1
|
Jain A, Lopus M, Kishore N. From Self-Assembly to Drug Delivery: Understanding and Exploring Protein Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:473-495. [PMID: 39745783 DOI: 10.1021/acs.langmuir.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127). The effect of pluronics on protein aggregation and fibrillation has been studied mechanistically using a combination of calorimetric and spectroscopic techniques. TEM images and the ThT binding experiment were used to analyze the conformation of protein fibrils, and the results showed that pluronics accelerated the fibrillation process. When pluronics interact with protein at different stages of fibrillation, their pre- and postmicellar concentrations show a decrease in ΔHm° value as the time of incubation increases. This indicates the formation of amorphous aggregates due to which endothermic enthalpy is observed. As a consequence, it was investigated if these generated aggregates can also act as drug delivery vehicle; therefore, the work was carried out with 5-fluorouracil and cytarabine. The endothermic enthalpy of interaction suggests that hydrophobic interaction is more prevalent when cytarabine is employed with protein fibrils, whereas the electrostatic interaction is more prevalent when 5-fluorouracil is combined with it. The former drug, however, showed a greater adsorption than the latter on the surface of protein fibrils. It is therefore determined that 5-fluorouracil has relatively significant adsorption on fibril surfaces, whereas cytarabine has weak adsorption and is easily desorbed in cells. Consequently, the combination of LFF127 and 5-FU is lethal to malignant cells. The drug encapsulation and delivery aspect of protein fibrils/aggregates needs further exploration.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Chen CY, Ye YZ, Huang YH, Tzeng YM, Gurbanov R, Wang WL, Chang WW. Ovatodiolide inhibits endometrial cancer stemness via reactive oxygen species-mediated DNA damage and cell cycle arrest. Chem Biol Interact 2024; 403:111244. [PMID: 39276908 DOI: 10.1016/j.cbi.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide, often associated with a poor prognosis after recurrence or metastasis. Ovatodiolide (OVA) is a macrocyclic diterpenoid derived from Anisomeles indica that shows anticancer effects in various malignancies. This study aimed to evaluate the cytotoxic effects of OVA on EC cell proliferation and cancer stem cell (CSC) activity and explore its underlying molecular mechanisms. OVA treatment dose-dependently reduced the viability and colony formation of three EC cell lines (AN3CA, HEC-1A, and EMC6). It induced G2/M phase cell cycle arrest, associated with decreased cell division cycle 25C (CDC25C) expression and reduced activation of cyclin-dependent kinases 1 (CDK1) and 2 (CDK2). OVA also increased reactive oxygen species (ROS) production and DNA damage, activating the DNA damage-sensitive cell cycle checkpoint kinases 1 (CHK1) and 2 (CHK2) and upregulating the DNA damage marker γ-H2A.X variant histone (H2AX). It also suppressed the activation of mechanistic target of rapamycin kinase (mTOR) and nuclear factor kappa B (NF-κB) and downregulated glutathione peroxidase 1 (GPX1), an antioxidant enzyme counteracting oxidative stress. Moreover, OVA reduced the self-renewal capacity of CSCs, reducing the expression of key stemness proteins Nanog homeobox (NANOG) and octamer-binding transcription factor 4 (OCT4). The ROS inhibitor N-acetylcysteine attenuated the anti-proliferative and anti-CSC effects of OVA. Our findings suggest that OVA acts via ROS generation, leading to oxidative stress and DNA damage, culminating in cell cycle arrest and the suppression of CSC activity in EC. Therefore, OVA is a promising therapeutic agent for EC, either as a standalone treatment or an adjunct to existing therapies.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Emergency Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, 435403, Taiwan; Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 35664, Taiwan.
| | - Yu-Zhen Ye
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Yu-Hao Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Sec. 2, University Rd., Taitung, 95092, Taiwan.
| | - Ranal Gurbanov
- School of Medicine, Gazi University, Emniyet Mah., Bandırma Cad., No:6/1, 06560, Yenimahalle, Ankara, Turkey.
| | - Wen-Ling Wang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| |
Collapse
|
3
|
Chen T, Wang Q, Liu C, Zhang F, Bai Y, Jiao Y, Wang M, Bao S, Liu B, Shao M, Ma S, Ding Y. Ovatodiolide inhibited hepatocellular carcinoma stemness through SP1/MTDH/STAT3 signaling pathway. Chem Biol Interact 2024; 400:111161. [PMID: 39053793 DOI: 10.1016/j.cbi.2024.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized with high recurrence and mortality, and the clinical treatments for HCC are very limited. Hepatocellular carcinoma stem cells are the root of HCC progress, recurrence, and multidrug resistance. Ovatodiolide (OVA) is a bioactive diterpenoid served as an inflammatory and immunotherapeutic responses modulator. In this research, we found OVA inhibited HCC stemness through inhibiting MTDH gene transcription. Moreover, we firstly discovered transcription factor SP1 bound to the promoter region of MTDH to transcriptionally regulate MTDH level. Mechanically, we demonstrated OVA decreased SP1 protein stability to transcriptionally inhibit MTDH gene, and inhibited the nuclear translocation of p65, and then diminished IL-6 level to suppress JAK/STAT3 signaling pathway, eventually decreases CD133 level and the stemness of HCC. Furthermore, we demonstrated ACT004, OVA derivative with high metabolic stability towards cytochrome P450 enzymes, showed no genotoxicity and no accumulative or delayed toxicities after long-term administration in rats. And the in vivo efficacy experiments indicated ACT004 inhibited tumor growth of hepatocellular carcinoma. In conclusion, we revealed the mechanism of OVA in regulating HCC stemness, detected the toxicity of OVA derivative and evaluated the in vivo efficacy which lays a foundation for further discovery of anti-HCC stem cell agents and provide a new strategy for the application of OVA in clinical treatment.
Collapse
Affiliation(s)
- Tianyang Chen
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Qin Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Can Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Fengyuan Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yongping Bai
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yan Jiao
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | | | - Shiqi Bao
- Accendatech Co., Ltd., Tianjin, 300384, China
| | - Baofeng Liu
- Shan Dong Xinbo Pharmaceutical R&D Co., Ltd., Shan Dong, 251500, China
| | - Mingxiang Shao
- Shan Dong Xinbo Pharmaceutical R&D Co., Ltd., Shan Dong, 251500, China
| | - Shuoqian Ma
- College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yahui Ding
- College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Chen MY, Hsu CH, Setiawan SA, Tzeng DTW, Ma HP, Ong JR, Chu YC, Hsieh MS, Wu ATH, Tzeng YM, Yeh CT. Ovatodiolide and antrocin synergistically inhibit the stemness and metastatic potential of hepatocellular carcinoma via impairing ribosome biogenesis and modulating ERK/Akt-mTOR signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154478. [PMID: 36265255 DOI: 10.1016/j.phymed.2022.154478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/28/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Activation of mitogen-activated protein kinase (MAPK) and PI3K signaling confers resistance against sorafenib, a mainstay treatment for advanced hepatocellular carcinoma (HCC). Antrocin and ovatodiolide constitute as the most potent secondary metabolites isolated from Antrodia camphorata and Anisomeles indica, respectively. Both natural compounds have recently gained a lot of attention due to their putative inhibition of MAPK and PI3K signaling in various solid cancers. However, whether their combination is effective in HCC remains unknown. Here, we investigated their effect, alone or in various combinations, on MAPK and PI3K signaling pathways in HCC cells. An array of in vitro study were used to investigate anticancer and stemness effects to treat HCC, such as cytotoxicity, drug combination index, migration, invasion, colony formation, and tumor sphere formation. Drug effect in vivo was evaluated using mouse xenograft models. In this study, antrocin and ovatodiolide synergistically inhibited the SNU387, Hep3B, Mahlavu, and Huh7 cell lines. Sequential combination treatment of Huh7 and Mahlavu with ovatodiolide followed by antrocin resulted stronger cytotoxic effect than did treatment with antrocin followed by ovatodiolide, their simultaneous administration, antrocin alone, or ovatodiolide alone. In the Huh7 and Mahlavu cell lines, ovatodiolide→antrocin significantly suppressed colony formation and proliferation as well as markedly downregulated ERK1/2, Akt, and mTOR expression. Inhibition of ERK1/2 and Akt/mTOR signaling by ovatodiolide→antrocin suppressed ribosomal biogenesis, autophagy, and cancer stem cell-like phenotypes and promoted apoptosis in Huh7 and Mahlavu cells. The sorafenib-resistant clone of Huh7 was effectively inhibited by synergistic combination of both compound in vitro. Eventually, the ovatodiolide→antrocin combination synergistically suppressed the growth of HCC xenografts. Taken together, our findings suggested that ovatodiolide→antrocin combination may represent potential therapeutic approach for patients with advanced HCC.
Collapse
Affiliation(s)
- Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chia-Hung Hsu
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City 110, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Syahru Agung Setiawan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang-Ho Hospital, New Taipei City 235, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Lifebit, Mindspace Shoreditch, London, England, EC2A 2AP, UK
| | - Hon-Ping Ma
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City 110, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Jiann Ruey Ong
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City 110, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Yi Cheng Chu
- Department of Medicine, St. George's University School of Medicine, St. George, Grenada
| | - Ming-Shou Hsieh
- Department of Medical Research & Education, Taipei Medical University - Shuang-Ho Hospital, New Taipei City 235, Taiwan
| | - Alexander T H Wu
- Department of Medical Research & Education, Taipei Medical University - Shuang-Ho Hospital, New Taipei City 235, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan.
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University - Shuang-Ho Hospital, New Taipei City 235, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan.
| |
Collapse
|
5
|
Lien HM, Wang YY, Huang MZ, Wu HY, Huang CL, Chen CC, Hung SW, Chen CC, Chiu CH, Lai CH. Gastroprotective Effect of Anisomeles indica on Aspirin-Induced Gastric Ulcer in Mice. Antioxidants (Basel) 2022; 11:antiox11122327. [PMID: 36552535 PMCID: PMC9774812 DOI: 10.3390/antiox11122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Gastric ulcers are commonly seen in the upper gastrointestinal tract and may be related to the Helicobacter pylori infection and the use of aspirin, a nonsteroidal anti-inflammatory drug (NSAID). Typically, proton-pump inhibitors (PPIs) are used to treat gastric ulcers; however, adverse effects have emerged following long-term treatment. Natural medicines are used as alternative therapeutic agents in the treatment of gastric ulcers, with few side effects. Despite various reports on the anti-H. pylori and anti-gastric cancer activities of Anisomeles indica, its gastroprotective effect on ulcers remains undetermined. This study investigated the protective effect of A. indica on aspirin-induced gastric ulcers in murine models. Our results show that three fractions of ethanol-extracted A. indica inhibited aspirin-induced gastric injury. Among these, A. indica Fraction 1 was observed to enrich ovatodiolide, which effectively diminished gastric acidity and alleviated aspirin-induced inflammation in the stomach. Our results provide evidence that A. indica could be developed as an effective therapeutic agent for gastroprotective purposes.
Collapse
Affiliation(s)
- Hsiu-Man Lien
- Research Institute of Biotechnology, Hungkuang University, Taichung 433304, Taiwan
- Correspondence: (H.-M.L.); (C.-H.L.)
| | - Yu-Yen Wang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chao-Lu Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chia-Chi Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300110, Taiwan
| | - Shao-Wen Hung
- Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300110, Taiwan
| | - Chia-Chang Chen
- School of Management, Feng Chia University, Taichung 407102, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Nursing, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 404333, Taiwan
- Correspondence: (H.-M.L.); (C.-H.L.)
| |
Collapse
|
6
|
Sharmin S, Rahaman MM, Martorell M, Sastre-Serra J, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV, Islam MT. Cytotoxicity of synthetic derivatives against breast cancer and multi-drug resistant breast cancer cell lines: a literature-based perspective study. Cancer Cell Int 2021; 21:612. [PMID: 34801046 PMCID: PMC8606078 DOI: 10.1186/s12935-021-02309-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second most killer worldwide causing millions of people to lose their lives every year. In the case of women, breast cancer takes away the highest proportion of mortality rate than other cancers. Due to the mutation and resistance-building capacity of different breast cancer cell lines against conventional therapies, this death rate is on the verge of growth. New effective therapeutic compounds and treatment method is the best way to look out for in this critical time. For instance, new synthetic derivatives/ analogues synthesized from different compounds can be a ray of hope. Numerous synthetic compounds have been seen enhancing the apoptosis and autophagic pathway that directly exerts cytotoxicity towards different breast cancer cell lines. To cease the ever-growing resistance of multi-drug resistant cells against anti-breast cancer drugs (Doxorubicin, verapamil, tamoxifen) synthetic compounds may play a vital role by increasing effectivity, showing synergistic action. Many recent and previous studies have reported that synthetic derivatives hold potentials as an effective anti-breast cancer agent as they show great cytotoxicity towards cancer cells, thus can be used even vastly in the future in the field of breast cancer treatment. This review aims to identify the anti-breast cancer properties of several synthetic derivatives against different breast cancer and multi-drug-resistant breast cancer cell lines with their reported mechanism of action and effectivity.
Collapse
Affiliation(s)
- Shabnam Sharmin
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), 8100, Bangladesh
| | - Md Mizanur Rahaman
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), 8100, Bangladesh
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386, Concepción, Chile
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de La Salut (IUNICS), Universitat de Les Illes Balears, Palma de Mallorca, Illes Balears, Spain.,Instituto de Investigación Sanitaria de Las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120, Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029, Madrid, Spain
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" From Timisoara, Timisoara, Romania.
| | - Iulia Cristina Bagiu
- Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania.,Multidisciplinary Research Center On Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania.,Preventive Medicine Study Center, Timisoara, Romania
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), 8100, Bangladesh
| |
Collapse
|
7
|
Bich-Loan NT, Kien KT, Thanh NL, Kim-Thanh NT, Huy NQ, The-Hai P, Muller M, Nachtergael A, Duez P, Thang ND. Toxicity and Anti-Proliferative Properties of Anisomeles indica Ethanol Extract on Cervical Cancer HeLa Cells and Zebrafish Embryos. Life (Basel) 2021; 11:257. [PMID: 33804714 PMCID: PMC8003830 DOI: 10.3390/life11030257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023] Open
Abstract
In this study, we showed that crude extract of Anisomeles indica (AI-EtE) expressed its toxicity to HeLa cells with an IC50 dose of 38.8 µg/mL and to zebrafish embryos with malformations, lethality and hatching inhibition at 72-hpf at doses higher than 75 µg/mL. More interestingly, flow cytometry revealed that AI-EtE significantly promoted the number of cells entering apoptotic. Accordingly, the transcript levels of BAX, CASPASE-8, and CASPASE-3 in the cells treated with AI-EtE at IC50 dose were 1.55-, 1.62-, and 2.45-fold higher than those in the control cells, respectively. Moreover, treatment with AI-EtE caused cell cycle arrest at the G1 phase in a p53-independent manner. Particularly, percentages of AI-EtE-treated cells in G1, S, G2/M were, respectively 85%, 6.7% and 6.4%; while percentages of control cells in G1, S, G2/M were 64%, 15% and 19%, respectively. Consistent with cell cycle arrest, the expressions of CDKN1A and CDNK2A in AI-EtE-treated cells were up-regulated 1.9- and 1.64-fold, respectively. Significantly, treatment with AI-EtE also decreased anchorage-independent growth of HeLa cells. In conclusion, we suggest that Anisomeles indica can be considered as a medicinal plant with a possible use against cervical cancer cells; however, the used dose should be carefully monitored, especially when applying to pregnant women.
Collapse
Affiliation(s)
- Nguyen T. Bich-Loan
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (A.N.); (P.D.)
| | - Kieu Trung Kien
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Nguyen Lai Thanh
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Nguyen T. Kim-Thanh
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Nguyen Quang Huy
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Pham The-Hai
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA-R, Department Life Sciences, University of Liege, 4000 Liege, Belgium;
| | - Amandine Nachtergael
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (A.N.); (P.D.)
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (A.N.); (P.D.)
| | - Nguyen Dinh Thang
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 100000, Vietnam; (N.T.B.-L.); (K.T.K.); (N.L.T.); (N.T.K.-T.); (N.Q.H.); (P.T.-H.)
| |
Collapse
|
8
|
Su YK, Bamodu OA, Tzeng YM, Hsiao M, Yeh CT, Lin CM. Ovatodiolide inhibits the oncogenicity and cancer stem cell-like phenotype of glioblastoma cells, as well as potentiate the anticancer effect of temozolomide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152840. [PMID: 31035045 DOI: 10.1016/j.phymed.2019.152840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/08/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ovatodiolide (Ova), a major bioactive diterpenoid isolate of Anisomeles indica has drawn considerable attention lately as an effective anticancer agent with several published works demonstrating its tumor-inhibitory activity in various cancer types. PURPOSE In this study, we examined the modulatory effect of Ova on the oncogenicity, proliferation, and cancer stem cell-like traits of glioblastoma (GBM) cells, as well as investigated the underlying molecular mechanism for the anticancer activity of Ova in GBM cell lines, U-87MG and GBM8401. METHODS The antiproliferative, apoptotic, and stemness-attenuating effects of Ova were evaluated using the sulforhodamine B (SRB) colorimetric assay, western blot and fluorescent immunocytochemistry. Cell apoptosis was analyzed based on variation in the expression levels of Bcl-2 family of regulator proteins Bax, Bak, Bcl-2 and Bcl-xL. RESULTS Ova induced the apoptosis of the U-87MG and GBM8401 cells, as well as effectively inhibited the proliferation and motility of the GBM cell lines in a dose- and time-dependent manner. Ova-induced apoptosis correlated with increased Bax/Bcl-2 ratio, while inhibition of tumor cell migration and colony formation was associated with reduced Slug, Vimentin, NCadherin and β-catenin protein expression and increased E-Cadherin. In addition, exposure to Ova inhibited tumorsphere formation, elicited downregulation of CD44, CD133, Sox2, and Oct4, as well as correlated with dysregulation of the JAK2-STAT3 signaling pathway. Furthermore, we showed for the first time to the best of our knowledge that Ova potentiate the chemotherapeutic effect of Temozolomide. CONCLUSION Taken together, our findings demonstrate the anticancer potential of Ova in GBM and its efficacy in the treatment of GBM as monotherapy and in combination with Temozolomide.
Collapse
Affiliation(s)
- Yu-Kai Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Yew-Min Tzeng
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Chien-Min Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Chao CL, Huang HC, Ding HY, Lai JH, Lin HC, Chang WL. A new macrocyclic diterpenoid from Anisomeles indica. Nat Prod Res 2019; 34:2737-2745. [PMID: 30908093 DOI: 10.1080/14786419.2019.1586692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new macrocyclic diterpenoid, 4β,5β-dihydroxyovatodiolide (1), together with twenty-two known compounds (2-23) were isolated from the MeOH extract of the dried aerial parts of Anisomeles indica (L.) O. Kuntze (Labiatae). The structure of 1 was established on the basis of spectral evidence. Phenylethanoids, acteoside (5) and isoacteoside (6) showed significant inhibitory to IL-2 secretion of with respect to phorbol myristate acetate and anti-CD28 monoclonal antibody co-stimulated activation of human peripheral blood T cells.
Collapse
Affiliation(s)
- Chen-Liang Chao
- Research & Development Center, Sinphar Pharm. Co., Ltd. , I-Lan , Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University , Taichung , Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science , Tainan , Taiwan
| | - Jenn-Haung Lai
- Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital , Taipei , Taiwan
| | - Hang-Ching Lin
- Research & Development Center, Sinphar Pharm. Co., Ltd. , I-Lan , Taiwan.,School of Pharmacy, National Defense Medical Center , Taipei , Taiwan
| | - Wen-Liang Chang
- School of Pharmacy, National Defense Medical Center , Taipei , Taiwan
| |
Collapse
|
10
|
Lien HM, Wu HY, Hung CL, Chen CJ, Wu CL, Chen KW, Huang CL, Chang SJ, Chen CC, Lin HJ, Lai CH. Antibacterial activity of ovatodiolide isolated from Anisomeles indica against Helicobacter pylori. Sci Rep 2019; 9:4205. [PMID: 30862888 PMCID: PMC6414523 DOI: 10.1038/s41598-019-40735-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/19/2019] [Indexed: 12/25/2022] Open
Abstract
Helicobacter pylori infection is associated with high incidence of gastric diseases. The extensive therapy of H. pylori infection with antibiotics has increased its resistance rates worldwide. Ovatodiolide, a pure constituent isolated from Anisomeles indica, has been demonstrated to possess bactericidal activity against H. pylori. In this study, ovatodiolide inhibited the growth of both H. pylori reference strain and clinical multidrug-resistant isolates. Docking analysis revealed that ovatodiolide fits into the hydrophobic pocket of a ribosomal protein, RpsB. Furthermore, ovatodiolide inhibited bacterial growth by reducing levels of RpsB, which plays a crucial role in protein translation. Our results demonstrate that ovatodiolide binds to a ribosomal protein and interferes with protein synthesis. This study provides evidence that ovatodiolide has the potential to be developed into a potent therapeutic agent for treating H. pylori infection.
Collapse
Affiliation(s)
- Hsiu-Man Lien
- Research Institute of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Department of Biochemistry, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiu-Lien Hung
- Targeted Drug and Delivery Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Jung Chen
- Department of Pediatrics, Department of Neurology, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Lin Wu
- Department of Microbiology and Immunology, Department of Biochemistry, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Department of Neurology, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuan-Wen Chen
- Molecular Science Center, Genetics Generation Advancement, Taipei, Taiwan
| | - Chao-Lu Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Sheau-Jiun Chang
- Department of Rehabilitation, Dachien General Hospital, Miaoli, Taiwan
| | - Chia-Chang Chen
- School of Management, Feng Chia University, Taichung, Taiwan
| | - Hwai-Jeng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang-Ho Hospital, New Taipei, Taiwan.
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Department of Biochemistry, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, Department of Neurology, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Department of Nursing, Asia University, Taichung, Taiwan.
- School of Medicine, Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, Long K, Yeap SK. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep 2019; 9:1514. [PMID: 30728391 PMCID: PMC6365513 DOI: 10.1038/s41598-018-37796-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023] Open
Abstract
Eupatorin has been reported with in vitro cytotoxic effect on several human cancer cells. However, reports on the mode of action and detail mechanism of eupatorin in vitro in breast cancer disease are limited. Hence, eupatorin's effect on the human breast carcinoma cell line MCF-7 and MDA-MB-231 was investigated. MTT assay showed that eupatorin had cytotoxic effects on MCF-7 and MDA-MB-231 cells but was non-toxic to the normal cells of MCF-10a in a time-dose dependent manner. At 24 h, the eupatorin showed mild cytotoxicity on both MCF-7 and MDA-MB-231 cells with IC50 values higher than 20 μg/mL. After 48 h, eupatorin at 5 μg/mL inhibited the proliferation of MCF-7 and MDA-MB-231 cells by 50% while the IC50 of MCF-10a was significantly (p < 0.05) high with 30 μg/mL. The concentration of eupatorin at 5 μg/mL induced apoptosis mainly through intrinsic pathway by facilitating higher fold of caspase 9 compared to caspase 8 at 48 h. The cell cycle profile also showed that eupatorin (5 μg/mL) exerted anti-proliferation activity with the cell cycle arrest of MCF-7 and MDA-MB-231 cells at sub Gθ/G1 in a time-dependent manner. In addition, wound healing assay showed an incomplete wound closure of scratched MDA-MB-231 cells, and more than 60% of the MDA-MB-231 cells were prevented to migrate and invade the membrane in the Boyden chamber after 24 h. Eupatorin also inhibited angiogenic sprouting of new blood vessels in ex vivo mouse aorta ring assay. In gene expression assay, eupatorin up-regulated pro-apoptotic genes such as Bak1, HIF1A, Bax, Bad, cytochrome c and SMAC/Diablo and blocked the Phospho-Akt pathway. In conclusion, eupatorin is a potent candidate to induce apoptosis and concurrently inhibit the invasion, migration and angiogenesis of MDA-MB-231 and MCF-7 cells through inhibition of Phospho-Akt pathway and cell cycle blockade.
Collapse
Affiliation(s)
- Nursyamirah Abd Razak
- Laborotary of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Nadiah Abu
- UKM Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Yaa'cob Latiff, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Wan Yong Ho
- School of Biomedical Sciences, The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, 43500, Selangor, Malaysia
| | - Nur Rizi Zamberi
- Laborotary of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Sheau Wei Tan
- Laborotary of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Kamariah Long
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, 43400, Selangor, Malaysia
| | - Swee Keong Yeap
- Laborotary of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, 43900, Selangor, Malaysia.
| |
Collapse
|
12
|
Yu CC, Chen CA, Fu SL, Lin HY, Lee MS, Chiou WY, Su YC, Hung SK. Andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity. PLoS One 2018; 13:e0205666. [PMID: 30359388 PMCID: PMC6201887 DOI: 10.1371/journal.pone.0205666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Activation of Ras oncogene in human tumors is associated with radiation-associated metastatic potential. Although ionizing radiation is one important method of cancer treatments, it has been shown to enhance matrix metalloproteinases (MMPs) activity and facilitates a more aggressive cancer phenotype. Our previous studies showed that andrographolide with lower dose rates of radiation could inhibit RAS-transformed cancer metastasis in vivo; however, the molecular mechanisms are not yet clear. In this study, we aimed to explore the anti-metastatic effect of andrographolide combined with radiation on Ras-transformed cells. METHODS RAS-transformed cells were treated with andrographolide in the presence or absence of irradiation (2-4 Gy) or angiotensin II to examine cell invasion. In vivo tumorigenesis assays were also performed. The MMP-2 activity was detected by using Gelatin zymography. Signal transduction of NF-κB subunit, p65 and phosphor-ERK 1/2, were examined by using Western blotting analysis. RESULTS Treatment with andrographolide inhibited migration of Ras-transformed cells. Andrographolide treatment with radiation significantly inhibited cancer metastasis in vivo. We found that andrographolide exhibited anti-migration and anti-invasive ability against cancer metastasis via inhibition of MMP2 activity rather than affected MMP-9 and EMT. In addition, combined andrographolide with radiation appeared to be more effective in reducing MMP-2 expression, and this effect was accompanied by suppression of ERK activation that inhibits cancer cell migration and invasion. CONCLUSIONS These findings suggest that andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity.
Collapse
Affiliation(s)
- Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
| | - Chien-An Chen
- Department of Radiation Oncology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Yu-Chieh Su
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
13
|
Liu M, Bamodu OA, Kuo KT, Lee WH, Lin YK, Wu ATH, M H, Tzeng YM, Yeh CT, Tsai JT. Downregulation of Cancer Stemness by Novel Diterpenoid Ovatodiolide Inhibits Hepatic Cancer Stem Cell-Like Traits by Repressing Wnt/[Formula: see text]-Catenin Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:891-910. [PMID: 29792038 DOI: 10.1142/s0192415x18500477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hierarchical tumor propagation or cancer stem cells (CSCs) model of carcinogenesis postulates that like physiologic adult stem cell (ASC), the CSCs positioned at the apex of any tumor population form the crux of tumor evolution with a constitutive regenerative capacity and differentiation potential. The propagation and recurrence of the characteristically heterogeneous and therapy-resistant hepatocellular carcinoma (HCC), adds to accumulating evidence to support this CSCs model. Based on the multi-etiologic basis of HCC formation which among others, focuses on the disruption of the canonical Wnt signaling pathway, this study evaluated the role of cembrane-type phytochemical, Ovatodiolide, in the modulation of the Wnt/[Formula: see text]-catenin pathway, and its subsequent effect on liver CSCs' activities. Our fluorescence-activated cell sorting (FACS) and quantitative RT-PCR analyses of side population (SP) indicated that CD133+ cells were [Formula: see text]-catenin-overexpressing, more aggressive, and resistant to the conventional anticancer agents, Cisplatin and Doxorubicin, when compared to [Formula: see text]-catenin-downregulated group. We demonstrated that marked upregulation of [Formula: see text]-catenin and its downstream targets effectively enhanced hepatosphere formation, with an associated induction of CD133, OCT4 and Sox2 expression and also caused an significant enhancement of HCC proliferation. However, treatment with Ovatodiolide induced downregulation of [Formula: see text]-catenin and its downstream effector genes, abolished hepatosphere formation and reversed the [Formula: see text]-catenin-associated enhancement of HCC growth. In summary, we demonstrated for the first time that Ovatodiolide suppressed the canonical Wnt signaling pathway, and inhibited the generation of liver CSCs; Thus, projecting Ovatodiolide as a putatively effective therapeutic agent for anti-HCC target therapy.
Collapse
Affiliation(s)
- Mingche Liu
- * Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,† Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,‡‡ Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- §§ Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,¶¶ Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kuang-Tai Kuo
- ‡ Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hwa Lee
- § Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- ¶ Biostatistics and Research Consultation Center, Taipei Medical University, Taipei, Taiwan
| | - Alexander T H Wu
- ∥ The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiao M
- ∥∥ Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yew-Min Tzeng
- *** Center for General Education, National Taitung University, Taitung, Taiwan.,††† Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Chi-Tai Yeh
- §§ Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,¶¶ Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jo-Ting Tsai
- ** Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,†† Department of Radiation Oncology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Chang HL, Chen HA, Bamodu OA, Lee KF, Tzeng YM, Lee WH, Tsai JT. Ovatodiolide suppresses yes-associated protein 1-modulated cancer stem cell phenotypes in highly malignant hepatocellular carcinoma and sensitizes cancer cells to chemotherapy in vitro. Toxicol In Vitro 2018; 51:74-82. [PMID: 29698666 DOI: 10.1016/j.tiv.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
The cancer stem cells (CSCs) theory recently became a focus of heightened attention in cancer biology, with the proposition that CSCs may constitute an important therapeutic target for effective anticancer therapy, because of their demonstrated role in tumor initiation, chemo-, and radio-resistance. Liver CSCs are a small subpopulation of poorly- or undifferentiated liver tumor cells, implicated in tumorigenesis, metastasis, resistance to therapy and disease relapse, enriched with and associated with the functional markers corresponding to the CSCs-enriched side population (SP), high aldehyde dehydrogenase (ALDH) activity, and enhanced formation of in vitro liver CSCs models, referred to herein as hepatospheres. In this study, we found YAP1 was significantly expressed in the SP cells, as well as in generated hepatospheres compared to non-SP or parental HCC cells, at transcript and/or protein levels. In addition, downregulation of YAP1 expression levels by small molecule inhibitor and siRNA transfection, in the HCC cell lines, PLC/PRF/5 and Mahlavu, were associated with marked loss of ability to form hepatospheres and increased sensitivity to sorafenib. Consistent with the above, we demonstrated that YAP1 expression positively correlated with that of Sox2, Oct4, c-Myc and GRP78, markers of stemness and drug resistance. This is suggestive of YAP1's role as a modulator of cancer stemness, ER stress and chemoresistance. For the first time, we demonstrate that Ovatodiolide significantly attenuates YAP1 expression and subsequently suppressed YAP1-modulated CSCs phenotypes and associated disease progression, consistent with our previous finding in breast cancer. Taken together, our findings suggest that YAP1, highly expressed in malignant liver tumours, contributes to hepatocellular CSCs phenotype and is a molecular target of interest for CSCs targeted therapy in liver cancer patients.
Collapse
Affiliation(s)
- Hang-Lung Chang
- Department of General Surgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kwai-Fong Lee
- Biobank management center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yew-Min Tzeng
- Center for General Education, National Taitung University, Taitung, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Mediacal University, Taipei City, Taiwan.
| | - Jo-Ting Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Radiation Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
15
|
Ovatodiolide isolated from Anisomeles indica induces cell cycle G2/M arrest and apoptosis via a ROS-dependent ATM/ATR signaling pathways. Eur J Pharmacol 2018; 819:16-29. [DOI: 10.1016/j.ejphar.2017.09.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
|
16
|
Wang CN, Lee YL, Lin YP, Chung WH, Tzeng YM, Lee CC. Ovatodiolide suppresses allergic airway inflammation and hyperresponsiveness in a murine model of asthma. Eur J Pharmacol 2017; 812:9-17. [PMID: 28666799 DOI: 10.1016/j.ejphar.2017.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Asthma, a complex pulmonary allergic disease, major therapy is applied of drugs to control the disease, but quickly recur after the drugs are stopped. In patients with severe asthma may show steroid resistance and would benefit from the development of novel therapeutic drugs. Ovatodiolide, a unique macrocyclic diterpenoid isolated from Anisomeles indica, showed therapeutic potential for the treatment of allergic asthma. As a model of allergic inflammation, we used ovalbumin (OVA)-immunized mice, which displayed T helper cell type 2 (TH2) cytokine expression in bronchoalveolar lavage fluid (BALF), as well as airway inflammation and hyperresponsiveness (AHR). The results showed that ovatodiolide suppressed TH2 activation, including cell proliferation and production of the TH2 related cytokines, interleukin (IL)-4, IL-5, IL-13, IL-33, eosinophil chemotactic protein (eotaxin), and also reduced airway hyperresponsiveness. In this study, ovatodiolide inhibited allergic asthma through downregulation of TH2 responses in a murine model of asthma.
Collapse
Affiliation(s)
- Chien-Neng Wang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Pei Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taiwan
| | - Wen-Hui Chung
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yew-Min Tzeng
- Department of Life Science, National Taitung University, Taitung, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan.
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
17
|
Semisynthetic oleanane triterpenoids inhibit migration and invasion of human breast cancer cells through downregulated expression of the ITGB1/PTK2/PXN pathway. Chem Biol Interact 2017; 268:136-147. [PMID: 28322779 DOI: 10.1016/j.cbi.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 01/13/2023]
Abstract
This paper reports a study on the role of two synthetic derivatives of oleanolic acid (OA), HIMOXOL and Br-HIMOLID, in the regulation of cell migration and invasion and the underlying molecular mechanisms of breast cancer cells. The effect of the compounds on four breast cancer cell lines (MCF7, MDA-MB-231, MDA-MB-468, and T-47D) and also on noncancerous breast cells, MCF-12A, was reported. The compounds had no effect on the migration of MCF-12A cells. However, both the derivatives revealed a higher cytotoxicity than the maternal compound OA, and in sub-cytotoxic concentrations, they decreased the migration of MCF7, MDA-MB-231, and MDA-MB-468 breast cancer cells and also the invasion of MCF7 and MDA-MB-231 cells; although, the derivatives had no effect on the migration and invasion of T-47D cells. Both the derivatives of OA inhibited the cell migratory and invasive abilities of breast cancer cells by downregulating the expressions of ITGB1, PTK2, and PXN genes and by decreasing the phosphorylation status and the level of its respective proteins (integrin β1, FAK, and paxillin, respectively). This study is the first to report the antimigratory and anti-invasive activities of HIMOXOL and Br-HIMOLID in breast cancer cells.
Collapse
|
18
|
Huang YJ, Yang CK, Wei PL, Huynh TT, Whang-Peng J, Meng TC, Hsiao M, Tzeng YM, Wu AT, Yen Y. Ovatodiolide suppresses colon tumorigenesis and prevents polarization of M2 tumor-associated macrophages through YAP oncogenic pathways. J Hematol Oncol 2017; 10:60. [PMID: 28241877 PMCID: PMC5329923 DOI: 10.1186/s13045-017-0421-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
Background An increased expression of Yes-associated protein (YAP1) has been shown to promote tumorigenesis in many cancer types including colon. However, the role of YAP1 in promoting colon tumorigenesis remains unclear. Here, we demonstrate that YAP1 expression is associated with M2 tumor-associated macrophage polarization and the generation of colon cancer stem-like cells. YAP1 downregulation by gene silencing or a phytochemical, ovatodiolide, not only suppresses colon cancer tumorigenesis but also prevents M2 TAM polarization. Methods Human monocytic cells, THP-1, and colon cancer cell lines, HCT116 and DLD-1, were co-cultured to mimic the interactions between tumor and its microenvironment. M2 polarization of the THP-1 cells were examined using both flow cytometry and q-PCR technique. The inhibition of YAP1 signaling was achieved by gene-silencing technique or ovatodiolide. The molecular consequences of YAP1 inhibition was demonstrated via colony formation, migration, and colon-sphere formation assays. 5-FU and ovatodiolide were used in drug combination studies. Xenograft and syngeneic mouse models were used to investigate the role of YAP1 in colon tumorigenesis and TAM generation. Results An increased YAP1 expression was found to be associated with a poor prognosis in patients with colon cancer using bioinformatics approach. We showed an increased YAP1 expression in the colon spheres, and colon cancer cells co-cultured with M2 TAMs. YAP1-silencing led to the concomitant decreased expression of major oncogenic pathways including Kras, mTOR, β-catenin, and M2-promoting IL-4 and tumor-promoting IL-6 cytokines. TAM co-cultured colon spheres showed a significantly higher tumor-initiating ability in vivo. Ovatodiolide treatment alone and in combination with 5-FU significantly suppressed in vivo tumorigenesis and less TAM infiltration in CT26 syngeneic mouse model. Conclusions We have identified the dual function of YAP1 where its suppression not only inhibited tumorigenesis but also prevented the generation of cancer stem-like cells and M2 TAM polarization. Ovatodiolide treatment suppressed YAP1 oncogenic pathways to inhibit colon tumorigenesis and M2 TAM generation both in vitro and in vivo. Ovatodiolide should be considered for its potential for adjuvant therapeutic development. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0421-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan-Jiun Huang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan, People's Republic of China
| | - Ching-Kuo Yang
- Division of Colorectal Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan, People's Republic of China
| | - Thanh-Tuan Huynh
- Center for Molecular Biomedicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Jacqueline Whang-Peng
- Division of Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yew-Ming Tzeng
- Center for General Education, National Taitung University, Taitung, 95092, Taiwan.,Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Alexander Th Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun Yen
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,The PhD Program of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Marvibaigi M, Amini N, Supriyanto E, Abdul Majid FA, Kumar Jaganathan S, Jamil S, Hamzehalipour Almaki J, Nasiri R. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack) Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231. PLoS One 2016; 11:e0158942. [PMID: 27410459 PMCID: PMC4943642 DOI: 10.1371/journal.pone.0158942] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/24/2016] [Indexed: 01/04/2023] Open
Abstract
Scurrula ferruginea (Jack) Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231) and non-cancer human skin fibroblast cells (HSF-1184). The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract) and flavonoid contents (163.41 ± 4.62 mg catechin/g extract) and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL) and metal chelation activity (IC50 = 80.20 μg/mL). The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated.
Collapse
Affiliation(s)
- Mohsen Marvibaigi
- IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Neda Amini
- IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Fadzilah Adibah Abdul Majid
- Bioprocess Engineering Department, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Saravana Kumar Jaganathan
- IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Shajarahtunnur Jamil
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Javad Hamzehalipour Almaki
- Bioprocess Engineering Department, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Rozita Nasiri
- Bioprocess Engineering Department, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
20
|
Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27. Toxins (Basel) 2016; 8:toxins8050127. [PMID: 27136586 PMCID: PMC4885042 DOI: 10.3390/toxins8050127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 01/16/2023] Open
Abstract
Cancer stem/progenitor cells (CSCs) are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova) is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L.) Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474) to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs) which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4) and Nanog, as well as heat shock protein 27 (Hsp27), but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2) in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer.
Collapse
|
21
|
Ovatodiolide sensitizes aggressive breast cancer cells to doxorubicin, eliminates their cancer stem cell-like phenotype, and reduces doxorubicin-associated toxicity. Cancer Lett 2015; 364:125-34. [DOI: 10.1016/j.canlet.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/26/2015] [Accepted: 05/04/2015] [Indexed: 01/18/2023]
|
22
|
Ordoñez R, Carbajo-Pescador S, Prieto-Dominguez N, García-Palomo A, González-Gallego J, Mauriz JL. Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J Pineal Res 2014; 56:20-30. [PMID: 24117795 DOI: 10.1111/jpi.12092] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/30/2013] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers worldwide because of its high incidence and its metastatic potential. Extracellular matrix degradation by matrix metalloproteinases (MMPs) has been connected with cancer cell invasion, and it has been suggested that inhibition of MMPs by synthetic and natural inhibitors may be of great importance in the HCC therapies. Melatonin, the main product of the pineal gland, exerts antiproliferative, proapoptotic, and antiangiogenic properties in HepG2 human hepatocellular cells, and exhibits anti-invasive and antimetastatic activities by suppressing the enzymatic activity of MMP-9 in different tumor types. However, the underlying mechanism of anti-invasive activity in HCC models has not been fully elucidated. Here, we demonstrate that 1 mm melatonin dosage reduced in IL-1β-induced HepG2 cells MMP-9 gelatinase activity and inhibited cell invasion and motility through downregulation of MMP-9 gene expression and upregulation of the MMP-9-specific inhibitor tissue inhibitor of metalloproteinases (TIMP)-1. No significant changes were observed in the expression and activity of MMP-2, the other proteinase implicated in matrix collagen degradation, and its tissue inhibitor, TIMP-2. Also, melatonin significantly suppressed IL-1β-induced nuclear factor-kappaB (NF-κB) translocation and transcriptional activity. In summary, we demonstrate that melatonin modulates motility and invasiveness of HepG2 cell in vitro through a molecular mechanism that involves TIMP-1 upregulation and attenuation of MMP-9 expression and activity via NF-κB signal pathway inhibition.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain; Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Lisiak N, Paszel-Jaworska A, Bednarczyk-Cwynar B, Zaprutko L, Kaczmarek M, Rybczyńska M. Methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL), a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MDA-MB-231 breast cancer cells. Chem Biol Interact 2013; 208:47-57. [PMID: 24291674 DOI: 10.1016/j.cbi.2013.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
HIMOXOL (methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate) is a synthetic derivative of oleanolic acid (OA). HIMOXOL revealed the highest cytotoxic effect among tested synthetic OA analogs. In this study we focused on elucidating the cytotoxic mechanism of HIMOXOL in MDA-MB-231 breast cancer cells. HIMOXOL reduced MDA-MB-231 cell viability with an IC50 value of 21.08±0.24μM. In contrast to OA, the tested compound induced cell death by activating apoptosis and the autophagy pathways. More specifically, we found that HIMOXOL was able to activate the extrinsic apoptotic pathway, which was proven by observation of caspase-8, caspase-3 and PARP-1 protein activation in Western blot analysis. An increase in the ratio of Bax/Bcl-2 protein levels was also detected. Moreover, HIMOXOL triggered microtubule-associated protein LC3-II expression and upregulated beclin 1. This observed compound activity was modulated by mitogen-activated protein kinases and NFκB/p53 signaling pathways. Together, these data suggest that HIMOXOL, a synthetic oleanolic acid derivative which activates dual cell death machineries, could be a potential and novel chemotherapeutic agent.
Collapse
Affiliation(s)
- Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355 Poznan, Poland.
| | - Anna Paszel-Jaworska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D St., 60-806 Poznan, Poland
| | - Maria Rybczyńska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| |
Collapse
|
24
|
Rao YK, Chen YC, Fang SH, Lai CH, Geethangili M, Lee CC, Tzeng YM. Ovatodiolide inhibits the maturation of allergen-induced bone marrow-derived dendritic cells and induction of Th2 cell differentiation. Int Immunopharmacol 2013; 17:617-24. [DOI: 10.1016/j.intimp.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 01/10/2023]
|
25
|
Wu GS, Song YL, Yin ZQ, Guo JJ, Wang SP, Zhao WW, Chen XP, Zhang QW, Lu JJ, Wang YT. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS One 2013; 8:e76620. [PMID: 24204647 PMCID: PMC3812178 DOI: 10.1371/journal.pone.0076620] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/27/2013] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion, migration and invasion are critical steps for carcinogenesis and cancer metastasis. Ganoderma lucidum, also called Lingzhi in China, is a traditional Chinese medicine, which exhibits anti-proliferation, anti-inflammation and anti-metastasis properties. Herein, GAEE, G. lucidum extract mainly contains ganoderiol A (GA), dihydrogenated GA and GA isomer, was shown to inhibit the abilities of adhesion and migration, while have a slight influence on that of invasion in highly metastatic breast cancer MDA-MB-231 cells at non-toxic doses. Further investigation revealed that GAEE decreased the active forms of focal adhesion kinase (FAK) and disrupted the interaction between FAK and SRC, which lead to deactivating of paxillin. Moreover, GAEE treatment downregulated the expressions of RhoA, Rac1, and Cdc42, and decreased the interaction between neural Wiskott-Aldrich Syndrome protein (N-WASP) and Cdc42, which impair cell migration and actin assembly. To our knowledge, this is the first report to show that G.lucidum triterpenoids could suppress cell migration and adhesion through FAK-SRC-paxillin signaling pathway. Our study also suggests that GAEE may be a potential agent for treatment of breast cancer.
Collapse
Affiliation(s)
- Guo-Sheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nacoulma AP, Megalizzi V, Pottier LR, De Lorenzi M, Thoret S, Dubois J, Vandeputte OM, Duez P, Vereecke D, Jaziri ME. Potent antiproliferative cembrenoids accumulate in tobacco upon infection with Rhodococcus fascians and trigger unusual microtubule dynamics in human glioblastoma cells. PLoS One 2013; 8:e77529. [PMID: 24167576 PMCID: PMC3805576 DOI: 10.1371/journal.pone.0077529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/10/2013] [Indexed: 12/26/2022] Open
Abstract
AIMS Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls) induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians. METHODS We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry. RESULTS The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability.
Collapse
Affiliation(s)
- Aminata P. Nacoulma
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Veronique Megalizzi
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurent R. Pottier
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Manuela De Lorenzi
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylviane Thoret
- Institut de Chimie des Substances Naturelles, Centre national de la recherche scientifique Unité PR 2301, Gif-sur-Yvette, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, Centre national de la recherche scientifique Unité PR 2301, Gif-sur-Yvette, France
| | - Olivier M. Vandeputte
- Laboratoire de Biotechnologie Végétale, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Pierre Duez
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Danny Vereecke
- Department of Plant Production, University College Ghent, Ghent University, Gent, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
27
|
Dinicola S, Pasqualato A, Cucina A, Coluccia P, Ferranti F, Canipari R, Catizone A, Proietti S, D’Anselmi F, Ricci G, Palombo A, Bizzarri M. Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion. Eur J Nutr 2013; 53:421-31. [DOI: 10.1007/s00394-013-0542-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022]
|
28
|
Antioxidative characteristics of Anisomeles indica extract and inhibitory effect of ovatodiolide on melanogenesis. Int J Mol Sci 2012; 13:6220-6235. [PMID: 22754360 PMCID: PMC3382824 DOI: 10.3390/ijms13056220] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 01/05/2023] Open
Abstract
The purpose of the study was to investigate the antioxidant characteristics of Anisomeles indica methanol extract and the inhibitory effect of ovatodiolide on melanogenesis. In the study, the antioxidant capacities of A. indica methanol extract such as DPPH assay, ABTS radical scavenging assay, reducing capacity and metal ion chelating capacity as well as total phenolic content of the extract were investigated. In addition, the inhibitory effects of ovatodiolide on mushroom tyrosinase, B16F10 intracellular tyrosinase and melanin content were determined spectrophotometrically. Our results revealed that the antioxidant capacities of A. indica methanol extract increased in a dose-dependent pattern. The purified ovatodiolide inhibited mushroom tyrosinase activity (IC50 = 0.253 mM), the compound also effectively suppressed intracellular tyrosinase activity (IC50 = 0.469 mM) and decreased the amount of melanin (IC50 = 0.435 mM) in a dose-dependent manner in B16F10 cells. Our results concluded that A. indica methanol extract displays antioxidant capacities and ovatodiolide purified from the extract inhibited melanogenesis in B16F10 cells. Hence, A. indica methanol extract and ovatodiolide could be applied as a type of dermatological whitening agent in skin care products.
Collapse
|