1
|
Keyser S, Marcu D, Davidse MTD, Bennett M, Petrik L, Maree L. Human sperm as an in vitro toxicity model: a versatile tool for assessing the risk of environmental contaminants. Arch Toxicol 2025:10.1007/s00204-025-04035-x. [PMID: 40317336 DOI: 10.1007/s00204-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/19/2025] [Indexed: 05/07/2025]
Abstract
Contaminants of emerging concern (CECs) pose a significant threat to human and ecosystem health due to their persistence, bioaccumulation in higher trophic levels, and potential toxicity. While in vivo models are commonly used for toxicity screening, developing alternative in vitro techniques for rapid environmental risk assessment is essential. Spermatozoa, with their compartmentalized structure, measurable characteristics and sensitivity to environmental changes, offer potential as an in vitro model for toxicity screening. We evaluated the impact of selected CECs, including pharmaceuticals and pesticides, on sperm function in highly motile sperm subpopulations selected from donor semen. Standardised protocols were applied to assess various sperm functional parameters after 1-4 h of exposure to either individual or a mixture of chemicals. Our findings revealed that total motility is insufficient to detect subtle toxic effect. More responsive measures, such as sperm kinematics, induced hyperactivation, viability, mitochondrial membrane potential (MMP) and presence of reactive oxygen species (ROS) should be assessed to elucidate the effect of a toxic environment on sperm function. Most chemicals exerted a dose-response effect on sperm parameters, with the higher concentrations resulting in the most negative effects. The inherent sensitivity of human spermatozoa to oxidative stress, mitochondrial damage and energy metabolism, makes them a robust model for assessing toxicity. These features highlight their utility as an alternative cellular model for evaluating CECs and advancing risk assessment methodologies.
Collapse
Affiliation(s)
- Shannen Keyser
- School of Nursing, Faculty of Community and Health Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Daniel Marcu
- School of Biological Sciences, University of East Anglia, Norwhich, NR4 7TJ, UK
| | - Morgan T D Davidse
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Monique Bennett
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
2
|
Osipova VP, Kolyada MN, Polovinkina MA, Kolumbet AD, Ponomareva EN, Velikorodov AV. Antioxidant activity and protective effect of hydroxy derivatives of chalcones for sterlet (Acipenser ruthenus, Linnaeus, 1758) sperm. Cryobiology 2025; 118:105193. [PMID: 39725257 DOI: 10.1016/j.cryobiol.2024.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
The aim of this work is to study the effect of adding hydroxy derivatives of chalcones to the basic cryomedium on the ability of sterlet sperm to utilize superoxide and hydrogen peroxide, the intensity of lipid peroxidation of male fish germ cells, and their viability both before cryopreservation and after 3 days of freezing at liquid nitrogen temperature. The ability of phenolic derivatives of chalcones to increase the superoxide dismutase and catalase activities of sterlet sperm and to reduce the intensity of lipid peroxidation has been established. The antioxidant activity of the derivatives exceeds the effect of Trolox, which inhibits the functioning of the enzyme component of the antioxidant protection of fish sperm and promotes lipid peroxidation of fish sperm before cryopreservation. A beneficial effect of hydroxy derivatives of chalcones on the motility parameters of thawed sperm has been shown, indicating their ability to increase the cryoresistance of sperm in such a promising aquaculture species as sterlet.
Collapse
Affiliation(s)
- V P Osipova
- Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences, 41 Chekhova Str., 344006, Rostov-on-Don, Russia.
| | - M N Kolyada
- Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences, 41 Chekhova Str., 344006, Rostov-on-Don, Russia.
| | - M A Polovinkina
- Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences, 41 Chekhova Str., 344006, Rostov-on-Don, Russia.
| | - A D Kolumbet
- Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences, 41 Chekhova Str., 344006, Rostov-on-Don, Russia.
| | - E N Ponomareva
- Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences, 41 Chekhova Str., 344006, Rostov-on-Don, Russia.
| | | |
Collapse
|
3
|
Kolyada MN, Osipova VP, Pimenov YT. Oxidative stress and cryoresistance of sturgeon sperm: A review. Cryobiology 2023; 113:104594. [PMID: 37848167 DOI: 10.1016/j.cryobiol.2023.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Currently, the majority of sturgeons are relict fishes of high economic value yet endangered with extinction. Cryopreservation of sperm has great potential in fish farming and conservation, but the problem of low cryoresistance of sturgeon sperm has not yet been solved. The goal of this work was to review current literature data on the causes of low tolerance of sturgeon sperm to cryodamage. The influence of cryopreservation on the parameters of physiology and metabolism of sturgeon sperm (morphology and fine ultrastructure, mobility and fertilization ability, integrity of the plasma membrane, protein, lipid and metabolite profiles, antioxidant status, DNA damage), as well as on biomarkers of oxidative stress (lipids peroxidation levels and carbonyl derivatives of proteins) is discussed. Since the development of oxidative stress is an important mechanism of sperm cryodamage induction, the review presents the literature on the role of oxygen-derived species in damage of sturgeon reproductive cells caused by cryopreservation. Particular attention is paid to the system of antioxidant protection of sturgeon seminal plasma and spermatozoa, represented by antioxidant enzymes and low molecular weight antioxidants capable of utilizing various reactive forms of oxygen and nitrogen. The review discusses the results of lipidomic and proteomic studies of sturgeon sperm, which made it possible to obtain new data on the lipid composition of cell membranes, to detect proteins involved in the protection of sturgeon spermatozoa from oxidative damage during cryopreservation. This review presents the use of «omics» technology to elucidate the mechanism of cryodamage in sturgeon sperm. Additionally, the review summarizes information on the unique anatomical, morphological, biochemical, and physiological features of sturgeon sperm, which may be associated with low cryoresistance of sturgeon, in order to establish prospects for further research on improving the methods of the conservation of sperm of these threatened species.
Collapse
Affiliation(s)
- Margarita N Kolyada
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - Viсtoria P Osipova
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - Yuri T Pimenov
- Astrakhan State Technical University, 16 Tatisheva str., 414056, Astrakhan, Russia.
| |
Collapse
|
4
|
Chamani M, Naseri B, Rafiee-Dastjerdi H, Emaratpardaz J, Ebadollahi A, Palla F. Some Physiological Effects of Nanofertilizers on Wheat-Aphid Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2602. [PMID: 37514217 PMCID: PMC10385016 DOI: 10.3390/plants12142602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
The increasing use of nanofertilizers in modern agriculture and their impact on crop yield and pest management require further research. In this study, the effects of nano-Fe, -Zn, and -Cu (which are synthesized based on nanochelating technology), and urea (N) fertilizers on the antioxidant activities of wheat plants (cv. Chamran), and the wheat green aphid Schizaphis graminum (Rondani) are investigated. The authors observed the highest levels of phenolics in non-infested nano-Zn-treated plants (26% higher compared with control). The highest H2O2 levels are in the infested and non-infested nano-Zn-treated and infested nano-Fe-treated plants (in infested nano-Zn and nano-Fe treated plants, 18% and non-infested nano-Zn-treated plants, 28% higher compared with control). The highest peroxidase (POX) activity is observed in the infested and non-infested N-treated and non-infested water-treated plants (almost 14%, 37%, and 46% higher than control, respectively). The lowest activity is in the infested plants' nano-Zn and -Fe treatments (almost 7 and 5 folds lower compared to the control, respectively). The highest and lowest catalase (CAT) activity are in the infested N-treated plants (almost 42% higher than control) and water-treated plants, respectively. The infested nano-Zn, -Fe, -Cu and Hoagland-treated plants showed the highest superoxide dismutase (SOD) activity. Regarding the antioxidant enzyme activities of S. graminum, the highest POX activity is in the nano-Cu treatment (more than two folds higher compared with control); the highest CAT and SOD activities are in the nano-Cu and -Zn treatments. It can be concluded that the application of nanofertilizers caused increasing effects on the wheat plant's antioxidant system and its resistance to S. graminum.
Collapse
Affiliation(s)
- Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Bahram Naseri
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Hooshang Rafiee-Dastjerdi
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Javid Emaratpardaz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tabriz, Tabriz 5137779619, Iran
| | - Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran
| | - Franco Palla
- Department of Biological, Chemical and Pharmacological Sciences and Technology-Botany Section, The University of Palermo, 38-90123 Palermo, Italy
| |
Collapse
|
5
|
Jamil Emon F, Rohani MF, Sumaiya N, Tuj Jannat MF, Akter Y, Shahjahan M, Abdul Kari Z, Tahiluddin AB, Goh KW. Bioaccumulation and Bioremediation of Heavy Metals in Fishes-A Review. TOXICS 2023; 11:510. [PMID: 37368610 DOI: 10.3390/toxics11060510] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/29/2023]
Abstract
Heavy metals, the most potent contaminants of the environment, are discharged into the aquatic ecosystems through the effluents of several industries, resulting in serious aquatic pollution. This type of severe heavy metal contamination in aquaculture systems has attracted great attention throughout the world. These toxic heavy metals are transmitted into the food chain through their bioaccumulation in different tissues of aquatic species and have aroused serious public health concerns. Heavy metal toxicity negatively affects the growth, reproduction, and physiology of fish, which is threatening the sustainable development of the aquaculture sector. Recently, several techniques, such as adsorption, physio-biochemical, molecular, and phytoremediation mechanisms have been successfully applied to reduce the toxicants in the environment. Microorganisms, especially several bacterial species, play a key role in this bioremediation process. In this context, the present review summarizes the bioaccumulation of different heavy metals into fishes, their toxic effects, and possible bioremediation techniques to protect the fishes from heavy metal contamination. Additionally, this paper discusses existing strategies to bioremediate heavy metals from aquatic ecosystems and the scope of genetic and molecular approaches for the effective bioremediation of heavy metals.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nusrat Sumaiya
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Fatema Tuj Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yeasmin Akter
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao 7500, Philippines
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
6
|
Özgür ME, Ulu A, Gürses C, Özcan İ, Noma SAA, Köytepe S, Ateş B. The Cytotoxicity, DNA Fragmentation, and Decreasing Velocity Induced By Chromium(III) Oxide on Rainbow Trout Spermatozoa. Biol Trace Elem Res 2023; 201:968-983. [PMID: 35368229 DOI: 10.1007/s12011-022-03211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/18/2022] [Indexed: 01/21/2023]
Abstract
The present study aimed to determine the cytotoxicity of chromium(III) oxide micro particles (Cr2O3-Ps) in rainbow trout (Oncorhynchus mykiss) spermatozoa. Firstly, Cr2O3-Ps were synthesized and structurally characterized the surface, morphological for particle size and thermal properties. In addition, its structural and elemental purity was determined using energy-dispersive X-ray (EDX) spectrum and elemental maps. Structural purity, thermal properties, and stability of Cr2O3-Ps were also examined in detail by performing thermal analysis techniques. The cytotoxicity of Cr2O3-Ps was measured by the observation of velocities, antioxidant activities, and DNA damages in rainbow trout spermatozoa after exposure during 3 h in vitro incubation. The straight line velocity (VSL), the curvilinear velocity (VCL), and the angular path velocity (VAP) of spermatozoa decreased after exposure to Cr2O3-Ps. While the superoxide dismutase (SOD) and the catalase (CAT) decreased, the lipid peroxidation increased in a dose-dependent manner. However, the total glutathione (tGSH) was not affected in this period. DNA damages were also determined in spermatozoa using Comet assay. According to DNA in tail (%) data, DNA damages have been detected with gradually increasing concentrations of Cr2O3-Ps. Furthermore, all of class types which are categorized as the intensity of DNA fragmentation has been observed between 50 and 500 µg/L concentrations of Cr2O3-Ps exposed to rainbow trout spermatozoa. At the end of this study, we determined that the effective concentrations (EC50) were 76.67 µg/L for VSL and 87.77 µg/L for VCL. Finally, these results about Cr2O3-Ps may say to be major risk concentrations over 70 µg/L for fish reproduction in aquatic environments.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- Department of Aquaculture, Vahap Küçük Vocational High School, Malatya Turgut Özal University, Malatya, Turkey.
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Canbolat Gürses
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - İmren Özcan
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Samir Abbas Ali Noma
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludağ University, Bursa, Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| |
Collapse
|
7
|
Garncarek M, Dziewulska K, Kowalska-Góralska M. The Effect of Copper and Copper Oxide Nanoparticles on Rainbow Trout ( Oncorhynchus mykiss W.) Spermatozoa Motility after Incubation with Contaminants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8486. [PMID: 35886337 PMCID: PMC9319033 DOI: 10.3390/ijerph19148486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023]
Abstract
The study aimed to analyse the effect of copper nanoparticles of similar particle size of Cu and CuO and copper ions (CuSO4) on the motility parameters of rainbow trout spermatozoa after long-term exposure and compare its harmful effect. Nanoproducts of Cu and CuO (Cu NPs, CuO NPs) of primary particle size around 50 nm and ionic solution of CuSO4 were used for the study. Suspension of concentrations 0, 1, 5, 10, 25, and 50 mg Cu·L-1 of Cu NPs, CuO NPs, and CuSO4 was dissolved in an artificial seminal plasma. Milt was mixed with the prepared solution and stored in a fridge, at 6 °C, for 96 h. At the defined incubation time, spermatozoa were activated for movement, and six motility parameters were evaluated using an automated system (CASA). Increasing concentrations of Cu NPs, CuO NPs, and CuSO4 in an incubation medium in parallel decreased the percentage of motile sperm (MOT). The effect of Cu NPs and ionic copper on MOT was more deleterious than that of CuO NPs. Copper products slightly increased the velocity (VCL) compared to the control, particularly up to 24 h of storage. Linearity (LIN) was improved by three tested products, particularly CuO NPs. Generally, the motility duration was prolonged when the sperm was incubated with copper products compared to the control. Nanoproducts made from different compounds of the same elements of similar particle size have a different effect on cells. Cu NPs were more harmful than CuO NPs. The effect of Cu NPs was similar to an ionic form of CuSO4. When incubated, the copper nanoproducts and ionic form exert a slightly positive effect on spermatozoa velocity, linearity, and motility duration, particularly up to 24 h of storage.
Collapse
Affiliation(s)
- Małgorzata Garncarek
- Institute of Biology, Doctoral School, University of Szczecin, 70-383 Szczecin, Poland;
| | - Katarzyna Dziewulska
- Department of Hydrobiology, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Monika Kowalska-Góralska
- Department of Limnology and Fishery, Institute of Animal Breeding, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| |
Collapse
|
8
|
Chronic Toxic Effects of Waterborne Mercury on Silver Carp (Hypophthalmichthys molitrix) Larvae. WATER 2022. [DOI: 10.3390/w14111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mercury (Hg) is a kind of heavy metal pollutant widely existing in the aquatic environment, and it is also recognized to have a highly toxic effect on fish. In this study, silver carp (Hypophthalmichthys molitrix) larvae were exposed to 0 (control), 1, 5, and 10 μg/L Hg2+ for 2 weeks. Antioxidant ability, neurotoxicity, and thyroid hormones (THs) content were evaluated. In comparison with the control, the superoxide dismutase (SOD) activity and the glutathione (GSH) activity were lower in silver carp exposed to 10 μg/L Hg2+. The lowest catalase (CAT) activity was found in the 10 μg/L Hg2+, while malondialdehyde (MDA) content was not significantly different among all groups. Compared with the control, monoamine oxidase (MAO) activity and nitric oxide (NO) content were significantly higher in the 10 μg/L Hg2+, while acetylcholinesterase (AChE) activity significantly decreased. Compared with the control, triiodothyronine (T3) content was significantly higher in the 1 μg/L Hg2+ and significantly lower in the 10 μg/L Hg2+; the 1 μg/L and 5 μg/L Hg2+ groups had significantly higher thyroxine (T4) content than the other groups. In the 1 μg/L Hg2+, the integrated biomarker response (IBR) index value was the highest. In summary, exposure to Hg could decrease the antioxidant ability, cause changes in neurotoxic parameters, and induce disorders of the thyroid hormone system in silver carp larvae. The results of this study may contribute to the understanding of the adverse effects of chronic mercury poisoning on fish.
Collapse
|
9
|
Taslima K, Al-Emran M, Rahman MS, Hasan J, Ferdous Z, Rohani MF, Shahjahan M. Impacts of heavy metals on early development, growth and reproduction of fish - A review. Toxicol Rep 2022; 9:858-868. [PMID: 36561955 PMCID: PMC9764183 DOI: 10.1016/j.toxrep.2022.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Heavy metals pollution causes a threat to the aquatic environment and to its inhabitants when their concentrations exceed safe limits. Heavy metals cause toxicity in fish due to their non-biodegradable properties and their long persistence in the environment. This review investigated the effects of heavy metals on early development, growth and reproduction of fish. Fish embryos/larvae and each developmental stage of embryo respond differently to the intoxication and vary from species to species, types of metals and their mode of actions, concentration of heavy metals and their exposure time. Many of the heavy metals are considered as essential nutrient elements that positively improve the growth and feed utilization of fishes but upon crossing the maximum tolerable limit these metals cause not only a hazard to fish health but also to human consumers and the disruption of ecological systems. Reduced gonadosomatic index (GSI), fecundity, hatching rate, fertilization success, abnormal shape of reproductive organs, and finally failure of reproduction in fish have been attributed to heavy metal toxicity. In summary, this review sheds light on the manipulation of fish physiology by heavy metals and seeks to raise sensitivity to the prevention and control of aquatic environmental contamination, particularly from heavy metals.
Collapse
Affiliation(s)
- Khanam Taslima
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Al-Emran
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Shadiqur Rahman
- Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zannatul Ferdous
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
10
|
Yaripour S, Kekäläinen J, Huuskonen H, Janhunen M, Kortet R. Ultra-acute exposure to cadmium does not impair whitefish sperm motility. JOURNAL OF FISH BIOLOGY 2021; 99:1130-1134. [PMID: 33934348 DOI: 10.1111/jfb.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) exposure can impair the traits of aquatic animals associated with reproduction. In natural lakes Cd is typically detected at concentrations below 0.001 mg l-1 . The authors investigated the impact of ultra-acute Cd exposure on sperm motility in European whitefish (Coregonus lavaretus). They activated sperm with water containing various nominal concentrations of Cd and recorded sperm motility parameters. Only the highest Cd concentration (500 mg l-1 ) was associated with decreased sperm swimming velocity and increases in both the percentage of static cells and curvature of the sperm swimming trajectory. The results indicate that environmentally realistic concentrations of Cd during the sperm motility activation are not critically harmful to male C. lavaretus fertilization potential.
Collapse
Affiliation(s)
- Sareh Yaripour
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Hannu Huuskonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Janhunen
- Natural Resources Institute Finland (Luke), Aquatic Population Dynamics, Joensuu, Finland
| | - Raine Kortet
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
11
|
Pinto GL, da Silva Castro J, Val AL. Copper and cadmium impair sperm performance, fertilization and hatching of oocytes from Amazonian fish Colossoma macropomum. CHEMOSPHERE 2021; 266:128957. [PMID: 33218723 DOI: 10.1016/j.chemosphere.2020.128957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
The contamination of aquatic environments by transition metals can have a direct influence on the reproductive process of several organisms in the aquatic biota. This study aimed to evaluate the effect of cadmium and copper on the sperm of tambaqui (Colossoma macropomum). Male (n = 4) and female (n = 4) specimens of C. macropomum were induced to spermiation and ovulation, with sperm being activated in the following media: 0; 0.6; 1.2 and 1.8 mg/L of cadmium (CdCl2) and 0; 0.4; 0.8 and 1.2 mg/L of copper (CuCl2). Sperm quality was assessed through time (s) and motility rate (%), superoxide dismutase (SOD) and glutathione S-transferase (GST) activities, lipoperoxidation levels (LPO), and morphological characteristics. In parallel, the effects of these metals on the rate of fertilization and hatching of the oocytes were evaluated. The duration and motility rate of sperm were longer in the control treatment, 85.67 ± 11.01 s; 90 ± 0.01%, and progressively decreased to 44.67 ± 4.16 s and 60 ± 5%, respectively, in concentrations of 1.8 mg/L (44.67 ± 4.16 s; 60 ± 5%) of CdCl2 and to 65.67 ± 3.30 s; 70 ± 5%, respectively, in concentrations of 0.8 mg/L of CuCl2. We observed an increase in the activity of the SOD enzyme in sperm cells exposed to 1.2 mg/L of CdCl2. The LPO levels were increased significantly in sperm cells exposed to 1.2 and 1.8 mg/L of CdCl2 and 0.8 mg/L of CuCl2. Fertilization and hatching were severely impaired in the presence of Cd and Cu. These data indicate that environments contaminated with cadmium and copper harm the gametes of C. macropomum.
Collapse
Affiliation(s)
- Gustavo Lemes Pinto
- Undergratuate in Biological Sciences, Federal University of Santa Catarina -UFSC, St. Agronomic Engineer Andrei Cristian Ferreira, s/n - Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Jonatas da Silva Castro
- Postgraduate Program in Aquaculture, Nilton Lins University, Laranjeiras Park, Professor Nilton Lins Avenue, 3259 - Flores, Manaus, AM, 69058-030, Brazil; Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National Institute for Research of the Amazon (INPA), André Araújo Avenue, 2.936 - Petrópolis, Manaus, AM, 69067-375, Brazil.
| | - Adalberto Luis Val
- Postgraduate Program in Aquaculture, Nilton Lins University, Laranjeiras Park, Professor Nilton Lins Avenue, 3259 - Flores, Manaus, AM, 69058-030, Brazil; Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National Institute for Research of the Amazon (INPA), André Araújo Avenue, 2.936 - Petrópolis, Manaus, AM, 69067-375, Brazil.
| |
Collapse
|
12
|
Kerekes F, Kollár T, Gazsi G, Kása E, Urbányi B, Csenki-Bakos Z, Horváth Á. Investigation of Fertilizing Capacity of Zebrafish ( Danio rerio) Sperm Exposed to Heavy Metals. Dose Response 2020; 18:1559325820919597. [PMID: 32425723 PMCID: PMC7218303 DOI: 10.1177/1559325820919597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 11/21/2022] Open
Abstract
The objective of our study was to investigate the effects of heavy metals on the fertilizing capacity of exposed zebrafish sperm, on embryonic survival, and on occurrence of embryonic deformities following fertilization with exposed sperm. It is important to test heavy metals because they are well-known pollutants. Sperm of externally fertilizing species can get in contact with pollutants found in aquatic environment. Zebrafish sperm, despite its advantages, has seldom been used in in vitro toxicological studies and no reports are available regarding the fertilizing capacity of exposed sperm. Zebrafish sperm was stripped and exposed to concentrations of the tested heavy metals (Zn2+, Cd2+, Cr3+, Cu2+, Ni2+, Hg2+, As3+) for 30 or 120 minutes. Calculated half-maximal effective concentration (EC50) values do not differ significantly from those calculated for motility for any of the tested heavy metals, which means fertilization rate can indicate the toxicity of the given substance following exposure of sperm. Thus, its application as in vitro toxicological end point is reasonable. The survival of embryos and embryonic development have not been affected by the exposure of spermatozoa, which means all alterations in spermatozoa caused by heavy metals have been expressed before 24 hours post fertilization.
Collapse
Affiliation(s)
- Flóra Kerekes
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Tímea Kollár
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Gyöngyi Gazsi
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Eszter Kása
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | | | - Ákos Horváth
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| |
Collapse
|
13
|
Aziz N, Butt A, Elsheikha HM. Antioxidant enzymes as biomarkers of Cu and Pb exposure in the ground spiders Lycosa terrestris and Pardosa birmanica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110054. [PMID: 31864121 DOI: 10.1016/j.ecoenv.2019.110054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal exposure induces oxidative stress in terrestrial organisms, which they counteract via activation of antioxidant biomarkers. The present study investigated the effects of copper (Cu) and lead (Pb) on the total antioxidant capacity (TAC) and antioxidant enzymes such as Catalase (CAT), Glutathione reductase (GR), Superoxide dismutase (SOD) and Glutathione peroxidase (GPX) in two spider species, namely Lycosa terrestris and Pardosa birmanica. The spiders were exposed to Cu and Pb separately (10 ppm) or in combination (10 ppm each) via two different exposure routes (i.e. food and soil) for 10, 20 and 40 days. The results showed that metal accumulation and antioxidant biomarker responses in spiders were metal- and species-dependent. Also, the levels of all antioxidant biomarkers increased significantly with increasing exposure time and metal load in the bodies of spiders via both exposure routes. The significant inhibition of TAC and antioxidant enzyme activities was only observed in single Pb treatment through soil exposure. In L. terrestris, the activities of detoxification enzymes and TAC were significantly enhanced on single Cu exposure than Pb via both exposure routes. However, in P. birmanica consistent variation among antioxidant parameters were observed depending on the metal load and exposure routes. The combined metal exposure caused more pronounced increase in the level of antioxidants compared to single metal exposure in both species, mainly via food exposure. These results suggest that the antioxidant enzymes and TAC are sensitive to single and combined metal exposure via both uptake routes. These data show that antioxidant parameters can be used potential biomarkers of oxidative stress associated with metal exposure and for monitoring environmental health using spiders as bioindicators.
Collapse
Affiliation(s)
- Nida Aziz
- Department of Zoology, University of the Punjab, Lahore, Pakistan; Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Abida Butt
- Department of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
14
|
Özgür M, Maraş Z, Erdoğan S. The relationship between semen seminal plasma ions and sperm cell velocities of wild-caught longspine scraper, Capoeta trutta. Arch Anim Breed 2019; 62:557-564. [PMID: 31807667 PMCID: PMC6852850 DOI: 10.5194/aab-62-557-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
In this study, semen seminal plasma contents and the motility of sperm cells were determined in Capoeta trutta via a computer-assisted sperm analysis system. In addition, we evaluated the relationship between semen seminal plasma ions and the velocities of sperm cells. Although the predominant ions were K ( 206.84 ± 20.61 mg L- 1 ) and Na ( 128.06 ± 23.82 mg L- 1 ) in the semen seminal plasma, Ca ( 14.05 ± 4.13 mg L- 1 ) and Mg ( 3.35 ± 0.44 mg L- 1 ) were not predominate according to our results. However, partially strong relationships between the curvilinear velocity value (VCL) and K (R 2 = 0.67 ; p < 0.05 ) were found, while it was moderate with Mg (R 2 = 0.48 ; p < 0.05 ). There was a weak relationship with Na (R 2 = 0.17 ; p < 0.05 ) and Ca (R 2 = 0.34 ; p < 0.05 ). In our results, while the trace metals were determined as Zn > Al > B > Li > Cu in semen seminal plasma, they are not correlated with sperm cell velocities. Finally, we hope that the present information on the motility parameters of Capoeta trutta in this paper will eventually help artificial insemination in reproduction practices.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- Department of Aquaculture, Faculty of Fishery, Malata Turgut
Özal University, 44210, Malatya, Turkey
| | - Zeynep Maraş
- Department of Analytical Chemistry, Faculty of Pharmacy,
İnönü University, 44280, Malatya, Turkey
| | - Selim Erdoğan
- Department of Analytical Chemistry, Faculty of Pharmacy,
İnönü University, 44280, Malatya, Turkey
| |
Collapse
|
15
|
Holt WV, Satake N. Making the most of sperm activation responses: experiments with boar spermatozoa and bicarbonate. Reprod Fertil Dev 2019. [PMID: 29514735 DOI: 10.1071/rd17476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Attempting to extract useful and reliable information about semen quality and its fertility potential remains a difficult exercise, partly because the sperm heterogeneity within samples often renders simple statistical analyses rather meaningless. In fact, a mean and standard deviation may reflect neither the very fast swimming activities of the most active cells nor the slow and sluggish activities of others. Herein we propose that the information value within semen samples can be maximised if current knowledge about sperm activation mechanisms is exploited before undertaking the measurements. We explain, using boar semen as an example, that estimating and defining relative sperm subpopulation sizes, after activation by bicarbonate, provides a means of quantifying sperm quality. Although such estimates may indeed be related to in vivo fertility, the general approach also suggests potential new avenues that could be exploited for the elaboration of novel in vitro tests for the characterisation of toxic environmental chemicals and, indeed, to reduce the number of animals used in such testing programs.
Collapse
Affiliation(s)
- William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK
| | - Nana Satake
- School of Veterinary Sciences, Faculty of Science, University of Queensland, Gatton Campus, Gatton, Qld 4343, Australia
| |
Collapse
|
16
|
Kowalska-Góralska M, Dziewulska K, Kulasza M. Effect of copper nanoparticles and ions on spermatozoa motility of sea trout (Salmo trutta m. Trutta L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:11-17. [PMID: 30908993 DOI: 10.1016/j.aquatox.2019.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Nanoproducts are being increasingly used in various industrial products, leading to a greater risk of water pollution through their discharge into environment as production byproducts. Increased levels of environmental pollution with nanoproducts pose a threat to all living organisms. Nanopollutants may have toxic effects on gametes and fertilization process in species with external fertilization, thereby reducing effectiveness of reproduction or greatly impairing it. The objective of the present study was to determine the effect of copper nanoparticles (Cu and CuO) and copper ions (CuSO4·5H2O) on the spermatozoa motility of sea trout and compare their harmful effects. Copper nanoparticles (NPs) of primary particle size <100 nm and CuO NPs of particle size <50 nm as well as a solution of CuSO4·5H2O were used for the study. Concentration of the products tested (CuNPs, CuONPs, and CuSO4·5H2O) was expressed as mg Cu L-1 in the media regardless of dissolution and aggregation. A suspension with concentration up to 500 mg L-1 in an aquatic environment was tested. Spermatozoa motility under direct contact with copper at 10 s post activation was evaluated using an automated system (CASA). Copper products in an aqueous environment primarily cause a reduction of spermatozoa velocity (VCL). A significant reduction of velocity in CuSO4·5H2O salt solution occurred at concentration starting from 8 mg L-1, whereas in solutions containing CuNPs and CuONPs this process is observed from 50 mg L-1. Reduction of percentage of motile spermatozoa occurred in CuNPs from a concentration of 125 mg L-1, while in CuONPs and CuSO4·5H2O, the effect began at concentration from 250 mg L-1. In a solution of CuSO4·5H2O at a concentration of 500 mg L-1, strong agglutination of sperm cells occurred and movement ceased (immobilization IC100). Exposure to CuONPs decreased the motility rate to below IC50, while for CuNPs, the motility rate reached 80%. Changes in linearity (LIN) and amplitude of head displacement (ALH) differed according to Cu products. Cu as CuSO4·5H2O and CuONPs impaired the LIN, while CuNPs lowered ALH. Duration of motility increased at low CuSO4·5H2O concentration. The effect of Cu ion on sea trout spermatozoa motility was more harmful than that of copper nanoparticles. The various copper products used affected motility parameters differently. Contamination of aqueous environment with copper primarily caused reduction in male gamete velocity, which may impair reproduction. Various copper products had different effects on LIN, ALH, and motility duration, which can also affect fertilization.
Collapse
Affiliation(s)
- Monika Kowalska-Góralska
- Department of Hydrobiology and Aquaculture, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Katarzyna Dziewulska
- Department of Hydrobiology and General Zoology, Faculty of Biology, University of Szczecin, Szczecin, Poland; Centre of Molecular Biology and Biotechnology, University of Szczecin, Szczecin, Poland
| | - Mateusz Kulasza
- Department of Hydrobiology and General Zoology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
17
|
Kovacik A, Tirpak F, Tomka M, Miskeje M, Tvrda E, Arvay J, Andreji J, Slanina T, Gabor M, Hleba L, Fik M, Jambor T, Cisarova M, Massanyi P. Trace elements content in semen and their interactions with sperm quality and RedOx status in freshwater fish Cyprinus carpio: A correlation study. J Trace Elem Med Biol 2018; 50:399-407. [PMID: 30262311 DOI: 10.1016/j.jtemb.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 11/24/2022]
Abstract
Objective of the present study was to investigate interactions between trace elements content and RedOx status, as well as sperm quality parameters (motility features, DNA fragmentation) in fish spermatozoa in natural conditions. Reproductively mature male freshwater fish (n = 16) of Cyprinus carpio breed were used in the study. Trace elements content was determined in fish milt samples by inductively-coupled plasma optical emission spectrometry (ICP-OES) and by cold-vapor atomic absorption spectroscopy (CV-AAS). Sperm quality evaluation was realized by computer-assisted sperm analysis (CASA) quantifying several parameters: concentration, total motility, progressive motility, distance average path, distance curved line, distance straight line, velocity average path, velocity curved line, velocity straight line, straightness, linearity, amplitude of lateral head displacement and beat cross frequency. The general scheme of descending concentrations of trace metals in semen samples was following: Zn > Fe > Cu > As > Sr > Ni > Mn > Se > Pb > Cr > Cd > Hg. Total motility of spermatozoa was relatively high (91.45%), however progressive motility was not even half of this value (39.47%). Sperm DNA fragmentation values were relatively low (4.00-6.29%). The percentage of immotile spermatozoa showed a significant correlation with all RedOx status parameters and also with DNA fragmentation. Positive statistically significant correlations were observed between trace elements (Mn, Se, Sr, and Zn) and some qualitative spermatozoa parameters (velocity and distance parameters). Cu and Hg content shows similar negative associations with progressive motility. Hg also interacted with production of malondialdehyde. Overall, the present study suggests application of multi-component mixtures of environmentally related trace elements concentrations when assessing the potential reproductive risk.
Collapse
Affiliation(s)
- Anton Kovacik
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Filip Tirpak
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marian Tomka
- Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Michal Miskeje
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic.
| | - Eva Tvrda
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Julius Arvay
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jaroslav Andreji
- Department of Poultry Science and Small Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Tomas Slanina
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Michal Gabor
- Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Lukas Hleba
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Martin Fik
- Department of Poultry Science and Small Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Tomas Jambor
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Miroslava Cisarova
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, Trnava, 917 01, Slovak Republic.
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
18
|
Kollár T, Kása E, Csorbai B, Urbányi B, Csenki-Bakos Z, Horváth Á. In vitro toxicology test system based on common carp (Cyprinus carpio) sperm analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1577-1589. [PMID: 30043206 DOI: 10.1007/s10695-018-0541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The effect of heavy metals on the motility parameters of common carp sperm was investigated. In vitro test systems are widespread in ecotoxicology, and fish sperm can be a suitable model. For this reason, studies had been carried out in this topic; however, the published methods are not standard in several aspects (donor species, measured endpoint, etc.). In this study, a previously published toxicology-aimed sperm analysis protocol was tested to examine the effect of heavy metals (arsenic, cadmium, chromium, copper, mercury, nickel, zinc,) on common carp sperm. According to our results, PMOT is the most sensitive of the investigated parameters: dose-response was observed in case of each metal at low concentrations, already after 30 min of exposure. VCL was less sensitive: lower effects were observed at the same concentrations compared to PMOT. Among the examined parameters, LIN was the least affected: a dose-response was observed only in case of arsenic and mercury. The same sensitivity of motility parameters was observed on zebrafish sperm previously. Moreover, we found that PMOT, VCL, and LIN of common carp sperm were affected at the same concentrations as it had been observed in zebrafish, when the identical analytical protocol was applied. The only exception was As3+, where common carp sperm proved to be more sensitive: lower concentrations already reduced its motility parameters. Consequently, PMOT of common carp sperm is an accurate and fast bioindicator of aquatic pollution.
Collapse
Affiliation(s)
- Tímea Kollár
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, H-2100, Hungary.
| | - Eszter Kása
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, H-2100, Hungary
| | - Balázs Csorbai
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, H-2100, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, H-2100, Hungary
| | - Zsolt Csenki-Bakos
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, H-2100, Hungary
| | - Ákos Horváth
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, H-2100, Hungary
| |
Collapse
|
19
|
Jiang D, Yan S. Effects of Cd, Zn, or Pb Stress in Populus alba berolinensis on the Antioxidant, Detoxifying, and Digestive Enzymes of Lymantria dispar. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1323-1328. [PMID: 29878092 DOI: 10.1093/ee/nvy084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 05/28/2023]
Abstract
For investigating the physiological responses of herbivores to the heavy metal-stressed woody host plants, the activities of antioxidant, detoxifying, and digestive enzymes in the gypsy moth larvae, Lymantria dispar, that were fed with different heavy metal-stressed poplar seedling (Populus alba berolinensis) leaves were studied. The heavy metal treatments included Cd-treated pot soil (1.5 mg/kg), Zn-treated pot soil (500 mg/kg), and Pb-treated pot soil (500 mg/kg), plus an untreated pot soil as the control. Our results showed that compared with the untreated control, superoxide dismutase (SOD) and catalase (CAT) activities in Cd or Zn treatment group were gradually suppressed with the increases of larval ages, but Pb treatment had no significant effects on SOD activities and significantly increased the CAT activities in both fourth and fifth instar larvae; acid phosphatase (ACP) activities were gradually activated and alkaline phosphatase (AKP) activities were gradually inhibited with the increases of larval ages in Cd or Pb treatment group, but Zn treatment significantly increased the activities of ACP and AKP both in fourth and in fifth instar larvae. All three heavy metals tested did not show any significant effects on the amylase and protease activity in the fourth instar larvae but increased their activities in fifth instar larvae. These results suggest that antioxidant, detoxifying, and digestive enzymes constituted the basic defense system for gypsy moth larvae to resist the toxicity originated from the accumulated Cd, Zn, or Pb in poplar leaves, but their defense level varied with metals investigated and larval developmental stages.
Collapse
Affiliation(s)
- Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
20
|
Özgür ME, Balcıoğlu S, Ulu A, Özcan İ, Okumuş F, Köytepe S, Ateş B. The in vitro toxicity analysis of titanium dioxide (TiO 2) nanoparticles on kinematics and biochemical quality of rainbow trout sperm cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:11-19. [PMID: 29913268 DOI: 10.1016/j.etap.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
In recent years, titanium dioxide (TiO2) nanoparticles (NPs) as metal oxide nanoparticles are widely used in industry, agriculture, personal care products, cosmetics, sun protection and toothpaste, electronics, foodstuffs and food packaging. This use of nano-TiO2 has been associated with environmental toxicity concerns. Therefore, the aim of this study was to evaluate the in vitro effect of different doses of TiO2 NPs (∼30-40 nm) (0.01, 0.1, 0.5, 1, 10 and 50 mg/L) at 4oC for 3 h on the sperm cell kinematics as velocities of Rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) sperm cells. Furthermore, oxidative stress markers (total glutathione (TGSH) and superoxide dismutase (SOD) were assessed in sperm cells after exposure to TiO2 NPs. According to the obtained results, there were statistically significant (P < 0.05) decreasing in the velocities of sperm cells after 10 mg/L TiO2 NPs and an increase the activity of SOD (P < 0.05) and TGSH levels were determined.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- İnönü University, Fishery Faculty, Department of Aquaculture, 44280, Malatya, Turkey.
| | - Sevgi Balcıoğlu
- İnönü University, Science Faculty, Department of Chemistry, 44280, Malatya, Turkey
| | - Ahmet Ulu
- İnönü University, Science Faculty, Department of Chemistry, 44280, Malatya, Turkey
| | - İmren Özcan
- İnönü University, Science Faculty, Department of Chemistry, 44280, Malatya, Turkey
| | - Fatih Okumuş
- İnönü University, Doğanşehir Vahap Küçük Vocational High School, Department of Computer Technology, 44280, Malatya, Turkey
| | - Süleyman Köytepe
- İnönü University, Science Faculty, Department of Chemistry, 44280, Malatya, Turkey
| | - Burhan Ateş
- İnönü University, Science Faculty, Department of Chemistry, 44280, Malatya, Turkey
| |
Collapse
|
21
|
iTRAQ-based quantitative proteomic analysis of embryonic developmental stages in Amur sturgeon, Acipenser schrenckii. Sci Rep 2018; 8:6255. [PMID: 29674748 PMCID: PMC5908867 DOI: 10.1038/s41598-018-24562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/05/2018] [Indexed: 11/20/2022] Open
Abstract
The Amur sturgeon, Acipenser schrenckii, is an important aquaculture species in China with annual production of about 150 thousand tons in 2015. In this study, we investigated the regulatory proteins and pathways affecting embryonic development of Amur sturgeon, by analyzing of the differential proteomes among four embryonic developmental stages using isobaric tags for relative and absolute quantitation (iTRAQ), combined with the analysis of effects of microelements and antioxidants on embryonic development. Seventy-four, 77, and 76 proteins were differentially expressed according to iTRAQ analysis between the fertilized egg and blastula, blastula and neurula, and neurula and heart-beat stages, respectively. GO and KEGG enrichment analyses indicated that Gluconeogenesis, Ribosome and Proteasome were the most enriched pathways, which may promote energy formation, immune system protection and protein synthesis process in A. schrenckii. The measurement of microelements indicated that Mn, Cu and Fe were obtained from their parents or water environment in A. schrenckii, while Zn plays vital roles throughout embryonic development. The dramatically high level of malondialdehyde (MDA) across the embryonic development may be the main reason leading to a low hatching rate in A. schrenckii. This study provides the basis for further proteome analysis of embryonic development in A. schrenckii.
Collapse
|
22
|
Kocabaş M, Kutluyer F, Benzer F, Erişir M. Malathion-induced spermatozoal oxidative damage and alterations in sperm quality of endangered trout Salmo coruhensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2588-2593. [PMID: 29128945 DOI: 10.1007/s11356-017-0700-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
The use of pesticides has been increased along with increasing the farming activities and has caused environmental impacts deleteriously. In particular, non-target organisms including fish can be affected by toxic effects of pesticides. Therefore, the impacts of malathion (MTN) on oxidative stress and sperm quality were investigated in vitro. The MTN concentrations used on this study were 0 (control), 75, 100, and 125 μg/L. Lipid peroxidation (MDA), non-enzymatic (GSH), and enzymatic (SOD, GSH-Px, and CAT) activities in spermatozoa were examined for determination of oxidative stress status. Our findings showed that motility rate and period of sperm cells significantly decreased with exposure to MTN. Biochemical assays revealed that CAT activity and levels of MDA, GSH increased in spermatozoa based on concentration while activity of GSH-Px and SOD decreased. Consequently, spermatozoa were highly sensitive to MTN exposure. MTN has disruptive effects on sperm quality and caused to oxidative stress in spermatozoa.
Collapse
Affiliation(s)
- Mehmet Kocabaş
- Department of Wildlife Ecology & Management, Karadeniz Technical University Faculty of Forestry, 61080, Trabzon, Turkey
| | - Filiz Kutluyer
- Fisheries Faculty, Munzur University, 62000, Tunceli, Turkey.
| | - Fulya Benzer
- Faculty of Engineering, Department of Food Engineering, Munzur University, 62000, Tunceli, Turkey
| | - Mine Erişir
- Faculty of Veterinary, Department of Basic Sciences, Fırat University, Elazığ, Turkey
| |
Collapse
|
23
|
Kutluyer F, Kocabaş M, Erişir M, Benzer F. Effect of the organophosphate insecticide chlorpyrifos exposure on oxidative stress and quality ofSalmo coruhensisspermatozoa. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1394325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Mehmet Kocabaş
- Department of Wildlife Ecology and Management, Karadeniz Technical University, Trabzon, Turkey
| | - Mine Erişir
- Department of Basic Sciences, Fırat University, Faculty of Veterinary, Elazığ, Turkey
| | - Fulya Benzer
- Department of Food Engineering, Munzur University, Faculty of Engineering, Tunceli, Turkey
| |
Collapse
|
24
|
Sun H, Wu W, Guo J, Xiao R, Jiang F, Zheng L, Zhang G. Effects of nickel exposure on testicular function, oxidative stress, and male reproductive dysfunction in Spodoptera litura Fabricius. CHEMOSPHERE 2016; 148:178-187. [PMID: 26807937 DOI: 10.1016/j.chemosphere.2015.10.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Nickel is an environmental pollutant that adversely affects the male reproductive system. In the present study, the effects of nickel exposure on Spodoptera litura Fabricius were investigated by feeding larvae artificial diets containing different doses of nickel for three generations. Damage to testes and effects on male reproduction were examined. The amount of nickel that accumulated in the testes of newly emerged males increased as the nickel dose in the diet increased during a single generation. Nickel exposure increased the amount of thiobarbituric acid reactive substances and decreased the amount of glutathione in treatment groups compared with the control. The activity levels of the antioxidant response indices superoxide dismutases, catalase, and glutathione peroxidase in the testes showed variable dose-dependent relationships with nickel doses and duration of exposure. Nickel doses also disrupted the development of the testes by decreasing the weight and volume of testes and the number of eupyrene and apyrene sperm bundles in treatment groups compared with the control. When the nickel-treated males mated with normal females, fecundity was inhibited by the higher nickel doses in all three generations, but fecundity significantly increased during the second generation, which received 5 mg kg(-1) nickel. Hatching rates in all treatments significantly decreased in a dose-dependent manner in the three successive generations. The effects of nickel on these parameters correlated with the duration of nickel exposure. Results indicate assays of testes may be a novel and efficient means of evaluating the effects of heavy metals on phytophagous insects in an agricultural environment.
Collapse
Affiliation(s)
- Hongxia Sun
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China; Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40504, USA
| | - Wenjing Wu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Entomological Institute, Guangzhou 510260, China
| | - Jixing Guo
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Rong Xiao
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengze Jiang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingyan Zheng
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Guren Zhang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Kutluyer F, Benzer F, Erişir M, Öğretmen F, İnanan BE. The in vitro effect of cypermethrin on quality and oxidative stress indices of rainbow trout Oncorhynchus mykiss spermatozoa. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 128:63-67. [PMID: 26969441 DOI: 10.1016/j.pestbp.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
There is limited information on the scientific literature about the effect of in vitro exposure of fish sperm to pesticides. In vitro effect of cypermethrin on sperm quality and oxidative stress has not yet been fully investigated. Therefore, the effects of cypermethrin, a type II pyrethroid insecticide, on quality and oxidative stress of spermatozoa were examined in vitro. To explore the potential in vitro toxicity of cypermethrin, fish spermatozoa were incubated with different concentrations of cypermethrin (1.025, 2.05 and 4.1 μg/l) for 2 h. The motility rate and duration of sperm were determined after exposure to cypermethrin. Reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA) in spermatozoa were analyzed for determination of oxidant and antioxidant balance. Our results indicated that spermatozoa motility and duration significantly decreased with exposure to cypermethrin. Additionally, activity of GSH-Px (P<0.05) and MDA and GSH levels increased in a concentration-dependent manner while CAT activity decreased (P<0.05). Consequently, the oxidant and antioxidant status and sperm quality were affected by quantitative changes and different concentrations of cypermethrin.
Collapse
Affiliation(s)
- Filiz Kutluyer
- Tunceli University, Fisheries Faculty, 62000, Tunceli, Turkey.
| | - Fulya Benzer
- Tunceli University, Faculty of Engineering, Department of Food Engineering, 62000, Tunceli, Turkey
| | - Mine Erişir
- Fırat University, Faculty of Veterinary, Department of Basic Sciences, Elazığ, Turkey
| | - Fatih Öğretmen
- Muğla Sıtkı Koçman University, Faculty of Science, Department of Bology, 48000, Muğla, Turkey
| | - Burak Evren İnanan
- Muğla Sıtkı Koçman University, Faculty of Science, Department of Bology, 48000, Muğla, Turkey
| |
Collapse
|
26
|
Fabbrocini A, D'Adamo R, Del Prete F, Maurizio D, Specchiulli A, Oliveira LFJ, Silvestri F, Sansone G. The sperm motility pattern in ecotoxicological tests. The CRYO-Ecotest as a case study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 123:53-59. [PMID: 26318919 DOI: 10.1016/j.ecoenv.2015.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Changes in environmental stressors inevitably lead to an increasing need for innovative and more flexible monitoring tools. The aim of this work has been the characterization of the motility pattern of the cryopreserved sea bream semen after exposure to a dumpsite leachate sample, for the identification of the best representative parameters to be used as endpoints in an ecotoxicological bioassay. Sperm motility has been evaluated either by visual and by computer-assisted analysis; parameters concerning motility on activation and those describing it in the times after activation (duration parameters) have been assessed, discerning them in terms of sensitivity, reliability and methodology of assessment by means of multivariate analyses. The EC50 values of the evaluated endpoints ranged between 2.3 and 4.5ml/L, except for the total motile percentage (aTM, 7.0ml/L), which proved to be the less sensitive among all the tested parameters. According to the multivariate analyses, a difference in sensitivity among "activation" endpoints in respect of "duration" ones can be inferred; on the contrary, endpoints seem to be equally informative either describing total motile sperm or the rapid sub-population, as well as the assessment methodology seems to be not discriminating. In conclusion, the CRYO-Ecotest is a multi-endpoint bioassay that can be considered a promising innovative ecotoxicological tool, characterized by a high plasticity, as its endpoints can be easy tailored each time according to the different needs of the environmental quality assessment programs.
Collapse
Affiliation(s)
- Adele Fabbrocini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, UOS Lesina (FG), Italy.
| | - Raffaele D'Adamo
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, UOS Lesina (FG), Italy
| | | | - Daniela Maurizio
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, UOS Lesina (FG), Italy
| | | | - Luis F J Oliveira
- Instituto Oceanográfico - USP, São Paulo, Brazil; The Capes Foundation - Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Fausto Silvestri
- Dipartimento di Biologia, Università degli Studi Federico II, Napoli, Italy; FIPERJ - Fundação Instituto de Pesca do Estado do Rio de Janeiro, Centro Angra dos Reis (RJ), Brazil
| | - Giovanni Sansone
- Dipartimento di Biologia, Università degli Studi Federico II, Napoli, Italy
| |
Collapse
|
27
|
Kutluyer F, Erişir M, Benzer F, Öğretmen F, İnanan BE. The in vitro effect of Lambda-cyhalothrin on quality and antioxidant responses of rainbow trout Oncorhynchus mykiss spermatozoa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:855-860. [PMID: 26476887 DOI: 10.1016/j.etap.2015.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
There is little information in the scientific literature about effect of in vitro exposure of fish spermatozoa to pesticides. In vitro effect of Lambda-cyhalothrin (LCT) on sperm quality and oxidative stress has not been fully explored yet. The effects of LCT, which is a synthetic pyrethroid insecticide, on quality and oxidative stress of spermatozoa were investigated in vitro due to extensively use to control a wide range of insect pests in agriculture, public health, and homes and gardens. To explore the potential in vitro toxicity of LCT, fish spermatozoa were incubated with different concentrations of LCT (0.6, 1.2 and 2.4 μg/L) for 2h. Reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA) in spermatozoa were analyzed for determination of oxidant and antioxidant balance. Our results indicated that the percentage and duration of sperm motility significantly decreased with exposure to LCT. Activity of GSH-Px and MDA (P<0.05) and GSH levels (P<0.05) increased in a concentration-dependent manner while CAT activity decreased (P<0.05). In conclusion, the oxidant and antioxidant status and sperm quality were affected by increasing concentrations of LCT.
Collapse
Affiliation(s)
- Filiz Kutluyer
- Tunceli University, Fisheries Faculty, 62000 Tunceli, Turkey.
| | - Mine Erişir
- Tunceli University, Faculty of Engineering, Department of Food Engineering, 62000 Tunceli, Turkey
| | - Fulya Benzer
- Fırat University, Faculty of Veterinary, Department of Basic Sciences, Elazığ, Turkey
| | - Fatih Öğretmen
- Muğla Sıtkı Koçman University, Faculty of Science, Department of Biology, 48000 Muğla, Turkey
| | - Burak Evren İnanan
- Muğla Sıtkı Koçman University, Faculty of Science, Department of Biology, 48000 Muğla, Turkey
| |
Collapse
|
28
|
Das S, Choudhury SS. Analysis of heavy metals from water, sediment, and tissues of Labeo angra (Hamilton, 1822), from an Ox-box lake- an wetland site from Assam, India. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 51:21-33. [PMID: 26422176 DOI: 10.1080/10934529.2015.1079102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities.
Collapse
Affiliation(s)
- Suchismita Das
- a Aquatic Toxicology and Remediation Laboratory , Department of Life Science and Bioinformatics, Assam University , Silchar , India
| | - Shamim Sultana Choudhury
- a Aquatic Toxicology and Remediation Laboratory , Department of Life Science and Bioinformatics, Assam University , Silchar , India
| |
Collapse
|
29
|
Vergilio C, Moreira R, Carvalho C, Melo E. Evolution of cadmium effects in the testis and sperm of the tropical fish Gymnotus carapo. Tissue Cell 2015; 47:132-9. [DOI: 10.1016/j.tice.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 11/27/2022]
|
30
|
Li ZH, Li P, Chen L. Temperature affects Hg-induced antioxidant responses in Chinese rare minnow Gobiocypris rarus larvae in vitro. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:666-669. [PMID: 25323039 DOI: 10.1007/s00128-014-1399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
The effect of temperature on HgCl2 (Hg(2+))-induced oxidative stress to Chinese rare minnow (Gobiocypris rarus) was evaluated in vitro. Malondialdehyde (MDA) content and superoxide dismutase, catalase and glutathione peroxidase activities were determined in whole body homogenates incubated with 0.1 mg/L Hg(2+) at 15, 25 and 35°C for 60 min. The result showed that oxidative stress was at a normal level in the Hg(2+) + NT (0.1 mg/L Hg(2+) and normal temperature, 25°C) and Hg(2+) + LT (0.1 mg/L Hg(2+) and low temperature, 15°C) groups, but a significant induction in oxidative stress occurred in the Hg(2+) + HT (35°C) group. This was reflected by an increased level of MDA and decreased activities of the antioxidant enzymes. The results suggest that higher temperature enhances heavy metal toxicity in aquatic systems, which should be given more attention in the future.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China,
| | | | | |
Collapse
|
31
|
D'Adamo R, Specchiulli A, Cassin D, Botter M, Zonta R, Fabbrocini A. The effect of floods on sediment contamination in a microtidal coastal lagoon: the lagoon of Lesina, Italy. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:297-309. [PMID: 24862981 DOI: 10.1007/s00244-014-0037-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
The effects on the microtidal lagoon of Lesina of runoff and the discharge of water and material from agricultural activities were investigated combining chemical analyses of pollutants [11 metals and 16 priority polycyclic aromatic compounds (PAHs)], determination of organic matter and grain size, and performance of innovative ecotoxicological tests. For metals, enrichment factors >3 for arsenic, nickel, and copper (Cu) were observed in the eastern zone of the lagoon, which is affected by nearby urban activities with discharge of water and domestic waste and by agricultural input with waters rich in fertilizers. Cu was correlated with no other metal, and its high concentrations (≤77 µg g(-1)) may result from the use of Cu-based fungicides in vineyards. Total PAHs (2,230 ± 3,150 ng g(-1)) displayed a wide range of concentrations with hot spots near freshwater inputs from the part of the catchment area exploited for wheat crops. Pyrolitic contamination also emerged, with higher-mass PAH congeners, such as asphalt, bitumen or coal, usually present in higher fractions as the dominant components. Ecotoxicological evaluations recorded moderate to high toxicity levels; the innovative MOT test bioassay showed good discriminatory ability because it identified a lagoon area whose inputs mainly depend on agricultural activities and which is impacted by metals rather than PAHs. Floods during periods of heavy rain and the discharge of water and material from agricultural activities may impact vulnerable systems, such as the lagoon of Lesina, where the presence of hot spots with remarkably high pollution values was observed.
Collapse
Affiliation(s)
- Raffaele D'Adamo
- Sect. of Lesina (FG), Institute of Marine Science, UOS of Lesina (FG), National Research Council, Via Pola, 4, 71010, Lesina, FG, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Dzyuba V, Cosson J. Motility of fish spermatozoa: from external signaling to flagella response. Reprod Biol 2014; 14:165-75. [PMID: 25152513 DOI: 10.1016/j.repbio.2013.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
For successful fertilization, spermatozoa must access, bind, and penetrate an egg, processes for which activation of spermatozoa motility is a prerequisite. Fish spermatozoa are stored in seminal plasma where they are immotile during transit through the genital tract of most externally fertilizing teleosts and chondrosteans. Under natural conditions, motility is induced immediately following release of spermatozoa from the male genital tract into the aqueous environment. The nature of an external trigger for the initiation of motility is highly dependent on the aquatic environment (fresh or salt water) and the species' reproductive behavior. Triggering signals include osmotic pressure, ionic and gaseous components of external media and, in some cases, egg-derived substances. Extensive study of environmental factors influencing fish spermatozoa motility has led to the proposal of several mechanisms of activation in freshwater and marine fish. However, the signal transduction pathways initiated by these mechanisms remain clear. This review presents the current knowledge with respect to (1) membrane reception of the activation signal and its transduction through the spermatozoa plasma membrane via the external membrane components, ion channels, and aquaporins; (2) cytoplasmic trafficking of the activation signal; (3) final steps of the signaling, including signal transduction to the axonemal machinery, and activation of axonemal dyneins and regulation of their activity; and (4) pathways supplying energy for flagellar motility.
Collapse
Affiliation(s)
- Viktoriya Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
| | - Jacky Cosson
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic
| |
Collapse
|
33
|
Hulak M, Gazo I, Shaliutina A, Linhartova P. In vitro effects of bisphenol A on the quality parameters, oxidative stress, DNA integrity and adenosine triphosphate content in sterlet (Acipenser ruthenus) spermatozoa. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:64-71. [PMID: 23680852 DOI: 10.1016/j.cbpc.2013.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Among endocrine disruptors, the xenoestrogen bisphenol A (BPA) deserves particular attention due to widespread human exposure. Besides hormonal effects, BPA has been suspected to be responsible for adverse effect on reproductive ability of various species. In the present study the effect of BPA on the quality parameters, oxidative stress, the DNA integrity and intracellular ATP content of sterlet (Acipenser ruthenus) spermatozoa were investigated in vitro. Fish spermatozoa were exposed to concentrations of BPA possibly occurring in nature (0.5, 1.75, 2.5, 5 and 10μg/L) for 2h. Results revealed that BPA significantly decreased spermatozoa motility and velocity of spermatozoa at concentration of BPA 2.5-10μg/L. Significant positive correlation (r=0.713, P<0.05) was found between percent motile spermatozoa and ATP content. Oxidative stress was observed at concentrations 1.75-10μg/L, as reflected by significantly higher levels of protein and lipid oxidation and superoxide dismutase activity. Intracellular ATP content of spermatozoa decreased with increasing concentrations of BPA. A dramatic increase in DNA fragmentation expressed as percent tail DNA (2.2%±0.46) and Olive tail moment (0.37±0.09 arbitrary units) was recorded at concentrations of 1.75μg/L and above. The present study confirms that concentrations of BPA that can be encountered in nature are capable to induce oxidative stress, leading to impaired sperm quality, DNA fragmentation and intracellular ATP content.
Collapse
Affiliation(s)
- Martin Hulak
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, Zatisi 728/II, Vodnany, Czech Republic
| | | | | | | |
Collapse
|
34
|
Gazo I, Linhartova P, Shaliutina A, Hulak M. Influence of environmentally relevant concentrations of vinclozolin on quality, DNA integrity, and antioxidant responses of sterlet Acipenser ruthenus spermatozoa. Chem Biol Interact 2013; 203:377-85. [PMID: 23376258 DOI: 10.1016/j.cbi.2013.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/12/2012] [Accepted: 01/21/2013] [Indexed: 12/29/2022]
Abstract
The effects of vinclozolin (VIN), an anti-androgenic fungicide, on quality, oxidative stress, DNA integrity, and ATP level of sterlet (Acipenser ruthenus) spermatozoa were investigated in vitro. Fish spermatozoa were incubated with different concentrations of vinclozolin (0.5, 2, 10, 15, 20 and 50 μg/l) for 2 h. A dose-dependent reduction in spermatozoa motility and velocity was observed at concentrations of 2-50 μg/l. A dramatic increase in DNA fragmentation was recorded at concentrations 10 μg/l and above. After 2 h exposure at higher test concentrations (10-50 μg/l), oxidative stress was apparent, as reflected by significantly higher levels of protein and lipid oxidation and significantly greater superoxide dismutase activity. Intracellular ATP content of spermatozoa decreased with increasing concentrations of VIN. The results demonstrated that VIN can induce reactive oxygen species stress in fish spermatozoa, which could impair the sperm quality, DNA integrity, ATP content, and the antioxidant defense system.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, Zatisi 728/11, Vodnany 32901, Czech Republic.
| | | | | | | |
Collapse
|
35
|
Tvrdá E, Kňažická Z, Lukáčová J, Schneidgenová M, Goc Z, Greń A, Szabó C, Massányi P, Lukáč N. The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1292-1300. [PMID: 23647120 DOI: 10.1080/10934529.2013.777243] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to investigate the effects of lead (Pb) and cadmium (Cd) content on basic motility characteristics (motility-MOT, progressive motility-PROG) as well as selected markers of the prooxidant-antioxidant balance (catalase-CAT, glutathione-GSH, malondialdehyde-MDA) in bovine seminal plasma and spermatozoa. Twenty five semen samples were collected from breeding bulls and used in the study. Motility analysis was carried out using the Computer Assisted Sperm Analysis (CASA) system. The samples were centrifuged, fractions of seminal plasma and spermatozoa were separated, lysates were prepared from the sperm cell fractions. Pb and Cd concentrations were determined by the voltametric method (ASV), antioxidants and MDA were analyzed by UV/Vis spectrophotometry. The analysis showed that the average concentration of Pb in the seminal plasma was 0.23 ± 0.02 μg/mL, while its amount in the sperm cells was significantly higher (0.41 ± 0.07 μg/mL; P < 0.05). The average Cd content in bovine seminal fractions was similar and non-significant: 0.09 ± 0.01 μg/mL in the seminal plasma and 0.11 ± 0.01 μg/mL in spermatozoa (P > 0.05). The correlation analysis revealed that both heavy metals were significantly negatively correlated with MOT and PROG (P < 0.05; P < 0.01; P < 0.001), CAT (P < 0.05; P < 0.01) as well as GSH (P < 0.05; P < 0.01) but significantly positively associated with MDA as the marker of lipid peroxidation (P < 0.05; P < 0.01). Moreover the samples were categorized in three quality groups (Excellent, Good, Moderate) according to their motility values. The lowest Pb, Cd and MDA concentrations but the best antioxidant characteristics were found in samples of the best quality, moderate quality samples exhibited the highest Pb, Cd and MDA content together with the worst antioxidant capacity. This study demonstrates that Pb and Cd are serious toxic elements, which are able to increase the risk of seminal oxidative stress development and a subsequent decrease of male fertility.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Slovak University of Agriculture, Nitra, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fabbrocini A, D'Adamo R, Del Prete F, Langellotti AL, Rinna F, Silvestri F, Sorrenti G, Vitiello V, Sansone G. Cryopreserved semen in ecotoxicological bioassays: sensitivity and reliability of cryopreserved Sparus aurata spermatozoa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:293-298. [PMID: 22889497 DOI: 10.1016/j.ecoenv.2012.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to evaluate the feasibility of using cryopreserved S. aurata semen in spermiotoxicity tests. Cryopreservation is a biotechnology that can provide viable gametes and embryos on demand, rather than only in the spawning season, thus overcoming a limitation that has hindered the use of some species in ecotoxicological bioassays. Firstly, the sperm motility pattern of cryopreserved semen was evaluated after thawing by means of both visual and computer-assisted analyses. Motility parameters in the cryopreserved semen did not change significantly in the first hour after thawing, meaning that they were maintained for long enough to enable their use in spermiotoxicity tests. In the second phase of the research, bioassays were performed, using cadmium as the reference toxicant, in order to evaluate the sensitivity of cryopreserved S. aurata semen to ecotoxicological contamination. The sensitivity of the sperm motility parameters used as endpoints (motility percentages and velocities) proved to be comparable to what has been recorded for the fresh semen of other aquatic species (LOECs from 0.02 to 0.03 mg L(-1)). The test showed good reliability and was found to be rapid and easy to perform, requiring only a small volume of the sample. Moreover, cryopreserved semen is easy to store and transfer and makes it possible to perform bioassays in different sites or at different times with the same batch of semen. The proposed bioassay is therefore a promising starting point for the development of toxicity tests that are increasingly tailored to the needs of ecotoxicology and environmental quality evaluation strategies.
Collapse
Affiliation(s)
- Adele Fabbrocini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, via Pola, 4, 71010 Lesina, Foggia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Li ZH, Li P, Randak T. Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, Oncorhynchus mykiss: a comparative study of in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:402-7. [PMID: 21324377 DOI: 10.1016/j.cbpc.2011.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/25/2010] [Accepted: 01/27/2011] [Indexed: 11/21/2022]
Abstract
Toxic effects of environmental concentrations (50, 100, and 200μg/L) of waterborne chromium (VI) were evaluated in rainbow trout by comparison of in vitro and in vivo assays. Multiple biomarkers were measured including oxidative stress indices and antioxidant response parameters in liver and brain, as well as Na(+)-K(+)-ATPase in gill. Superoxide dismutase (SOD) and glutathione reductase (GR) activities were significantly induced (1.54-fold and 1.37-fold, respectively) in fish brain in vivo, but no significant differences were observed in any other biomarker or in vivo test group. Oxidative stress was apparent in vitro as significantly higher levels of oxidative indices, with the highest induction of TBARS and CP found in brain at 200μg/L Cr(VI) (2.41-fold and 1.95-fold, respectively), and SOD and GR activities and reduced glutathione in brain were significantly inhibited (65%, 44%, and 36%, respectively). In vitro Na(+)-K(+)-ATPase activity in gill was also significantly inhibited at concentrations of 100 and 200μg/L (69% and 45%, respectively). Short-term exposure to environmental concentrations of Cr(VI) does not therefore evoke marked effects in fish in vivo. Based on the present results, a set of in vitro tests with tissue homogenate can be evoked more remarkable effects by the lower concentrations of Cr(VI) than in vivo, which could provide some useful information and might be a potential alternative approach for monitoring heavy metal pollution in aquatic environments. However, it needs more detailed studies in other area, such as hormonal response or genotoxicity, before these findings could be applied in the field investigation.
Collapse
Affiliation(s)
- Zhi-Hua Li
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | | | | |
Collapse
|