peaks. At low concentrations, SANG induces mitochondrial depolarization in a sub-population of melanoma cells, which also generally displayed strong nuclear labelling of phosphorylated histone H2AX. Western blotting revealed an increase in p53, but not Bax protein, in both whole-cell extracts and in mitochondrial fractions. Isolated hepatic mitochondrial fractions revealed that SANG affects the mitochondrial respiratory chain, and has dual effects on mitochondrial calcium loading capacity. We suggest that SANG is able to induce apoptosis in metastatic melanoma cells. The knowledge of mitochondrial vs. nuclear effects of SANG is important in the development of this promising compound for clinical use against aggressive melanoma.
Collapse
Affiliation(s)
- Teresa L Serafim
- Center for Neurosciences and Cell Biology, Department of Zoology, University of Coimbra, P-3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways. Eur J Pharmacol 2007; 580:70-9. [PMID: 18083161 DOI: 10.1016/j.ejphar.2007.11.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/25/2007] [Accepted: 11/03/2007] [Indexed: 01/11/2023]
Abstract
Berberine, an isoquinoline alkaloid isolated from several medicinal plants, has been reported to possess anti-bacterial, anti-inflammatory and antitumor properties. Although berberine also inhibits osteoclastogenesis and bone resorption, the molecular machinery for its inhibitory effects remains unknown. This study focused on the suppressive effects of berberine on receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis and survival. Berberine inhibited RANKL-mediated osteoclast formation and survival while having no cytotoxic effects on bone marrow macrophages or osteoblastic cells. Berberine attenuated RANKL-induced activation of NF-kappaB through inhibiting phosphorylation at the activation loop of IkappaBalpha kinase beta, phosphorylation and degradation of IkappaBalpha, and NF-kappaB p65 nuclear translocation. RANKL-induced Akt phosphorylation was strongly inhibited by berberine; however, neither monocyte/macrophage-colony stimulating factor (M-CSF)-induced nor insulin-induced Akt activation was inhibited by the drug. Under M-CSF- and RANKL-deprived condition, berberine increased the active form of caspase-3 in osteoclasts. By contrast, berberine did not potentiate the activation of caspase-3 in M-CSF-deprived bone marrow macrophages. These findings indicate that berberine inhibits osteoclast formation and survival through suppression of NF-kappaB and Akt activation and that both pathways in the osteoclast lineage are highly sensitive to berberine treatment.
Collapse
|
50
|
Lee CH, Chen JC, Hsiang CY, Wu SL, Wu HC, Ho TY. Berberine suppresses inflammatory agents-induced interleukin-1beta and tumor necrosis factor-alpha productions via the inhibition of IkappaB degradation in human lung cells. Pharmacol Res 2007; 56:193-201. [PMID: 17681786 DOI: 10.1016/j.phrs.2007.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/06/2007] [Accepted: 06/14/2007] [Indexed: 02/08/2023]
Abstract
Pulmonary inflammation is a characteristic of many lung diseases. Increased levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), have been correlated with lung inflammation. In this study, we demonstrated that various inflammatory agents, including lipopolysaccharide, 12-o-tetradecanoylphorbol-13-acetate, hydrogen peroxide, okadaic acid and ceramide, were able to induce IL-1beta and TNF-alpha productions in human lung epithelial cells (A-549), fibroblasts (HFL1), and lymphoma cells (U-937). Berberine, the protoberberine alkaloid widely distributed in the plant kingdom, was capable of suppressing inflammatory agents-induced cytokine production in lung cells. Inhibition of cytokine production by berberine was dose-dependent and cell type-independent. Moreover, the suppression of berberine on the cytokine production resulted from the inhibition of inhibitory kappaB-alpha phosphorylation and degradation. In conclusion, our findings suggested the potential role of berberine in the treatment of pulmonary inflammation.
Collapse
Affiliation(s)
- Chang-Hsien Lee
- Molecular Biology Laboratory, Graduate Institute of Chinese Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | | | | | | | | | | |
Collapse
|