1
|
Mao Y, Yang L, Chen Q, Li G, Sun Y, Wu J, Xiong Z, Liu Y, Li H, Liu J, Zhang Y. The influence of CYP1A1 and CYP1A2 polymorphisms on stroke risk in the Chinese population. Lipids Health Dis 2020; 19:221. [PMID: 33046100 PMCID: PMC7552501 DOI: 10.1186/s12944-020-01370-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
Backgrounds Stroke is a sudden disorder of cerebral blood circulation. Many studies have illustrated that dyslipidemia, hypertension, diabetes, smoking and excessive drinking are the traditional risk factors for stroke. This study aimed to observe the relationship between CYP1A1 and CYP1A2 variants and stroke risk in the Chinese population. Methods Agena MassARRAY Assay was used to genotype four single nucleotide polymorphisms (SNPs) in 477 cases and 480 controls. The chi-square test and logistic-regression analysis were used to explore the relationship between CYP1A1 and CYP1A2 variants and stroke risk. Results Individuals with CYP1A2 rs762551 C was associated with a lower risk of stroke than that of allele A. Age stratification analysis showed that rs762551 was only observed to be associated with a lower risk of stroke in ≤64ys age group. After gender stratification analysis, a significant association between rs762551 and stroke risk was found in males, but not in females. The four SNPs were found to be correlated with stroke risk in patients with hypertension, coronary heart disease, cerebral infarction and lacunar infarction. Conclusion In this study, the results first showed that CYP1A1 and CYP1A2 variants were associated with stroke risk. Larger and well-designed studies are needed to confirm the results.
Collapse
Affiliation(s)
- Yan Mao
- Department of Geriatrics, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Lin Yang
- Department of Encephalopathy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Qian Chen
- Department of Geriatrics, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Guoqing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuanwei Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Haiyue Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jianfeng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yong Zhang
- The Second Department of Encephalopathy, Baoji Hospital of Traditional Chinese Medicine, Baoji, 721001, Shaanxi, China.
| |
Collapse
|
2
|
Rannug A. How the AHR Became Important in Intestinal Homeostasis-A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. Int J Mol Sci 2020; 21:ijms21165681. [PMID: 32784381 PMCID: PMC7461111 DOI: 10.3390/ijms21165681] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ever since the 1970s, when profound immunosuppression caused by exogenous dioxin-like compounds was first observed, the involvement of the aryl hydrocarbon receptor (AHR) in immunomodulation has been the focus of considerable research interest. Today it is established that activation of this receptor by its high-affinity endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ), plays important physiological roles in maintaining epithelial barriers. In the gut lumen, the small amounts of FICZ that are produced from L-tryptophan by microbes are normally degraded rapidly by the inducible cytochrome P4501A1 (CYP1A1) enzyme. This review describes how when the metabolic clearance of FICZ is attenuated by inhibition of CYP1A1, this compound passes through the intestinal epithelium to immune cells in the lamina propria. FICZ, the level of which is thus modulated by this autoregulatory loop involving FICZ itself, the AHR and CYP1A1, plays a central role in maintaining gut homeostasis by potently up-regulating the expression of interleukin 22 (IL-22) by group 3 innate lymphoid cells (ILC3s). IL-22 stimulates various epithelial cells to produce antimicrobial peptides and mucus, thereby both strengthening the epithelial barrier against pathogenic microbes and promoting colonization by beneficial bacteria. Dietary phytochemicals stimulate this process by inhibiting CYP1A1 and causing changes in the composition of the intestinal microbiota. The activity of CYP1A1 can be increased by other microbial products, including the short-chain fatty acids, thereby accelerating clearance of FICZ. In particular, butyrate enhances both the level of the AHR and CYP1A1 activity by stimulating histone acetylation, a process involved in the daily cycle of the FICZ/AHR/CYP1A1 feedback loop. It is now of key interest to examine the potential involvement of FICZ, a major physiological activator of the AHR, in inflammatory disorders and autoimmunity.
Collapse
Affiliation(s)
- Agneta Rannug
- Karolinska Institutet, Institute of Environmental Medicine, 171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Giovannoni F, Bosch I, Polonio CM, Torti MF, Wheeler MA, Li Z, Romorini L, Rodriguez Varela MS, Rothhammer V, Barroso A, Tjon EC, Sanmarco LM, Takenaka MC, Modaresi SMS, Gutiérrez-Vázquez C, Zanluqui NG, Dos Santos NB, Munhoz CD, Wang Z, Damonte EB, Sherr D, Gehrke L, Peron JPS, Garcia CC, Quintana FJ. AHR is a Zika virus host factor and a candidate target for antiviral therapy. Nat Neurosci 2020; 23:939-951. [PMID: 32690969 DOI: 10.1038/s41593-020-0664-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation. Specifically, ZIKV infection induces kynurenine (Kyn) production, which activates AHR, limiting the production of type I interferons (IFN-I) involved in antiviral immunity. Moreover, ZIKV-triggered AHR activation suppresses intrinsic immunity driven by the promyelocytic leukemia (PML) protein, which limits ZIKV replication. AHR inhibition suppressed the replication of multiple ZIKV strains in vitro and also suppressed replication of the related flavivirus dengue. Finally, AHR inhibition with a nanoparticle-delivered AHR antagonist or an inhibitor developed for human use limited ZIKV replication and ameliorated newborn microcephaly in a murine model. In summary, we identified AHR as a host factor for ZIKV replication and PML protein as a driver of anti-ZIKV intrinsic immunity.
Collapse
Affiliation(s)
- Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET-Instituto de Química Biológica, Buenos Aires, Argentina
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Immunology Department-ICB IV, University of São Paulo, São Paulo, Brazil.,Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil
| | - María F Torti
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET-Instituto de Química Biológica, Buenos Aires, Argentina
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonardo Romorini
- Laboratorio de Investigación aplicada a Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Buenos Aires, Argentina
| | - María S Rodriguez Varela
- Laboratorio de Investigación aplicada a Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Buenos Aires, Argentina
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreia Barroso
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maisa C Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nágela Ghabdan Zanluqui
- Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil.,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Zhongyan Wang
- Dept. of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Elsa B Damonte
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET-Instituto de Química Biológica, Buenos Aires, Argentina
| | - David Sherr
- Dept. of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Immunology Department-ICB IV, University of São Paulo, São Paulo, Brazil. .,Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil. .,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Cybele C Garcia
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET-Instituto de Química Biológica, Buenos Aires, Argentina.
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Ivanova OA, Trushkov IV. Donor-Acceptor Cyclopropanes in the Synthesis of Carbocycles. CHEM REC 2019; 19:2189-2208. [PMID: 30707497 DOI: 10.1002/tcr.201800166] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
Donor-acceptor cyclopropanes not only participate in a broad range of ring openings with nucleophiles, electrophiles, radical and red-ox agents, but also are excellent substrates for various (3+n)-cycloaddition and (3+n)-annulation processes. Moreover, under treatment with Lewis acid donor-acceptor cyclopropanes can produce new ring systems via isomerization or cyclodimerization. Authors' contribution to the synthesis of diverse carbocycles from donor-acceptor cyclopropanes is summarized in this account.
Collapse
Affiliation(s)
- Olga A Ivanova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation.,N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russian Federation
| | - Igor V Trushkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russian Federation.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela, 1, Moscow, 117997, Russian Federation
| |
Collapse
|
5
|
Huth L, Marquardt Y, Heise R, Fietkau K, Becker NH, Huth S, Baron JM. Bifonazole Exerts Anti-Inflammatory Effects in Human Three-Dimensional Skin Equivalents after UVB or Histamine Challenge. Skin Pharmacol Physiol 2019; 32:337-343. [PMID: 31509851 DOI: 10.1159/000502213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND In addition to its role as a broad-spectrum imidazole antifungal drug, data from animal models as well as human clinical trials also demonstrated an anti-inflammatory efficacy of bifonazole (BFZ). In the histamine wheal test and after UV radiation, BFZ showed antiphlogistic effects that were comparable to those of hydrocortisone. However, the underlying molecular mechanisms of the anti-inflam-matory properties of BFZ are poorly understood. METHODS Performing an in vitro study we used full-thickness three-dimensional (3D) skin models containing macrophages as mediators of inflammation. We conducted two sets of experiments. In a first set we exposed our models to UVB irradiation to provoke an inflammation. A second approach used the addition of histamine into the culture medium. In both approaches, models were treated topically with a BFZ-containing ointment or a placebo ointment for 24 h, and then the effects were examined histologically as well as with microarray and quantitative real-time PCR analyses. RESULTS Histological examination showed that the BFZ-containing ointment reconstituted UVB- and histamine-mediated disorders within the skin models. Performing gene expression profiling in models that were treated with the BFZ-containing ointment after UVB irradiation, we detected an upregu-lation of differentiation markers (fillagrin, loricrin, and keratin 1), antimicrobial peptides (DEFB103A), and members of the cytochrome P450 family (CYP1A1 and CYP1B1) as well as a downregulation of genes that are involved in immune response (CCL22, CXCL12, CCL7, IRF1, ICAM1, TLR3, and RARRES3) and matrix metalloproteinases (MMP12 and MMP7). Models that were treated with the BFZ-containing ointment after histamine application showed an upregulation of members of the cytochrome P450 family (CAP1A1, CYP1B1, and CYP24A1) and a downregulation of immune response-associated genes (CXCL6, CXCL12, CCL8, IL6, and IL32). CONCLUSION We present the first in vitro study showing anti-inflammatory effects of BFZ in human 3D skin models. To our knowledge, this is the first time that these effects could be translated from human clinical trials into an in vitro test system, allowing a more detailed examination of molecular mechanisms that were regulated by BFZ.
Collapse
Affiliation(s)
- Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany,
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katharina Fietkau
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Li X, Yang J, Qiao Y, Duan Y, Xin Y, Nian Y, Zhu L, Liu G. Effects of Radiation on Drug Metabolism: A Review. Curr Drug Metab 2019; 20:350-360. [PMID: 30961479 DOI: 10.2174/1389200220666190405171303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Radiation is the fourth most prevalent type of pollution following the water, air and noise pollution. It can adversely affect normal bodily functions. Radiation alters the protein and mRNA expression of drugmetabolizing enzymes and drug transporters and the pharmacokinetic characteristics of drugs, thereby affecting drug absorption, distribution, metabolism, and excretion. Therefore, it is important to study the pharmacokinetic changes in drugs under radiation. METHODS To update data on the effects of ionizing radiation and non-ionizing radiation caused by environmental pollution or clinical treatments on the protein and mRNA expression of drug-metabolizing enzymes and drug transporters. Data and information on pharmacokinetic changes in drugs under radiation were analyzed and summarized. RESULTS The effect of radiation on cytochrome P450 is still a subject of debate. The widespread belief is that higherdose radiation increased the expression of CYP1A1 and CYP1B1 of rat, zebrafish or human, CYP1A2, CYP2B1, and CYP3A1 of rat, and CYP2E1 of mouse or rat, and decreased that of rat's CYP2C11 and CYP2D1. Radiation increased the expression of multidrug resistance protein, multidrug resistance-associated protein, and breast cancer resistance protein. The metabolism of some drugs, as well as the clearance, increased during concurrent chemoradiation therapy, whereas the half-life, mean residence time, and area under the curve decreased. Changes in the expression of cytochrome P450 and drug transporters were consistent with the changes in the pharmacokinetics of some drugs under radiation. CONCLUSION The findings of this review indicated that radiation caused by environmental pollution or clinical treatments can alter the pharmacokinetic characteristics of drugs. Thus, the pharmacokinetics of drugs should be rechecked and the optimal dose should be re-evaluated after radiation.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Medical College, Qinghai University, Xining, China
| | - Jianxin Yang
- Medical College, Qinghai University, Xining, China
| | - Yijie Qiao
- Medical College, Qinghai University, Xining, China
| | - Yabin Duan
- Medical College, Qinghai University, Xining, China
| | - Yuanyao Xin
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Yongqiong Nian
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Lin Zhu
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Guiqin Liu
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| |
Collapse
|
7
|
Hart PH, Norval M. Ultraviolet radiation-induced immunosuppression and its relevance for skin carcinogenesis. Photochem Photobiol Sci 2018; 17:1872-1884. [PMID: 29136080 DOI: 10.1039/c7pp00312a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The realisation that UV radiation (UVR) exposure could induce a suppressed immune environment for the initiation of carcinogenesis in the skin was first described more than 40 years ago. Van der Leun and his colleagues contributed to this area in the 1980s and 90s by experiments in mice involving UV wavelength and dose-dependency in the formation of such tumours, in addition to illustrating both the local and systemic effect of the UVR on the immune system. Since these early days, many aspects of the complex pathways of UV-induced immunosuppression have been studied and are outlined in this review. Although most experimental work has involved mice, it is clear that UVR also causes reduced immune responses in humans. Evidence showing the importance of the immune system in determining the risk of human skin cancers is explained, and details of how UVR exposure can down-regulate immunity in the formation and progression of such tumours reviewed. With increasing knowledge of these links and the mechanisms of UVR-induced immunosuppression, novel approaches to enhance immunity to skin tumour antigens in humans are becoming apparent which, hopefully, will reduce the burden of UVR-induced skin cancers in the future.
Collapse
Affiliation(s)
- Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Australia.
| | | |
Collapse
|
8
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
9
|
Aryl hydrocarbon receptor (AhR) a possible target for the treatment of skin disease. Med Hypotheses 2018; 116:96-100. [PMID: 29857917 DOI: 10.1016/j.mehy.2018.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/21/2018] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor expressed in all skin cells type. It responds to exogenous and endogenous chemicals by inducing/repressing the expression of several genes with toxic or protective effects in a wide range of species and tissues. In healthy skin, AhR signalling contributes to keratinocytes differentiation, skin barrier function, skin pigmentation, and mediates oxidative stress. In the last years, some studies have shown that AhR seems to be involved in the pathogenesis of some skin diseases, even if the currently available data are contradictory. Indeed, while the blocking the AhR signalling activity could prevent or treat skin cancer, the AhR activation seems to be advantageous for the treatment of inflammatory skin diseases. Therefore, for its multifaceted role in skin diseases, AhR seems to be an attractive therapeutic target. Indeed, recently some molecules have been identified for the prevention of skin cancer and the treatment of inflammatory skin diseases.
Collapse
|
10
|
Brem R, Macpherson P, Guven M, Karran P. Oxidative stress induced by UVA photoactivation of the tryptophan UVB photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) inhibits nucleotide excision repair in human cells. Sci Rep 2017; 7:4310. [PMID: 28655934 PMCID: PMC5487344 DOI: 10.1038/s41598-017-04614-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/17/2017] [Indexed: 01/11/2023] Open
Abstract
Potentially mutagenic DNA lesions induced by UVB (wavelengths 280–320 nm) are important risk factors for solar ultraviolet (UV) radiation-induced skin cancer. The carcinogenicity of the more abundant UVA (320–400 nm) is less well understood but is generally regarded to reflect its interaction with cellular chromophores that act as photosensitisers. The arylhydrocarbon receptor agonist 6-formylindolo[3,2-b] carbazole (FICZ), is a UVB photoproduct of tryptophan and a powerful UVA chromophore. Combined with UVA, FICZ generates reactive oxygen species (ROS) and induces oxidative DNA damage. Here we demonstrate that ROS generated by FICZ/UVA combinations also cause extensive protein damage in HaCaT human keratinocytes. We show that FICZ/UVA-induced oxidation significantly inhibits the removal of potentially mutagenic UVB-induced DNA photolesions by nucleotide excision repair (NER). DNA repair inhibition is due to FICZ/UVA-induced oxidation damage to the NER proteome and DNA excision repair is impaired in extracts prepared from FICZ/UVA-treated cells. NER protects against skin cancer. As a likely UVB photoproduct of intracellular tryptophan, FICZ represents a de facto endogenous UVA photosensitiser in sun-exposed skin. FICZ formation may increase the risk of solar UV-induced skin cancer by promoting photochemical damage to the NER proteome and thereby preventing the removal of UVB-induced DNA lesions.
Collapse
Affiliation(s)
- Reto Brem
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | | | - Melisa Guven
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Peter Karran
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
11
|
Merches K, Haarmann-Stemmann T, Weighardt H, Krutmann J, Esser C. AHR in the skin: From the mediator of chloracne to a therapeutic panacea? CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Kado S, Chang WLW, Chi AN, Wolny M, Shepherd DM, Vogel CFA. Aryl hydrocarbon receptor signaling modifies Toll-like receptor-regulated responses in human dendritic cells. Arch Toxicol 2016; 91:2209-2221. [PMID: 27783115 DOI: 10.1007/s00204-016-1880-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/20/2016] [Indexed: 01/04/2023]
Abstract
Currently, it is not well understood how ligands of the aryl hydrocarbon receptor (AhR) modify inflammatory responses triggered by Toll-like receptor (TLR) agonists in human dendritic cells (DCs). Here, we show that AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the tryptophan derivatives 6-formylindolo[3,2-b] carbazole (FICZ), kynurenine (kyn), and the natural dietary compound indole-3-carbinol (I3C) differentially modify cytokine expression in human monocyte-derived DCs (MoDCs). The results show that TLR-activated MoDCs express higher levels of AhR and are more sensitive toward the effects of AhR ligands. Depending on the cytokine, treatment with AhR ligands led to a synergistic or antagonistic effect of the TLR-triggered response in MoDCs. Thus, activation of AhR increased the expression of interleukin (IL)-1β, but decreased the expression of IL-12A in TLR-activated MoDCs. Furthermore, TCDD and FICZ may have opposite effects on the expression of cytochrome P4501A1 (CYP1A1) in TLR8-activated MoDCs indicating that the effect of the specific AhR ligand may depend on the presence of the specific TLR agonist. Gene silencing showed that synergistic effects of AhR ligands on TLR-induced expression of IL-1β require a functional AhR and the expression of NF-κB RelB. On the other hand, repression of IL-12A by TCDD and FICZ involved the induction of the caudal type homeobox 2 (CDX2) transcription factor. Additionally, the levels of DC surface markers were decreased in MoDCs by TCDD, FICZ and I3C, but not by kyn. Overall, these data demonstrate that AhR modulates TLR-induced expression of cytokines and DC-specific surface markers in MoDCs involving NFκB RelB and the immune regulatory factor CDX2.
Collapse
Affiliation(s)
- Sarah Kado
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - W L William Chang
- Center for Comparative Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Aimy Nguyen Chi
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monika Wolny
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David M Shepherd
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Christoph F A Vogel
- Center for Health and the Environment, University of Montana, Missoula, MT, 59812, USA. .,Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2526174. [PMID: 27597882 PMCID: PMC4997077 DOI: 10.1155/2016/2526174] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE.
Collapse
|
14
|
Mohammadi-Bardbori A, Akbarizadeh AR, Delju F, Rannug A. Chromatin remodeling by curcumin alters endogenous aryl hydrocarbon receptor signaling. Chem Biol Interact 2016; 252:19-27. [DOI: 10.1016/j.cbi.2016.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 01/01/2023]
|
15
|
Smirnova A, Wincent E, Vikström Bergander L, Alsberg T, Bergman J, Rannug A, Rannug U. Evidence for New Light-Independent Pathways for Generation of the Endogenous Aryl Hydrocarbon Receptor Agonist FICZ. Chem Res Toxicol 2015; 29:75-86. [PMID: 26686552 DOI: 10.1021/acs.chemrestox.5b00416] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of the aryl hydrocarbon receptor (AhR), a conserved transcription factor best known as a target for highly toxic halogenated substances such as dioxin, under normal xenobiotic-free conditions is of considerable scientific interest. We have demonstrated previously that a photoproduct of tryptophan, 6-formylindolo[3,2-b]carbazole (FICZ), fulfills the criteria for an endogenous ligand for this receptor and proposed that this compound is the enigmatic mediator of the physiological functions of AhR. Here, we describe novel light-independent pathways by which FICZ can be formed. The oxidant H2O2 was shown to convert tryptophan to FICZ on its own in the absence of light. The enzymatic deamination of tryptamine yielded indole-3-acetaldehyde (I3A), which then rearranged to FICZ and its oxidation product, indolo[3,2-b]carbazole-6-carboxylic acid (CICZ). Indole-3-pyruvate (I3P) also produced I3A, FICZ, and CICZ. Malassezia yeast species, which constitute a part of the normal skin microbiota, produce a number of AhR activators from tryptophan. We identified both FICZ and CICZ among those products. Formation of FICZ from tryptophan or I3P produces a complex mixture of indole derivatives, some of which are CYP1A1 inhibitors. These can hinder the cellular clearance of FICZ and thereby increase its power as an AhR agonist. We present a general molecular mechanism involving dehydrogenations and oxidative coupling for the formation of FICZ in which I3A is the important precursor. In conclusion, our results suggest that FICZ is likely to be formed systemically.
Collapse
Affiliation(s)
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| | | | | | - Jan Bergman
- Department of Biosciences at Novum, Karolinska Institutet , SE-141 57 Huddinge, Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
16
|
Vogel CFA, Khan EM, Leung PSC, Gershwin ME, Chang WLW, Wu D, Haarmann-Stemmann T, Hoffmann A, Denison MS. Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-κB. J Biol Chem 2014; 289:1866-75. [PMID: 24302727 PMCID: PMC3894361 DOI: 10.1074/jbc.m113.505578] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/26/2013] [Indexed: 01/13/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is involved in the regulation of immune responses, T-cell differentiation, and immunity. Here, we show that inflammatory stimuli such as LPS induce the expression of AhR in human dendritic cells (DC) associated with an AhR-dependent increase of CYP1A1 (cytochrome P4501A1). In vivo data confirmed the elevated expression of AhR by LPS and the LPS-enhanced 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated induction of CYP1A1 in thymus of B6 mice. Inhibition of nuclear factor-κB (NF-κB) repressed both normal and LPS-enhanced, TCDD-inducible, AhR-dependent gene expression and canonical pathway control of RelA-regulated AhR-responsive gene expression. LPS-mediated induction of AhR was NF-κB-dependent, as shown in mouse embryonic fibroblasts (MEFs) derived from Rel null mice. AhR expression and TCDD-mediated induction of CYP1A1 was significantly reduced in RelA-deficient MEF compared with wild type MEF cells and ectopic expression of RelA restored the expression of AhR and induction of CYP1A1 in MEF RelA null cells. Promoter analysis of the human AhR gene identified three putative NF-κB-binding elements upstream of the transcription start site. Mutation analysis of the AhR promoter identified one NF-κB site as responsible for mediating the induction of AhR expression by LPS and electrophoretic shift assays demonstrated that this NF-κB motif is recognized by the RelA/p50 heterodimer. Our results show for the first time that NF-κB RelA is a critical component regulating the expression of AhR and the induction of AhR-dependent gene expression in immune cells illustrating the interaction of AhR and NF-κB signaling.
Collapse
Affiliation(s)
- Christoph F. A. Vogel
- From the Department of Environmental Toxicology
- Center for Health and the Environment
| | | | | | | | - W. L. William Chang
- Center for Comparative Medicine, University of California, Davis, California 95616
| | - Dalei Wu
- the Sanford-Burnham Medical Research Institute, Orlando, Florida 32827
| | | | - Alexander Hoffmann
- the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90025
| | | |
Collapse
|
17
|
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
18
|
Kostyuk V, Potapovich A, Stancato A, De Luca C, Lulli D, Pastore S, Korkina L. Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes. PLoS One 2012; 7:e44472. [PMID: 22952984 PMCID: PMC3431355 DOI: 10.1371/journal.pone.0044472] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/08/2012] [Indexed: 12/31/2022] Open
Abstract
The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL) or to primary cultures of normal human epidermal keratinocytes (NHEK). The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq), and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx) were quantitatively isolated from irradiated SSL. When administered directly to NHEK, low-dose solar UVA+UVB induced time-dependent inflammatory and metabolic responses. To mimic UVA+UVB action, NHEK were exposed to intact or photo-oxidised SSL, Sq or SqPx, 4-hydroxy-2-nonenal (4-HNE), and the product of tryptophan photo-oxidation 6-formylindolo[3,2-b]carbazole (FICZ). FICZ activated exclusively metabolic responses characteristic for UV, i.e. the aryl hydrocarbon receptor (AhR) machinery and downstream CYP1A1/CYP1B1 gene expression, while 4-HNE slightly stimulated inflammatory UV markers IL-6, COX-2, and iNOS genes. On contrast, SqPx induced the majority of metabolic and inflammatory responses characteristic for UVA+UVB, acting via AhR, EGFR, and G-protein-coupled arachidonic acid receptor (G2A).
Collapse
Affiliation(s)
- Vladimir Kostyuk
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
- Biology Department, Belarus State University, Minsk, Belarus
| | - Alla Potapovich
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
- Biology Department, Belarus State University, Minsk, Belarus
| | - Andrea Stancato
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
| | - Chiara De Luca
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
| | - Daniela Lulli
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
| | - Saveria Pastore
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
| | - Liudmila Korkina
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
- * E-mail:
| |
Collapse
|
19
|
Mohammadi-Bardbori A, Bengtsson J, Rannug U, Rannug A, Wincent E. Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR). Chem Res Toxicol 2012; 25:1878-84. [PMID: 22867086 DOI: 10.1021/tx300169e] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several polyphenols have been shown to activate the aryl hydrocarbon receptor (AHR) in spite of the fact that they bind to the receptor with low affinity. The aim of this study was to investigate whether quercetin (QUE), resveratrol (RES), and curcumin (CUR) interfere with the metabolic degradation of the suggested endogenous AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ) and thereby indirectly activate the AHR. Using recombinant human enzyme, we confirmed earlier reported inhibitory effects of the polyphenols on cytochrome P4501A1 (CYP1A1) activity, and inhibition of metabolic clearance of FICZ was documented in FICZ-treated immortalized human keratinocytes (HaCaT). CYP1A1 activity was induced in HaCaT cells by all three compounds, and when they were added together with FICZ, a prolonged activation was observed after a dose-dependent inhibition period. The same pattern of responses was seen at the transcriptional level as determined with a CYP1A1 reporter assay in human liver hepatoma (HepG2) cells. To test the ability of the polyphenols to activate the AHR in the absence of FICZ, the cells were treated in medium, which in contrast to commercial batches of medium did not contain background levels of FICZ. Importantly, AHR activation was only observed in the commercial medium. Taken together, these findings suggest that QUE, RES, and CUR induce CYP1A1 in an indirect manner by inhibiting the metabolic turnover of FICZ. Humans are exposed to these compounds through the diet and nutritional supplements, and we propose that altered systemic levels of FICZ caused by such compounds may have physiological consequences.
Collapse
|
20
|
Esser C. Biology and function of the aryl hydrocarbon receptor: report of an international and interdisciplinary conference. Arch Toxicol 2012; 86:1323-9. [DOI: 10.1007/s00204-012-0818-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 12/31/2022]
|
21
|
Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 2011; 124:1-22. [PMID: 21908767 DOI: 10.1093/toxsci/kfr218] [Citation(s) in RCA: 590] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ah receptor (AhR) is a ligand-dependent transcription factor that mediates a wide range of biological and toxicological effects that result from exposure to a structurally diverse variety of synthetic and naturally occurring chemicals. Although the overall mechanism of action of the AhR has been extensively studied and involves a classical nuclear receptor mechanism of action (i.e., ligand-dependent nuclear localization, protein heterodimerization, binding of liganded receptor as a protein complex to its specific DNA recognition sequence and activation of gene expression), details of the exact molecular events that result in most AhR-dependent biochemical, physiological, and toxicological effects are generally lacking. Ongoing research efforts continue to describe an ever-expanding list of ligand-, species-, and tissue-specific spectrum of AhR-dependent biological and toxicological effects that seemingly add even more complexity to the mechanism. However, at the same time, these studies are also identifying and characterizing new pathways and molecular mechanisms by which the AhR exerts its actions and plays key modulatory roles in both endogenous developmental and physiological pathways and response to exogenous chemicals. Here we provide an overview of the classical and nonclassical mechanisms that can contribute to the differential sensitivity and diversity in responses observed in humans and other species following ligand-dependent activation of the AhR signal transduction pathway.
Collapse
Affiliation(s)
- Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
22
|
Ma Q. Influence of light on aryl hydrocarbon receptor signaling and consequences in drug metabolism, physiology and disease. Expert Opin Drug Metab Toxicol 2011; 7:1267-93. [DOI: 10.1517/17425255.2011.614947] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Potapovich AI, Lulli D, Fidanza P, Kostyuk VA, De Luca C, Pastore S, Korkina LG. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFκB and AhR and EGFR-ERK pathway. Toxicol Appl Pharmacol 2011; 255:138-49. [PMID: 21756928 DOI: 10.1016/j.taap.2011.06.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/24/2011] [Accepted: 06/10/2011] [Indexed: 02/08/2023]
Abstract
Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA+UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure, the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50μM resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR.
Collapse
Affiliation(s)
- Alla I Potapovich
- Tissue Engineering & Skin Pathophysiology Laboratory, Dermatology Research Institute (IDI IRCCS), Via Monti di Creta 104, Rome 00167, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem 2011; 391:1235-48. [PMID: 20868221 DOI: 10.1515/bc.2010.128] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
Collapse
Affiliation(s)
- Josef Abel
- Institut für Umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf gGmbH, Auf'm Hennekamp 50, Düsseldorf, Germany
| | | |
Collapse
|
25
|
Luecke S, Backlund M, Jux B, Esser C, Krutmann J, Rannug A. The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis. Pigment Cell Melanoma Res 2010; 23:828-33. [DOI: 10.1111/j.1755-148x.2010.00762.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Wallace K, Fairhall EA, Charlton KA, Wright MC. AR42J-B-13 cell: an expandable progenitor to generate an unlimited supply of functional hepatocytes. Toxicology 2010; 278:277-87. [PMID: 20685382 DOI: 10.1016/j.tox.2010.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 01/16/2023]
Abstract
Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | |
Collapse
|