1
|
Jin L, Wang Q, Yang M, Zhang J, Liang H, Tan H, Liang Z, Ma X, Liu J, Li H, Cai X, Cui W, Zhao L. Indirubin-3′-monoxime-loaded PLGA-PEG nanoparticles for potential Alzheimer's disease treatment. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
2
|
A Synopsis of Multitarget Potential Therapeutic Effects of Huperzine A in Diverse Pathologies-Emphasis on Alzheimer's Disease Pathogenesis. Neurochem Res 2022; 47:1166-1182. [PMID: 35122609 DOI: 10.1007/s11064-022-03530-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
Numerous challenges are confronted when it comes to the recognition of therapeutic agents for treating complex neurodegenerative diseases like Alzheimer's disease (AD). The perplexing pathogenicity of AD embodies cholinergic dysfunction, amyloid beta (Aβ) aggregation, neurofibrillary tangle formation, neuroinflammation, mitochondrial disruption along with vicious production of reactive oxygen species (ROS) generating oxidative stress. In this frame of reference, drugs with multi target components could prove more advantageous to counter complex pathological mechanisms that are responsible for AD progression. For as much as, medicinal plant based pharmaco-therapies are emerging as potential candidates for AD treatment keeping the efficacy and safety parameters in terms of toxicity and side effects into consideration. Huperzine A (Hup A) is a purified alkaloid compound extracted from a club moss called Huperzia serrata. Several studies have reported both cholinergic and non-cholinergic effects of this compound on AD with significant neuroprotective properties. The present review convenes cumulative demonstrations of neuroprotection provided by Hup A in in vitro, in vivo, and human studies in various pathologies. The underlying molecular mechanisms of its actions have also been discussed. However, more profound evidence would certainly promote the therapeutic implementation of this drug thus furnishing decisive insights into AD therapeutics and various other pathologies along with preventive and curative management.
Collapse
|
3
|
Mak S, Li W, Fu H, Luo J, Cui W, Hu S, Pang Y, Carlier PR, Tsim KW, Pi R, Han Y. Promising tacrine/huperzine A-based dimeric acetylcholinesterase inhibitors for neurodegenerative disorders: From relieving symptoms to modifying diseases through multitarget. J Neurochem 2021; 158:1381-1393. [PMID: 33930191 PMCID: PMC8458250 DOI: 10.1111/jnc.15379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
Neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, are devastating diseases in the elderly world, which are closely associated with progressive neuronal loss induced by a variety of genetic and/or environmental factors. Unfortunately, currently available treatments for neurodegenerative disorders can only relieve the symptoms but not modify the pathological processes. Over the past decades, our group by collaborating with Profs. Yuan-Ping Pang and Paul R. Carlier has developed three series of homo/hetero dimeric acetylcholinesterase inhibitors derived from tacrine and/or huperzine A. The representative dimers bis(3)-Cognitin (B3C), bis(12)-hupyridone, and tacrine(10)-hupyridone might possess disease-modifying effects through the modulation of N-methyl-d-aspartic acid receptors, the activation of myocyte enhancer factor 2D gene transcription, and the promotion of neurotrophic factor secretion. In this review, we summarize that the representative dimers, such as B3C, provide neuroprotection against a variety of neurotoxins via multiple targets, including the inhibitions of N-methyl-d-aspartic acid receptor with pathological-activated potential, neuronal nitric oxide synthase, and β-amyloid cascades synergistically. More importantly, B3C might offer disease-modifying potentials by activating myocyte enhancer factor 2D transcription, inducing neuritogenesis, and promoting the expressions of neurotrophic factors in vitro and in vivo. Taken together, the novel dimers might offer synergistic disease-modifying effects, proving that dimerization might serve as one of the strategies to develop new generation of therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shinghung Mak
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenming Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongjun Fu
- Department of Neuroscience, Chronic Brain Injury, The Ohio State University, Columbus, OH, USA
| | - Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China
| | - Shengquan Hu
- Shenzhen Institute of Geriatrics, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuanping Pang
- Mayo Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, MN, USA
| | | | - Karl Wahkeung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Pi
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
4
|
Yu P, Dong WP, Tang YB, Chen HZ, Cui YY, Bian XL. Huperzine A lowers intraocular pressure via the M3 mAChR and provides retinal neuroprotection via the M1 mAChR: a promising agent for the treatment of glaucoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:332. [PMID: 33708959 PMCID: PMC7944337 DOI: 10.21037/atm-20-8093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glaucoma is a neurodegenerative disease that shares similar pathological mechanisms with Alzheimer's disease (AD). Drug treatments for glaucoma increasingly rely upon both lowering of intraocular pressure (IOP) and optic nerve protection, as lowering of IOP alone has been unsatisfactory. Huperzine A (HupA) is an acetylcholinesterase inhibitor (AChEI) used for AD. This study investigated the potential of HupA as a treatment for glaucoma. METHODS The ability of HupA to lower IOP via causing pupil constriction was assessed using New Zealand rabbits. The retinal neuroprotective effects of HupA were assessed in vivo using rat retinas subjected to ischemia-reperfusion (I/R) and in vitro using primary retinal neurons (PRNs) suffering from oxygen-glucose deprivation (OGD). RESULTS HupA caused pupil constriction in a dose-time dependent manner which was reversed by the nonselective muscarinic acetylcholine receptor (mAChR) antagonist atropine and the selective M3 mAChR antagonist 4-DAMP. However, HupA had no effect on isolated iris muscle tension and calcium flow indicating an indirect M3 mAChR mediated effect. HupA exerted a neuroprotective effect against I/R and OGD to attenuate the retinal pathological lesion, improve retinal neuronal cell viability, reverse oxidative stress injury by increasing GSH levels and SOD activity, and decreasing MDA content and reduce the retinal neuronal apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 expression with no effect on the calcium flow tests. The effects were abolished by atropine and the selective M1 mAChR antagonist pirenzepine in OGD-induced PRNs suggesting an indirect M1 mAChR-mediated effect via inhibiting AChE activity to increase endogenous ACh level. Furthermore, HupA increased phosphorylated AKT level and decreased the levels of phosphorylated JNK, P38 MAPK and ERK via M1 mAChR antagonists indicating an involvement of activating the M1 mAChR and the downstream AKT/MAPK signaling pathway in the protective effects of HupA. CONCLUSIONS HupA could significantly decrease IOP via activating M3 mAChR indirectly and produce retinal neuroprotective effect through M1 mAChR/AKT/MAPK by increasing endogenous ACh level. These investigations demonstrated that HupA was an effective drug in glaucoma treatment and the clinical application of HupA and other AChEIs for glaucoma patients should be further investigated.
Collapse
Affiliation(s)
- Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Pei Dong
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Bin Tang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Yao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Liu Z, Qiu X, Mak S, Guo B, Hu S, Wang J, Luo F, Xu D, Sun Y, Zhang G, Cui G, Wang Y, Zhang Z, Han Y. Multifunctional memantine nitrate significantly protects against glutamate-induced excitotoxicity via inhibiting calcium influx and attenuating PI3K/Akt/GSK3beta pathway. Chem Biol Interact 2020; 325:109020. [PMID: 32092300 DOI: 10.1016/j.cbi.2020.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/09/2019] [Accepted: 02/18/2020] [Indexed: 01/30/2023]
Abstract
Overactivation of N-methyl-D-aspartate (NMDA) receptors has been associated with neurodegenerative disorders such as Alzheimer's disease (AD), cerebral vascular disorders and amyotrophic lateral sclerosis (ALS). We have previously designed and synthesized a series of memantine nitrate and some of them have shown vessel dilatory effects and neuroprotective effects; however, the detailed mechanisms have not been elucidated. In this study, we further demonstrated that memantine nitrate-06 (MN-06), one of the novel compounds derived from memantine, possessed significant neuroprotective effects against glutamate-induced excitotoxicity in rat primary cerebellar granule neurons (CGNs). Pretreatment of MN-06 reversed the activation of GSK3b and the suppression of phosphorylated Akt induced by glutamate. In addition, the neuroprotective effects of MN-06 could be abolished by LY294002, the specific phosphatidylinositol 3-kinase (PI3-K) inhibitor. Ca2+ imaging shown that pretreatment of MN-06 prevented Ca2+ influx induced by glutamate. Moreover, MN-06 might inhibit the NMDA-mediated current by antagonizing NDMA receptors, which was further confirmed by molecular docking simulation. Taken together, MN-06 protected against glutamate-induced excitotoxicity by blocking calcium influx and attenuating PI3-K/Akt/GSK-3b pathway, indicating that MN-06 might be a potential drug for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiaoling Qiu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Baojian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shengquan Hu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jiajun Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Daping Xu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Guozhen Cui
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
6
|
Liu Y, Wang S, Kan J, Zhang J, Zhou L, Huang Y, Zhang Y. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling. Curr Neuropharmacol 2020; 18:260-276. [PMID: 31686629 PMCID: PMC7327939 DOI: 10.2174/1570159x17666191101125530] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and its signaling is critical for excitatory synaptic transmission. The well-established glutamate system involves glutamate synthesis, presynaptic glutamate release, glutamate actions on the ionotropic glutamate receptors (NMDA, AMPA, and kainate receptors) and metabotropic glutamate receptors, and glutamate uptake by glutamate transporters. When the glutamate system becomes dysfunctional, it contributes to the pathogenesis of neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease, depression, epilepsy, and ischemic stroke. In this review, based on regulating glutamate signaling, we summarize the effects and underlying mechanisms of natural constituents from Chinese herbal medicines on neurological disorders. Natural constituents from Chinese herbal medicine can prevent the glutamate-mediated excitotoxicity via suppressing presynaptic glutamate release, decreasing ionotropic and metabotropic glutamate receptors expression in the excitatory synapse, and promoting astroglial glutamate transporter expression to increase glutamate clearance from the synaptic cleft. However, some natural constituents from Chinese herbal medicine have the ability to restore the collapse of excitatory synapses by promoting presynaptic glutamate release and increasing ionotropic and metabotropic glutamate receptors expression. These regulatory processes involve various signaling pathways, which lead to different mechanistic routes of protection against neurological disorders. Hence, our review addresses the underlying mechanisms of natural constituents from Chinese herbal medicines that regulate glutamate systems and serve as promising agents for the treatment of the above-mentioned neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunlong Zhang
- Address correspondence to this author at the Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Tel: +86-20-37105182;, E-mail: and Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China; E-mail:
| |
Collapse
|
7
|
Deng G, Wu C, Rong X, Li S, Ju Z, Wang Y, Ma C, Ding W, Guan H, Cheng X, Liu W, Wang C. Ameliorative effect of deoxyvasicine on scopolamine-induced cognitive dysfunction by restoration of cholinergic function in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153007. [PMID: 31301537 DOI: 10.1016/j.phymed.2019.153007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/16/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aerial parts of Peganum harmala Linn is used as a traditional medical herb for treatment of amnesia in Uighur medicine in China. Deoxyvasicine (DVAS) is one of the chief active ingredients in P. harmala, it possesses strong acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in vitro, but the therapeutic effect and mechanisms on amnesia in vivo are unclear. PURPOSE The objective of this study was to investigate the improvement effect of DVAS from P. harmala in learning and memory deficits of scopolamine-induced mice and elucidate the underlying mechanisms involved. METHODS Mice were pretreated with DVAS (5, 15 and 45 mg/kg) and huperzine-A (0.2 mg/kg) by gavage for 7 days, and subsequently were daily intraperitoneally injected with scopolamine (1 mg/kg) to induce learning and memory deficits and behavioral performance was assessed by Morris water maze. To further evaluate the potential mechanisms of DVAS in improving learning and memory capabilities, pathological change, levels of various biochemical markers and protein expressions related to cholinergic system, oxidative stress, and neuroinflammation were examined. RESULTS The results showed that DVAS could alleviate learning and memory deficits in scopolamine-treated mice. DVAS could regulate cholinergic function by inhibiting AChE and activating choline acetyltransferase (ChAT) activities and protein expressions. DVAS could induce brain-derived neurotrophic factor and protect hippocampal pyramidal cells against neuronal damage. DVAS also enhanced antioxidant defense via increasing the antioxidant enzyme level and activity of glutathione peroxidase, and anti-inflammatory function through suppressing tumor necrosis factor-α. Additionally, DVAS could regulate the neurotransmitters by elevating acetylcholine, 5-hydroxytryptamine, γ-aminobutyric acid and reducing 5-hydroxyindole-3-acetic acid and glutamic acid. CONCLUSION Results illustrated that DVAS may be a promising candidate compound against amnesia via restoration of cholinergic function, regulating neurotransmitters, attenuating neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Pingxiang Health Vocational College, Pingxiang 337000, China
| | - Chao Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Xiaojuan Rong
- Xinjiang Institute of Materia Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Xinjiang Key Laboratory of Plant Resources and Natural Products Chemistry, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhengcai Ju
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Youxu Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Chao Ma
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Wenzheng Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Rood, Shanghai 201203, China
| | - Wei Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Rood, Shanghai 201203, China.
| |
Collapse
|
8
|
Bu X, Yin C, Zhang X, Zhang A, Shao X, Zhang Y, Yan Y. LaSota Strain Expressing The Rabies Virus Glycoprotein (rL-RVG) Suppresses Gastric Cancer by Inhibiting the Alpha 7 Nicotinic Acetylcholine Receptor (α7 nAChR)/Phosphoinositide 3-Kinase (PI3K)/AKT Pathway. Med Sci Monit 2019; 25:5482-5492. [PMID: 31337746 PMCID: PMC6671559 DOI: 10.12659/msm.915251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing the rabies virus glycoprotein (rL-RVG) can induce much greater apoptosis than can NDV in gastric carcinoma cells, but the mechanisms involved remains unclear. MATERIAL AND METHODS The 2 gastric carcinoma cell lines were divided into the rL-RVG group, the NDV group, and the PBS group. MTT assay was used to detect and analyze cell viability. siRNA for alpha7-nAChR, alpha7-nAChR antagonist, or alpha7-nAChR agonist, AKT antagonist, and p-AKT agonist were used for pretreatment. The protein expressions of RVG, NDV, alpha7-nAChR, cleaved caspase-3, p-AKT, PI3K, Bcl-2, and Bax proteins were detected by Western blot assay. Immunofluorescence was used to detect expressions of alpha7-nAChR proteins. Light microscopy, flow cytometry, and TUNEL assay were used to assess apoptosis. RESULTS The results showed that 2 virus concentrations over 10³ dilution caused greater cell proliferation inhibition. rL-RVG treatment increased the expression of alpha7-nAChR, cleaved caspase-3, and Bax protein but decreased the expression of p-AKT, PI3K, and Bcl-2 protein. When the groups were pretreated with alpha7-nAChR antagonist, the alpha7-nAChR, cleaved caspase-3, and Bax protein expression increased, but the expression of p-AKT, PI3K, and Bcl-2 protein was clearly decreased. However, the results in the alpha7-nAChR agonist group were the opposite. When treated with the AKT antagonist, the result was the same as in the rL-RVG treatment group. The result in the AKT agonist group was the opposite of that in the AKT antagonist group. Compared with the NDV group, the results of light microscopy, FCM, and TUNEL assay showed that alpha7-nAChR antagonist significantly affected the apoptosis of gastric cancer cells in the rL-RVG group. CONCLUSIONS rL-RVG leads to much greater apoptosis through the alpha7-nAChR/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Chaoyun Yin
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Xuanfeng Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland).,Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Anwei Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland).,Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Xiaomei Shao
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Yao Zhang
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland).,Department of Internal Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Yulan Yan
- Department of Internal Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| |
Collapse
|
9
|
Coeloglossum viride var. bracteatum extract improves learning and memory of chemically-induced aging mice through upregulating neurotrophins BDNF and FGF2 and sequestering neuroinflammation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Fan W, Li X, Huang L, He S, Xie Z, Fu Y, Fang W, Li Y. S-oxiracetam ameliorates ischemic stroke induced neuronal apoptosis through up-regulating α7 nAChR and PI3K / Akt / GSK3β signal pathway in rats. Neurochem Int 2018; 115:50-60. [DOI: 10.1016/j.neuint.2018.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023]
|
11
|
Revisiting nicotine’s role in the ageing brain and cognitive impairment. Rev Neurosci 2017; 28:767-781. [DOI: 10.1515/revneuro-2017-0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022]
Abstract
AbstractBrain ageing is a complex process which in its pathologic form is associated with learning and memory dysfunction or cognitive impairment. During ageing, changes in cholinergic innervations and reduced acetylcholinergic tonus may trigger a series of molecular pathways participating in oxidative stress, excitotoxicity, amyloid-β toxicity, apoptosis, neuroinflammation, and perturb neurotrophic factors in the brain. Nicotine is an exogenous agonist of nicotinic acetylcholine receptors (nAChRs) and acts as a pharmacological chaperone in the regulation of nAChR expression, potentially intervening in age-related changes in diverse molecular pathways leading to pathology. Although nicotine has therapeutic potential, paradoxical effects have been reported, possibly due to its inverted U-shape dose-response effects or pharmacokinetic factors. Additionally, nicotine administration should result in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment.
Collapse
|
12
|
Ju Y, Asahi T, Sawamura N. Arctic Aβ40 blocks the nicotine-induced neuroprotective effect of CHRNA7 by inhibiting the ERK1/2 pathway in human neuroblastoma cells. Neurochem Int 2017; 110:49-56. [PMID: 28890319 DOI: 10.1016/j.neuint.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
Amyloid β protein (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Point mutations in the Aβ sequence, which cluster around the central hydrophobic core of the peptide, are associated with familial AD (FAD). Several mutations have been identified, with the Arctic mutation exhibiting a purely cognitive phenotype that is typical of AD. Our previous findings suggest that Arctic Aβ40 binds to and aggregates with CHRNA7, thereby inhibiting the calcium response and signaling pathways downstream of the receptor. Activation of CHRNA7 is neuroprotective both in vitro and in vivo. Therefore, in the present study, we investigated whether Arctic Aβ40 affects neuronal survival and/or death via CHRNA7. Using human neuroblastoma SH-SY5Y cells, we found that the neuroprotective function of CHRNA7 is blocked by CHRNA7 knockdown using RNA interference. Furthermore, Arctic Aβ40 blocked the neuroprotective effect of nicotine by inhibiting the ERK1/2 pathway downstream of CHRNA7. Moreover, we show that ERK1/2 activation mediates the neuroprotective effect of nicotine against oxidative stress. Collectively, our findings further our understanding of the molecular pathogenesis of Arctic FAD.
Collapse
Affiliation(s)
- Ye Ju
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Naoya Sawamura
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
13
|
Neuroprotective effects of a Coeloglossum viride var. Bracteatum extract in vitro and in vivo. Sci Rep 2017; 7:9209. [PMID: 28835690 PMCID: PMC5569100 DOI: 10.1038/s41598-017-08957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/20/2017] [Indexed: 12/02/2022] Open
Abstract
The excessive release and accumulation of glutamate in the brain is known to be associated with excitotoxicity. CE, an extract derived from the plant Coeloglossum viride var. Bracteatum, exerted neuroprotective effects against amyloid toxicity and oxidative stress in cortical neurons. The aims of this study are to examine whether CE also attenuates glutamate neurotoxicity in rat primary cultured cortical neurons and to determine the effect of CE in vivo. According to the results of MTT, LDH release, and TUNEL assays, the CE treatment significantly reduced glutamate-induced neurotoxicity in a dose-dependent manner. Moreover, the protective effects of CE were blocked by an Akt inhibitor, LY294002, suggesting that the PI3K/Akt signalling pathway is involved in the neuroprotective effects of CE. In addition, CE might regulate the PKC-GluA2 axis to prevent neuronal apoptosis. CE also protected against dopaminergic neuronal loss in a mouse model of MPTP-induced PD. Based on our results, CE exerted neuroprotective effects both in vitro and in vivo, thus providing a potential therapeutic target for the treatment or prevention of neurodegeneration.
Collapse
|
14
|
Huang L, Lin J, Xiang S, Zhao K, Yu J, Zheng J, Xu D, Mak S, Hu S, Nirasha S, Wang C, Chen X, Zhang J, Xu S, Wei X, Zhang Z, Zhou D, Zhou W, Cui W, Han Y, Hu Z, Wang Q. Sunitinib, a Clinically Used Anticancer Drug, Is a Potent AChE Inhibitor and Attenuates Cognitive Impairments in Mice. ACS Chem Neurosci 2016; 7:1047-56. [PMID: 27046396 DOI: 10.1021/acschemneuro.5b00329] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sunitinib, a tyrosine kinase inhibitor, is clinically used for the treatment of cancer. In this study, we found for the first time that sunitinib inhibits acetylcholinesterase (AChE) at submicromolar concentrations in vitro. In addition, sunitinib dramatically decreased the hippocampal and cortical activity of AChE in a time-dependent manner in mice. Molecular docking analysis further demonstrates that sunitinib might interact with both the catalytic anion and peripheral anionic sites within AChE, which is in accordance with enzymatic activity results showing that sunitinib inhibits AChE in a mixed pattern. Most importantly, we evaluated the effects of sunitinib on scopolamine-induced cognitive impairments in mice by using novel object recognition and Morris water maze tests. Surprisingly, sunitinib could attenuate cognitive impairments to a similar extent as donepezil, a marketed AChE inhibitor used for the treatment of Alzheimer's disease. In summary, our results have shown that sunitinib could potently inhibit AChE and attenuate cognitive impairments in mice.
Collapse
Affiliation(s)
- Ling Huang
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Kangning
Hospital, Ningbo, Zhejiang 315200, China
| | - Jiajia Lin
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Siying Xiang
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kangrong Zhao
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jie Yu
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiacheng Zheng
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Daping Xu
- Department
of Applied Biology and Chemistry Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shinghung Mak
- Department
of Applied Biology and Chemistry Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shengquan Hu
- Department
of Applied Biology and Chemistry Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shehani Nirasha
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chuang Wang
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaowei Chen
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Junfang Zhang
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shujun Xu
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofei Wei
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zaijun Zhang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dongsheng Zhou
- Ningbo Kangning
Hospital, Ningbo, Zhejiang 315200, China
| | - Wenhua Zhou
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wei Cui
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yifan Han
- Department
of Applied Biology and Chemistry Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zhenyu Hu
- Ningbo Kangning
Hospital, Ningbo, Zhejiang 315200, China
| | - Qinwen Wang
- Ningbo
Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key
Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
15
|
Lykhmus O, Mishra N, Koval L, Kalashnyk O, Gergalova G, Uspenska K, Komisarenko S, Soreq H, Skok M. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain. Front Mol Neurosci 2016; 9:19. [PMID: 27013966 PMCID: PMC4781876 DOI: 10.3389/fnmol.2016.00019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023] Open
Abstract
Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1-208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer's disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca(2+) and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1-208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca(2+) and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration.
Collapse
Affiliation(s)
- Olena Lykhmus
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of BiochemistryKyiv, Ukraine
| | - Nibha Mishra
- The Edmond and Lily Safra Center of Brain Science and The Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Lyudmyla Koval
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of BiochemistryKyiv, Ukraine
| | - Olena Kalashnyk
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of BiochemistryKyiv, Ukraine
| | - Galyna Gergalova
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of BiochemistryKyiv, Ukraine
| | - Kateryna Uspenska
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of BiochemistryKyiv, Ukraine
| | - Serghiy Komisarenko
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of BiochemistryKyiv, Ukraine
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science and The Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, O. V. Palladin Institute of BiochemistryKyiv, Ukraine
| |
Collapse
|
16
|
Hu S, Cui W, Mak S, Xu D, Hu Y, Tang J, Choi C, Lee M, Pang Y, Han Y. Substantial Neuroprotective and Neurite Outgrowth-Promoting Activities by Bis(propyl)-cognitin via the Activation of Alpha7-nAChR, a Promising Anti-Alzheimer's Dimer. ACS Chem Neurosci 2015; 6:1536-45. [PMID: 26147504 DOI: 10.1021/acschemneuro.5b00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cause of Alzheimer's disease (AD) could be ascribed to the progressive loss of functional neurons in the brain, and hence, agents with neuroprotection and neurite outgrowth-promoting activities that allow for the replacement of lost neurons may have significant therapeutic value. In the current study, the neuroprotective and the neurite outgrowth-promoting activities and molecular mechanisms of bis(propyl)-cognitin (B3C), a multifunctional anti-AD dimer, were investigated. Briefly, B3C (24 h pretreatment) fully protected against glutamate-induced neuronal death in primary cerebellar granule neurons with an IC50 value of 0.08 μM. The neuroprotection of B3C could be abrogated by methyllycaconitine, a specific antagonist of alpha7-nicotinic acetylcholine receptor (α7-nAChR). In addition, B3C significantly promoted neurite outgrowth in both PC12 cells and primary cortical neurons, as evidenced by the increase in the percentage of cells with extended neurites as well as the up-regulation of neuronal markers growth-associated protein-43 and β-III-tubulin. Furthermore, B3C rapidly upregulated the phosphorylation of extracellular signal-regulated kinase (ERK), a critical signaling molecule in neurite outgrowth that is downstream of the α7-nAChR signal pathway. Specific inhibitors of ERK and α7-nAChR, but not those of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase, blocked the neurite outgrowth as well as ERK activation in PC12 cells induced by B3C. Most importantly, genetic depletion of α7-nAChR significantly abolished B3C-induced neurite outgrowth in PC12 cells. Taken together, our results suggest that B3C provided neuroprotection and neurite outgrowth-promoting activities through the activation of α7-nAChR, which offers a novel molecular insight into the potential application of B3C in AD treatment.
Collapse
Affiliation(s)
- Shengquan Hu
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangdong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wei Cui
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
| | - Shinghung Mak
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
| | - Daping Xu
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
| | - Yuanjia Hu
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Tang
- Mayo
Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Chunglit Choi
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Mingyuen Lee
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuanping Pang
- Mayo
Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Yifan Han
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
| |
Collapse
|
17
|
Hu S, Wang R, Cui W, Zhang Z, Mak S, Xu D, Choi C, Tsim KW, Carlier PR, Lee M, Han Y. Inhibiting β-Amyloid-Associated Alzheimer’s Pathogenesis In Vitro and In Vivo by a Multifunctional Dimeric Bis(12)-hupyridone Derived from Its Natural Analogue. J Mol Neurosci 2014; 55:1014-21. [DOI: 10.1007/s12031-014-0458-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
18
|
Kim J, Park Y, Yoon KS, Clark JM, Park Y. Imidacloprid, a neonicotinoid insecticide, induces insulin resistance. J Toxicol Sci 2014; 38:655-60. [PMID: 24025781 DOI: 10.2131/jts.38.655] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recently, scientific evidence supports a connection between environmental chemical exposures, which includes insecticides, and development of type 2 diabetes. However, there is limited information about the link between influences of neonicotinoid insecticides and incidence of type 2 diabetes. Thus, the purpose of the study was to determine effects of imidacloprid, a neonicotinoid insecticide, on glucose metabolism. Three different cell models were used; adipocytes (3T3-L1), hepatocytes (HepG2), and myotubes (C2C12). These cells were treated with imidacloprid (0, 10, and 20 μM) for 4-6 days followed by treatment with insulin for 15 min to determine responses. Insulin stimulated glucose uptake was reduced by imidacloprid in all three cell culture models. Treatment with imidacloprid reduced phosphorylation of protein kinase B (AKT), one of the major regulators of insulin signaling, without changing overall AKT expression. Subsequently, imidacloprid reduced phosphorylation of ribosomal S6 kinase (S6K), which is a downstream target of AKT and also a feed-back inhibitor of insulin signaling. These results suggest that imidacloprid could induce insulin resistance by affecting the insulin signaling cascade, particularly up-stream of AKT, in adipocytes, liver, and muscle.
Collapse
Affiliation(s)
- Jonggun Kim
- Department of Food Science, University of Massachusetts, USA
| | | | | | | | | |
Collapse
|