1
|
Lithi IJ, Ahmed Nakib KI, Chowdhury AMS, Sahadat Hossain M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co 3O 4, and TiO 2) nanoparticles using plant extracts for developing antimicrobial properties. NANOSCALE ADVANCES 2025:d5na00037h. [PMID: 40207090 PMCID: PMC11976448 DOI: 10.1039/d5na00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Green synthesis (GS) is a vital method for producing metal nanoparticles with antimicrobial properties. Unlike traditional methods, green synthesis utilizes natural substances, such as plant extracts, microorganisms, etc., to create nanoparticles. This eco-friendly approach results in non-toxic and biocompatible nanoparticles with superior antimicrobial activity. This paper reviews the prospects of green synthesis of metal nanoparticles of silver (Ag), copper (Cu), gold (Au) and metal oxide nanoparticles of zinc (ZnO), magnesium (MgO), cobalt (Co3O4), and titanium (TiO2) using plant extracts from tissues of leaves, barks, roots, etc., antibacterial mechanisms of metal and metal oxide nanoparticles, and obstacles and factors that need to be considered to overcome the limitations of the green synthesis process. The clean surfaces and minimal chemical residues of these nanoparticles contribute to their effectiveness. Certain metals exhibit enhanced antibacterial properties only in GS methods due to the presence of bioactive compounds from natural reducing agents such as Au and MgO. GS improves TiO2 antibacterial properties under visible light, while it would be impossible without UV activation. These nanoparticles have important antimicrobial properties for treating microbial infections and combating antibiotic resistance against bacteria, fungi, and viruses by disrupting microbial membranes, generating ROS, and interfering with DNA and protein synthesis. Nanoscale size and large surface area make them critical for developing advanced antimicrobial treatments. They are effective antibacterial agents for treating infections, suitable in water purification systems, and fostering innovation by creating green, economically viable antibacterial materials. Therefore, green synthesis of metal and metal oxide nanoparticles for antibacterial agents supports several United Nations Sustainable Development Goals (SDGs), including health improvement, sustainability, and innovation.
Collapse
Affiliation(s)
- Israt Jahan Lithi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Kazi Imtiaz Ahmed Nakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - A M Sarwaruddin Chowdhury
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
2
|
Nosrati H, Heydari M. Titanium dioxide nanoparticles: a promising candidate for wound healing applications. BURNS & TRAUMA 2025; 13:tkae069. [PMID: 39759542 PMCID: PMC11697110 DOI: 10.1093/burnst/tkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Indexed: 01/07/2025]
Abstract
Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO2 NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties. Furthermore, these nanoparticles can be modified to enhance their therapeutic benefits. Scaffolds and dressings containing TiO2 NPs have demonstrated promising outcomes in accelerating wound healing and enhancing tissue regeneration. This review paper covers the wound healing process, the biological properties of TiO2 NPs that make them suitable for promoting wound healing, methods for synthesizing TiO2 NPs, the use of scaffolds and dressings containing TiO2 NPs in wound healing, the application of modified TiO2 NPs in wound healing, and the potential toxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Morteza Heydari
- Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
3
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
4
|
Zhang Z, Ding ZT, Wu CX, Zhang QH, Liang XY, Liang ZC. Identifying resistance molecules in TiO 2 nanoparticle-tolerant strains to facilitate the development of strategies for combating TiO 2 nanoparticle pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117042. [PMID: 39332201 DOI: 10.1016/j.ecoenv.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
The severity of environmental pollution caused by TiO2 nanoparticles (nTiO2) is increasing, highlighting the urgent need for the development of strategies to combat nTiO2 pollution. Insights into resistance molecules from nTiO2-tolerant strains may facilitate such development. In this study, we utilized multi-omics, genetic manipulation, physiological and biochemical experiments to identify relevant resistance molecules in two strains (Physarum polycephalum Z259 and T83) tolerated to mixed-phase nTiO2 (MPnTiO2). We discovered that a competing endogenous RNA (ceRNA) network, comprising one long non-coding RNA (lncRNA), four microRNAs, and nine mRNAs, influenced metabolic rearrangement and was associated with significant resistance in these strains. Additionally, we found that the lncRNA in the ceRNAs network and certain small-weight metabolites associated with the ceRNA exhibited notable mitigation effects not only against MPnTiO2 but also against other types of nTiO2 with broad species applicability (they significantly improved the resistance of several non-nTiO2-tolerant cells/organisms in the laboratory and reduced cell damage of non-nTiO2-tolerant cells/organisms in highly suspected nTiO2-polluted areas of the real world). In summary, this study deepens our understanding of nTiO2-tolerant strains, provides valuable insights into resistance molecules in these strains, and facilitates the development of strategies to combat nTiO2 pollution.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Zhong Tao Ding
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Cheng Xin Wu
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qing Hai Zhang
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xiu Yi Liang
- College of Pharmacy and Health Sciences, St. John's University, New York 11439, USA
| | - Zhi Cheng Liang
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Gong HZ, Li S, Wang FY, Zhu Y, Jiang QL, Zhu XL, Zeng Y, Jiang J. Titanium dioxide nanoparticles Disrupt ultrastructure and function of Rat thyroid tissue via oxidative stress. Heliyon 2024; 10:e34722. [PMID: 39130420 PMCID: PMC11315151 DOI: 10.1016/j.heliyon.2024.e34722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Nano-TiO2 is widely used in various fields such as industry, daily necessities, food and medicine. Previous studies have shown that it can enter mammalian tissues through the digestive tract or respiratory tract and have effects on various organs and systems. However, the effect of nano-TiO2 on the mammalian thyroid gland has not been reported. In this study, we fed SD rats with rutile nano-TiO2 at a dose of 5 mg/kg body weight for 3 weeks, and then examined the thyroid histology and thyroid function of the rats. In vitro experiments were conducted to determine the effects of nano-TiO2 on the viability, apoptosis, inflammatory factors, antioxidant enzymes, and oxidative stress of human thyroid follicular epithelial cells. Histological evidence showed abnormal morphology of rat thyroid follicles and organelle damage in follicular epithelial cells. Nano-TiO2 caused a decrease in the level of sodium/iodide symporter (NIS), an increase in the level of apoptotic protein cleaved-caspase 3, and an increase in the levels of pro-inflammatory factors IL-1β and TNF-α in rat thyroid tissue. Nano-TiO2 also resulted in increased serum FT4 and TPO-Ab levels. In in vitro experiments, nano-TiO2 reduced the viability of human thyroid follicular cells, downregulated the levels and activities of antioxidant enzymes CAT, GPX1 and SOD, and increased the levels of ROS and MDA caused by oxidative stress. These results indicate that nano-TiO2 damages the structure and function of thyroid follicular epithelial cells through oxidative stress. Long-term exposure to nano-TiO2 could be a potential risk factor for thyroid dysfunction.
Collapse
Affiliation(s)
- Hong-Zhen Gong
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Sha Li
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Fu-Yi Wang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ye Zhu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qi-Lan Jiang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiao-Ling Zhu
- Department of Intensive Care, Deyang People's Hospital, Deyang, Sichuan Province, China
| | - Yang Zeng
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
6
|
Wang F, Zhou L, Mu D, Zhang H, Zhang G, Huang X, Xiong P. Current research on ecotoxicity of metal-based nanoparticles: from exposure pathways, ecotoxicological effects to toxicity mechanisms. Front Public Health 2024; 12:1390099. [PMID: 39076413 PMCID: PMC11284070 DOI: 10.3389/fpubh.2024.1390099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Metal-based nanoparticles have garnered significant usage across industries, spanning catalysis, optoelectronics, and drug delivery, owing to their diverse applications. However, their potential ecological toxicity remains a crucial area of research interest. This paper offers a comprehensive review of recent advancements in studying the ecotoxicity of these nanoparticles, encompassing exposure pathways, toxic effects, and toxicity mechanisms. Furthermore, it delves into the challenges and future prospects in this research domain. While some progress has been made in addressing this issue, there is still a need for more comprehensive assessments to fully understand the implications of metal-based nanoparticles on the environment and human well-being.
Collapse
Affiliation(s)
- Fang Wang
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu, China
| | - Li Zhou
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehong Mu
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zhang
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Zhang
- Department of Oncology, Chengdu Second People's Hospital, Chengdu, China
| | - Xiangming Huang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Peizheng Xiong
- Department of Torhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Metwally RA, Soliman SA, Abdalla H, Abdelhameed RE. Trichoderma cf. asperellum and plant-based titanium dioxide nanoparticles initiate morphological and biochemical modifications in Hordeum vulgare L. against Bipolaris sorokiniana. BMC PLANT BIOLOGY 2024; 24:118. [PMID: 38368386 PMCID: PMC10873961 DOI: 10.1186/s12870-024-04785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
8
|
Zhang W, Sun J, Liu F, Li S, Wang X, Su L, Liu G. Alleviative Effect of Lactoferrin Interventions Against the Hepatotoxicity Induced by Titanium Dioxide Nanoparticles. Biol Trace Elem Res 2024; 202:624-642. [PMID: 37191759 DOI: 10.1007/s12011-023-03702-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The current study was designed to investigate the alleviative effect of lactoferrin interventions against the hepatotoxicity induced by titanium dioxide nanoparticles (TiO2-NPs). Thirty male Wistar rats were divided into six groups with 5 rats in each group. The first and second groups were intragastrically administered normal saline and TiO2-NPs (100 mg/kg body weight) as the negative control (NC) and TiO2-NP groups. The third, fourth, and fifth groups were intragastrically administered lactoferrin at concentrations of 100, 200, and 400 mg/kg body weight in addition to TiO2-NPs (100 mg/kg body weight). The sixth group was intragastrically administered Fuzheng Huayu (FZHY) capsules at a concentration of 4.6 g/kg body weight in addition to TiO2-NPs (100 mg/kg body weight) as the positive control group. After treatment for 4 weeks, the concentrations of lactoferrin were optimized based on the liver index and function results. Subsequently, the alleviative effects of lactoferrin interventions against TiO2-NP-induced hepatotoxicity in rat liver tissues, including the effects on histological damage, oxidative stress-related damage, inflammation, fibrosis, DNA damage, apoptosis, and gene expression, were investigated using histopathological, biochemical, and transcriptomic assays. The results showed that 200 mg/kg lactoferrin interventions for 4 weeks not only ameliorated the liver dysfunction and histopathological damage caused by TiO2-NP exposure but also inhibited the oxidative stress-related damage, inflammation, fibrosis, DNA damage, and apoptosis in the liver tissues of TiO2-NP-exposed rats. The transcriptomic results confirmed that the alleviative effect of lactoferrin interventions against the TiO2-NP exposure-induced hepatotoxicity was related to the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Jiaxin Sun
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Fangyuan Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Shubin Li
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Xianjue Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
9
|
Damrongrungruang T, Puasiri S, Vongtavatchai V, Saeng-on C, Petcharapiruch T, Teerakapong A, Sangpanya A. Anticandidal Efficacy of Erythrosine with Nano-TiO2 and Blue LED-Mediated Photodynamic Therapy against Candida albicans Biofilms on Acrylic Resin: A Preliminary Study. Eur J Dent 2024; 18:273-280. [PMID: 37105222 PMCID: PMC10959592 DOI: 10.1055/s-0043-1768165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE Incorporating an enhancer such as nano-titanium dioxide into antimicrobial photodynamic therapy can improve treatment outcome.This study aimed to compare the anticandidal efficacy of photodynamic therapy by erythrosine with nano-titanium dioxide (nano-TiO2) stimulated by a blue light emitting diode with three standard dental antifungal agents. MATERIALS AND METHODS Candida albicans biofilms on acrylic resin plates were treated for 15 minutes with either nystatin, fluconazole, Polident, 220µM erythrosine + 1% (w/w) nano-TiO2 + 15 J/cm2 blue light photodynamic therapy (Ery PDT), or distilled water. For the Ery PDT group, blue light was applied for 1 minute after incubation. After 1, 3, and 6 hours, the colony forming units in log10 (log10CFU/mL) were compared. The ultrastructure of C. albicans on the acrylic resin plates treated with erythrosine + nano-TiO2 + blue light was examined using transmission electron microscopy at magnification of 30,000x. RESULTS After 1 hour, nystatin, Polident, and Ery PDT indifferently inhibited C. albicans. At 6 hours, Ery PDT reduced the number of viable C. albicans in biofilms by 0.28log10 CFU/mL, which was equal to the effect of fluconazole and Polident. Transmission electron microscopy demonstrated that Ery PDT altered the C. albicans cell morphology by inducing cell wall/membrane rupture. CONCLUSION Photodynamic therapy with erythrosine + nano-TiO2 + blue light at low light power density (15 J/cm2) was as effective at inhibiting C. albicans biofilm on acrylic resin as fluconazole and Polident.
Collapse
Affiliation(s)
- Teerasak Damrongrungruang
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
- Melatonin Research Program, Khon Kaen University, Khon Kaen, Thailand
- Laser in Dentistry Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Subin Puasiri
- Division of Dental Public Health, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Vichakorn Vongtavatchai
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Chatchai Saeng-on
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Teeruch Petcharapiruch
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Aroon Teerakapong
- Laser in Dentistry Research Group, Khon Kaen University, Khon Kaen, Thailand
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Angkhana Sangpanya
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
10
|
Li X, Luo Y, Ji D, Zhang Z, Luo S, Ma Y, Cao W, Cao C, Saw PE, Chen H, Wei Y. Maternal exposure to nano-titanium dioxide impedes fetal development via endothelial-to-mesenchymal transition in the placental labyrinth in mice. Part Fibre Toxicol 2023; 20:48. [PMID: 38072983 PMCID: PMC10712190 DOI: 10.1186/s12989-023-00549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/07/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Extensive production and usage of commercially available products containing TiO2 NPs have led to accumulation in the human body. The deposition of TiO2 NPs has even been detected in the human placenta, which raises concerns regarding fetal health. Previous studies regarding developmental toxicity have frequently focused on TiO2 NPs < 50 nm, whereas the potential adverse effects of large-sized TiO2 NPs received less attention. Placental vasculature is essential for maternal-fetal circulatory exchange and ensuring fetal growth. This study explores the impacts of TiO2 NPs (100 nm in size) on the placenta and fetal development and elucidates the underlying mechanism from the perspective of placental vasculature. Pregnant C57BL/6 mice were exposed to TiO2 NPs by gavage at daily dosages of 10, 50, and 250 mg/kg from gestational day 0.5-16.5. RESULTS TiO2 NPs penetrated the placenta and accumulated in the fetal mice. The fetuses in the TiO2 NP-exposed groups exhibited a dose-dependent decrease in body weight and length, as well as in placental weight and diameter. In vivo imaging showed an impaired placental barrier, and pathological examinations revealed a disrupted vascular network of the labyrinth upon TiO2 NP exposure. We also found an increase in gene expression related to the transforming growth factor-β (TGF-β) -SNAIL pathway and the upregulation of mesenchymal markers, accompanied by a reduction in endothelial markers. In addition, TiO2 NPs enhanced the gene expression responsible for the endothelial-to-mesenchymal transition (EndMT) in cultured human umbilical vein endothelial cells, whereas SNAIL knockdown attenuated the induction of EndMT phenotypes. CONCLUSION Our study revealed that maternal exposure to 100 nm TiO2 NPs disrupts placental vascular development and fetal mice growth through aberrant activation of EndMT in the placental labyrinth. These data provide novel insight into the mechanisms of developmental toxicity posed by NPs.
Collapse
Affiliation(s)
- Xianjie Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yinger Luo
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shili Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wulan Cao
- Zhongshan People's Hospital, Zhongshan, 528400, China
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hui Chen
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Chen Z, Qi F, Qiu W, Wu C, Zong M, Ge M, Xu D, You Y, Zhu Y, Zhang Z, Lin H, Shi J. Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202933. [PMID: 36202760 PMCID: PMC9685437 DOI: 10.1002/advs.202202933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Acute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen-terminated germanene (H-germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H-germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H-germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol-induced murine AKI model, H-germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H-germanene nanoplatform is a powerful antioxidant against AKI and various anti-inflammatory diseases.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ming Zong
- Department of Clinical LaboratoryShanghai East HospitalTongji University School of MedicineShanghai200120P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| | - Zhimin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of Medicine Tongji UniversityShanghai200331P. R. China
| |
Collapse
|
12
|
Chen Z, Qi F, Qiu W, Wu C, Zong M, Ge M, Xu D, You Y, Zhu Y, Zhang Z, Lin H, Shi J. Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. ADVANCED SCIENCE 2022; 9. [DOI: doi.org/10.1002/advs.202202933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 09/08/2023]
Abstract
AbstractAcute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen‐terminated germanene (H‐germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H‐germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H‐germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol‐induced murine AKI model, H‐germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H‐germanene nanoplatform is a powerful antioxidant against AKI and various anti‐inflammatory diseases.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
| | - Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ming Zong
- Department of Clinical Laboratory Shanghai East Hospital Tongji University School of Medicine Shanghai 200120 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| | - Zhimin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China
| |
Collapse
|
13
|
Hu R, Cui R, Xu Q, Lan D, Wang Y. Controlling Specific Growth Rate for Recombinant Protein Production by Pichia pastoris Under Oxidation Stress in Fed-batch Fermentation. Appl Biochem Biotechnol 2022; 194:6179-6193. [PMID: 35900712 DOI: 10.1007/s12010-022-04022-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Methanol can be used by Pichia pastoris as the carbon source and inducer to produce recombinant proteins in high-cell-density fermentations. However, methanol oxidation at high specific growth rates can lead to the reactive oxygen species (ROS) accumulation, resulting in cell damage. Here, we study the relationship between methanol feeding and ROS accumulation by controlling specific growth rate during the induction phase. A higher specific growth rate increased the level of ROS accumulation caused by methanol oxidation. While the cell growth rate was proportional to specific growth rate, maximum total protein production and highest enzyme activity were achieved at a specific growth rate of 0.05 1/h as compared to that of 0.065 1/h. Moreover, oxidative damage induced by over-accumulation of ROS in P. pastoris during the methanol induction phase caused cell death and reduced protein expression ability. ROS scavenging system analysis revealed that the higher specific growth rate, especially 0.065 1/h, resulted in increased intracellular catalase activity and decreased glutathione content significantly. Finally, Spearman's correlation analysis further revealed that the reduced glutathione might be beneficial for maintaining cell viability and increasing protein production under oxidative stress caused by ROS toxic accumulation. Our findings suggest an integrated strategy to control the feeding of the essential substrate based on analyzing its response to oxidative stress caused by ROS toxic accumulation, as well as develop a strategy to optimize fed-batch fermentation.
Collapse
Affiliation(s)
- Rongkang Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China.,College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China
| | - Ruiguo Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China.,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China
| | - Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China.,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China.,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China. .,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China.
| |
Collapse
|
14
|
Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. J Control Release 2022; 347:143-163. [PMID: 35513209 DOI: 10.1016/j.jconrel.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Synaptic plasticity is an important basis of learning and memory and participates in brain network remodelling after different types of brain injury (such as that caused by neurodegenerative diseases, cerebral ischaemic injury, posttraumatic stress disorder (PTSD), and psychiatric disorders). Therefore, improving synaptic plasticity is particularly important for the treatment of nervous system-related diseases. With the rapid development of nanotechnology, increasing evidence has shown that nanoparticles (NPs) can cross the blood-brain barrier (BBB) in different ways, directly or indirectly act on nerve cells, regulate synaptic plasticity, and ultimately improve nerve function. Therefore, to better elucidate the effect of NPs on synaptic plasticity, we review evidence showing that NPs can improve synaptic plasticity by regulating different influencing factors, such as neurotransmitters, receptors, presynaptic membrane proteins and postsynaptic membrane proteins, and further discuss the possible mechanism by which NPs improve synaptic plasticity. We conclude that NPs can improve synaptic plasticity and restore the function of damaged nerves by inhibiting neuroinflammation and oxidative stress, inducing autophagy, and regulating ion channels on the cell membrane. By reviewing the mechanism by which NPs regulate synaptic plasticity and the applications of NPs for the treatment of neurological diseases, we also propose directions for future research in this field and provide an important reference for follow-up research.
Collapse
|
15
|
Calcium and iron nanoparticles: A positive modulator of innate immune responses in strawberry against Botrytis cinerea. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Xu J, Cen L, Ma Q. Evaluating Membrane Electrical Properties of SMMC7721 Cells with TiO₂ NPs Applications to Cytotoxicity by Dielectric Spectroscopy. J Biomed Nanotechnol 2022; 18:546-556. [PMID: 35484741 DOI: 10.1166/jbn.2022.3265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium dioxide nanoparticles (TiO₂ NPs) represent one of the most frequently applied nanomaterials in numerous areas of daily life. Recent studies show that TiO₂ exposure increases the occupational risk of liver injury and inflammation, and even liver cancer to the workers of factories handling these NPs. However, the potential risks and biophysical effects of TiO₂ on hepatic cells need extensive evaluation. To this end, we explored the electrophysiological changes in the human liver cancer cell line SMMC7721 following exposure to TiO₂ NPs. TiO₂ NPs decreased the first (Δε1) and second dielectric relaxation intensity (Δε₂) of the SMMC7721 cells by 6.62% and 0.86% respectively, and significantly increased the first characteristic frequency (fc1, 4.82%) and the first Cole-Cole parameter (β1, 1.24%). The double spherical-shell model showed that TiO₂ NPs significantly lowered the permittivity of unit-membrane and capacitance, as well as the conductivity of extracellular fluid, cytoplasm, and nuclear contents compared to the untreated control. Conclusively, this study revealed that TiO₂ NPs induce cytotoxic effects by disrupting the permeability and electrical conductivity of unit membranes. Further, we report that dielectric spectrum combined with model parameter analysis can evaluate the bioelectrical effects of TiO₂ NPs on human liver cancer cells.
Collapse
Affiliation(s)
- Jia Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Lichao Cen
- School of Medicine, Ningbo University, Zhejiang Province, Ningbo, 315211, China
| | - Qing Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China
| |
Collapse
|
17
|
Effects of silicon dioxide, zinc oxide and titanium dioxide nanoparticles on Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Exp Parasitol 2021; 230:108176. [PMID: 34740586 DOI: 10.1016/j.exppara.2021.108176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/30/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022]
Abstract
Foliar spray of silicon dioxide (SiO2 NPs), zinc oxide (ZnO NPs) and titanium dioxide (TiO2 NPs) nanoparticles were used for the management of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Foliar spray of SiO2 NPs/ZnO NPs or TiO2 NPs increased plant growth attributes, chlorophyll and carotenoid of carrot. Foliar spray of 0.10 mg ml-1 SiO2 NPs caused the highest increase in plant growth, chlorophyll and carotenoid content of leaves followed by spray of 0.10 mg ml-1 ZnO NPs, 0.05 mg ml-1 SiO2 NPs, 0.05 mg ml-1 ZnO NPs, 0.10 mg ml-1 TiO2 NPs and 0.05 mg ml-1 TiO2 NPs. Use of SiO2 NPs caused a higher reduction in root galling, nematode multiplication and disease indices followed by ZnO NPs and TiO2 NPs. Two principal components analysis showed a total of 97.84% overall data variance in plants inoculated with single pathogen and 97.20% in plants inoculated with two or more pathogens. Therefore, foliar spray of SiO2 NPs appears interesting for the management of disease complex of carrot.
Collapse
|
18
|
Zhao X, Abulikemu A, Lv S, Qi Y, Duan J, Zhang J, Chen R, Guo C, Li Y, Sun Z. Oxidative stress- and mitochondrial dysfunction-mediated cytotoxicity by silica nanoparticle in lung epithelial cells from metabolomic perspective. CHEMOSPHERE 2021; 275:129969. [PMID: 33662726 DOI: 10.1016/j.chemosphere.2021.129969] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Quantities of researches have demonstrated silica nanoparticles (SiNPs) exposure inevitably induced damage to respiratory system, nonetheless, knowledge of its toxicological behavior and metabolic interactions with the cellular machinery that determines the potentially deleterious outcomes are limited and poorly elucidated. Here, the metabolic responses of lung bronchial epithelial cells (BEAS-2B) under SiNPs exposure were investigated using ultra performance liquid chromatography-mass spectrum (UPLC-MS)-based metabolomics research. Results revealed that even with low cytotoxicity, SiNPs disturbed global metabolism. Five metabolic pathways were significantly perturbed, in particular, oxidative stress- and mitochondrial dysfunction-related GSH metabolism and pantothenate and coenzyme A (CoA) biosynthesis, where the identified metabolites glutathione (GSH), glycine, beta-alanine, cysteine, cysteinyl-glycine and pantothenic acid were included. In support of the metabolomics profiling, SiNPs caused abnormality in mitochondrial structure and mitochondrial dysfunction, as evidenced by the inhibition of cellular respiration and ATP production. Moreover, SiNPs triggered oxidative stress as confirmed by the dose-dependent ROS generation, down-regulated nuclear factor erythroid 2-related factor 2 (NRF2) signaling, together with GSH depletion in SiNPs-treated BEAS-2B cells. Oxidative DNA damage and cell membrane dis-integrity were also detected in response to SiNPs exposure, which was correspondingly in agreed with the elevated 8-hydroxyguanosine (8-OHdG) and decreased phospholipids screened through metabolic analysis. Thereby, we successfully used the metabolomics approaches to manifest SiNPs-elicited toxicity through oxidative stress, mitochondrial dysfunction, DNA damage and rupture of membrane integrity in BEAS-2B cells. Overall, our study provided novel insights into the mechanism underlying SiNPs-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Junchao Duan
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
19
|
Zhang Z, Liang ZC, Liang XY, Zhang QH, Wang YJ, Zhang JH, De Liu S. Physarum polycephalum macroplasmodium exhibits countermeasures against TiO 2 nanoparticle toxicity: A physiological, biochemical, transcriptional, and metabolic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116936. [PMID: 33773179 DOI: 10.1016/j.envpol.2021.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Concerns about the environmental and human health implications of TiO2 nanoparticles (nTiO2) are growing with their increased use in consumer and industrial products. Investigations of the underlying molecular mechanisms of nTiO2 tolerance in organisms will assist in countering nTiO2 toxicity. In this study, the countermeasures exhibited by the slime mold Physarum polycephalum macroplasmodium against nTiO2 toxicity were investigated from a physiological, transcriptional, and metabolic perspective. The results suggested that the countermeasures against nTiO2 exposure include gene-associated metabolic rearrangements in cellular pathways involved in amino acid, carbohydrate, and nucleic acid metabolism. Gene-associated nonmetabolic rearrangements involve processes such as DNA repair, DNA replication, and the cell cycle, and occur mainly when macroplasmodia are exposed to inhibitory doses of nTiO2. Interestingly, the growth of macroplasmodia and mammal cells was significantly restored by supplementation with a combination of responsive metabolites identified by metabolome analysis. Taken together, we report a novel model organism for the study of nTiO2 tolerance and provide insights into countermeasures taken by macroplasmodia in response to nTiO2 toxicity. Furthermore, we also present an approach to mitigate the effects of nTiO2 toxicity in cells by metabolic intervention.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Food Science/School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhi Cheng Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xiu Yi Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qing Hai Zhang
- School of Food Science/School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Ya Jie Wang
- School of Food Science/School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Jian Hua Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shi De Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
20
|
Kong R, Sun Q, Cheng S, Fu J, Liu W, Letcher RJ, Liu C. Uptake, excretion and toxicity of titanate nanotubes in three stains of free-living ciliates of the genus Tetrahymena. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105790. [PMID: 33662879 DOI: 10.1016/j.aquatox.2021.105790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The potential exposure of titanate nanotubes (TNTs) to wildlife and humans may occur as a result of increased use and application as functional nanomaterials. However, there is a dearth of knowledge regarding the pathways of uptake and excretion of TNTs and their toxicity in cells. In this study, three strains of the Tetrahymena genus of free-living ciliates, including a wild type strain (SB210) and two mutant strains (SB255: mucocyst-deficient; NP1: temperature-sensitive "mouthless''), were used to study the pathways of uptake and excretion and evaluate the cytotoxicity of TNTs. The three Tetrahymena strains were separately exposed to 0, 0.01, 0.1, 1 or 10 mg/L of TNTs, and cells were collected at different time points for quantification of intracellular TNTs (e.g., 5, 10, 20, 40, 60, 90 and 120 min) and evaluation of cytotoxicity (12 and 24 h). TNT contents in NP1 and SB255 were greater or comparable to the contents in SB210 while exposure to 10 mg/L TNTs in 120 min. Furthermore, exposure to 10 mg/L TNTs for 24 h caused greater decreases in cell density of NP1 (38.2 %) and SB255 (36.8 %) compared with SB210 (26.5 %) and upregulated the expression of caspase 15 in SB210. Taken together, our results suggested that TNT uptake by pinocytosis and excretion by exocytosis in Tetrahymena, and the exposure could cause cytotoxicity which can offer novel insights into the accumulation kinetics of nanotubes and even nanomaterials in single cell.
Collapse
Affiliation(s)
- Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyang Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Centre for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
21
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
22
|
Soares EV, Soares HMVM. Harmful effects of metal(loid) oxide nanoparticles. Appl Microbiol Biotechnol 2021; 105:1379-1394. [PMID: 33521847 PMCID: PMC7847763 DOI: 10.1007/s00253-021-11124-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The incorporation of nanomaterials (NMs), including metal(loid) oxide (MOx) nanoparticles (NPs), in the most diversified consumer products, has grown enormously in recent decades. Consequently, the contact between humans and these materials increased, as well as their presence in the environment. This fact has raised concerns and uncertainties about the possible risks of NMs to human health and the adverse effects on the environment. These concerns underline the need and importance of assessing its nanosecurity. The present review focuses on the main mechanisms underlying the MOx NPs toxicity, illustrated with different biological models: release of toxic ions, cellular uptake of NPs, oxidative stress, shading effect on photosynthetic microorganisms, physical restrain and damage of cell wall. Additionally, the biological models used to evaluate the potential hazardous of nanomaterials are briefly presented, with particular emphasis on the yeast Saccharomyces cerevisiae, as an alternative model in nanotoxicology. An overview containing recent scientific advances on cellular responses (toxic symptoms exhibited by yeasts) resulting from the interaction with MOx NPs (inhibition of cell proliferation, cell wall damage, alteration of function and morphology of organelles, presence of oxidative stress bio-indicators, gene expression changes, genotoxicity and cell dead) is critically presented. The elucidation of the toxic modes of action of MOx NPs in yeast cells can be very useful in providing additional clues about the impact of NPs on the physiology and metabolism of the eukaryotic cell. Current and future trends of MOx NPs toxicity, regarding their possible impacts on the environment and human health, are discussed. KEY POINTS: • The potential hazardous effects of MOx NPs are critically reviewed. • An overview of the main mechanisms associated with MOx NPs toxicity is presented. • Scientific advances about yeast cell responses to MOx NPs are updated and discussed.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
23
|
Ji J, Zhou Y, Hong F, Ze Y, Fan D, Zhang X. Molecular mechanism of mice gastric oxidative damage induced by nanoparticulate titanium dioxide. Toxicol Res (Camb) 2021; 10:60-67. [PMID: 33613973 DOI: 10.1093/toxres/tfaa086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
Background Nanoparticulate titanium dioxide (Nano-TiO2) has been widely used in food industry, and it has been demonstrated to have adverse effects on mice and human stomach, but its mechanism is rarely concerned. The aim of this study is to determine the effects of nano-TiO2 on the stomach and confirm the role of oxidative stress and apoptosis in the mice gastric damage caused by nano-TiO2, as well as its molecular mechanisms. Methods Mice were continuously exposed to nano-TiO2 with 1.25, 2.5 and 5 mg/kg bw by intragastric administration for 9 months in the present study. The ultrastructure, levels of reactive oxygen species (ROS) and peroxides, activities of antioxidant enzymes and mitochondria-related enzymes, ATP contents as well as apoptosis-related factors expression in mice stomach were examined. Results Oxidative stress, apoptosis and nano-TiO2 aggregation were found in gastric mucosal smooth muscle cells after nano-TiO2 exposure. Nano-TiO2 exposure also resulted in the over-production of ROS and peroxides, decrease of ATP production and activities of antioxidant enzymes and mitochondria-related ATPases, upregulation of apoptosis-related factors including γH2AX, Cyt c, caspase 3, and p-JNK expression, and down-regulation of Bcl-2 expression in mice stomach. Conclusions The gastric toxicity of mice induced by chronic exposure to low dose nano-TiO2 may be associated with oxidative stress and mitochondria-mediated apoptosis in mice.
Collapse
Affiliation(s)
- Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Yuguan Ze
- School of Basic Medicine and Biological Sciences of Soochow University, Suzhou 215123, China
| | - Dongxue Fan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Xingxiang Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| |
Collapse
|
24
|
Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol 2020; 41:683-700. [DOI: 10.1002/jat.4121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
25
|
Guerrero Correa M, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CL. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1450-1469. [PMID: 33029474 PMCID: PMC7522459 DOI: 10.3762/bjnano.11.129] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/24/2020] [Indexed: 05/26/2023]
Abstract
The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and "green synthesis" methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.
Collapse
Affiliation(s)
- Matías Guerrero Correa
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
| | - Fernanda B Martínez
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
| | - Cristian Patiño Vidal
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| | - Camilo Streitt
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
| | - Juan Escrig
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
- Department of Physics, University of Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile
| | - Carol Lopez de Dicastillo
- Center of Innovation in Packaging (LABEN), University of Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| |
Collapse
|
26
|
Mao M, Li J, Bi A, Jia H, Li Q, Liu Y, Jiang X, Huang D, Xia S. Thymoquinone ameliorates the PM2.5-induced lung injury in rats. Exp Lung Res 2020; 46:297-307. [PMID: 32748670 DOI: 10.1080/01902148.2020.1801895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND This study aims to explore the effect of thymoquinone (TQ) on particulate matter 2.5 (PM2.5)-induced lung injury. METHODS The PM2.5 sample was provided by Shenyang Environment Monitor Central Station. Lung injury was established by intratracheal instillation PM2.5 (7.5 mg/kg) followed by TQ treatment (20 and 40 mg/kg) for 14 d in rats. Hematoxylin and eosin (HE) and Evans blue dye (EBD) staining were detected on lung tissues. ELISA, real-time PCR, western blotting and TUNEL assays were also performed. RESULTS The data showed that TQ diminished lung injury and EBD accumulation. The number of macrophages, neutrophils, eosinophils, and lymphocytes was ameliorated after TQ treatment. In addition, TQ suppressed the inflammation reaction parameters (interleukin-1β and -6, IL-1β and IL-6; tumor necrosis factor-α, TNF-α) and oxidative stress in PM2.5-induced lung injury. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO-1) were increased due to the treatment of TQ. The number of TUNEL-positive cells was prominently reduced in TQ-treated rats compared with that in PM2.5 group. Intratracheal instillation PM2.5 activated autophagy, whilst TQ blocked it in lung. CONCLUSIONS Taken together, this study provides the first in vivo evidence that TQ suppresses inflammation, oxidative stress, apoptosis, and autophagy in PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Mingqing Mao
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Jing Li
- Shenyang Environment Monitor Central Station, Key Laboratory of Atmospheric Organic Compound Monitoring and Analysis, Ministry of Environmental Protection, Shenyang, People's Republic of China
| | - Aiping Bi
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Hui Jia
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Qiong Li
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Xiaochuan Jiang
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| | - Desheng Huang
- Department of Mathematics, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Shuyue Xia
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, People's Republic of China
| |
Collapse
|
27
|
Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun 2020; 11:2788. [PMID: 32493916 PMCID: PMC7270130 DOI: 10.1038/s41467-020-16544-7] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is associated with many acute and chronic inflammatory diseases, yet limited treatment is currently available clinically. The development of enzyme-mimicking nanomaterials (nanozymes) with good reactive oxygen species (ROS) scavenging ability and biocompatibility is a promising way for the treatment of ROS-related inflammation. Herein we report a simple and efficient one-step development of ultrasmall Cu5.4O nanoparticles (Cu5.4O USNPs) with multiple enzyme-mimicking and broad-spectrum ROS scavenging ability for the treatment of ROS-related diseases. Cu5.4O USNPs simultaneously possessing catalase-, superoxide dismutase-, and glutathione peroxidase-mimicking enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low dosage and significantly improve treatment outcomes in acute kidney injury, acute liver injury and wound healing. Meanwhile, the ultrasmall size of Cu5.4O USNPs enables rapid renal clearance of the nanomaterial, guaranteeing the biocompatibility. The protective effect and good biocompatibility of Cu5.4O USNPs will facilitate clinical treatment of ROS-related diseases and enable the development of next-generation nanozymes.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Bowen Xiao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jianglin Tan
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zhuo Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chengzhou Wu
- Department of Respiratory Care, Wuxi County People's Hospital, 405800, Chongqing, China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
28
|
Tian H, Kah M, Kariman K. Are Nanoparticles a Threat to Mycorrhizal and Rhizobial Symbioses? A Critical Review. Front Microbiol 2019; 10:1660. [PMID: 31396182 PMCID: PMC6668500 DOI: 10.3389/fmicb.2019.01660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Soil microorganisms can be exposed to, and affected by, nanoparticles (NPs) that are either purposely released into the environment (e.g., nanoagrochemicals and NP-containing amendments) or reach soil as nanomaterial contaminants. It is crucial to evaluate the potential impact of NPs on key plant-microbe symbioses such as mycorrhizas and rhizobia, which are vital for health, functioning and sustainability of both natural and agricultural ecosystems. Our critical review of the literature indicates that NPs may have neutral, negative, or positive effects on development of mycorrhizal and rhizobial symbioses. The net effect of NPs on mycorrhizal development is driven by various factors including NPs type, speciation, size, concentration, fungal species, and soil physicochemical properties. As expected for potentially toxic substances, NPs concentration was found to be the most critical factor determining the toxicity of NPs against mycorrhizas, as even less toxic NPs such as ZnO NPs can be inhibitory at high concentrations, and highly toxic NPs such as Ag NPs can be stimulatory at low concentrations. Likewise, rhizobia show differential responses to NPs depending on the NPs concentration and the properties of NPs, rhizobia, and growth substrate, however, most rhizobial studies have been conducted in soil-less media, and the documented effects cannot be simply interpreted within soil systems in which complex interactions occur. Overall, most studies indicating adverse effects of NPs on mycorrhizas and rhizobia have been performed using either unrealistically high NP concentrations that are unlikely to occur in soil, or simple soil-less media (e.g., hydroponic cultures) that provide limited information about the processes occurring in the real environment/agrosystems. To safeguard these ecologically paramount associations, along with other ecotoxicological considerations, large-scale application of NPs in farming systems should be preceded by long-term field trials and requires an appropriate application rate and comprehensive (preferably case-specific) assessment of the context parameters i.e., the properties of NPs, microbial symbionts, and soil. Directions and priorities for future research are proposed based on the gaps and experimental restrictions identified.
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand
| | - Khalil Kariman
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
29
|
Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H, Zhang Z, Rui Y, Xing B. Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. ENVIRONMENTAL RESEARCH 2019; 170:1-6. [PMID: 30554052 DOI: 10.1016/j.envres.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
In the present study, we investigated the antifungal effects of engineered nanomaterials (ENMs) against Podosphaera pannosa (P. pannosa), a fungal pathogen that causes powdery mildew on plants in the rose family. Four commercial ENMs, including multi-wall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), copper oxide (CuO) nanoparticles (NPs) and titanium dioxide (TiO2) NPs, were used to prepare 50 or 200 mg/L NP suspensions in deionized water. Rose leaves in water-agar plates were sprayed by different ENM suspensions mixed with P. pannosa conidia. After a 19-day standard infection test, the growth of P. pannosa on rose leaves was evaluated. All four ENMs inhibited infection by P. pannosa at the concentration 200 mg/L, whereas only CuO NPs decreased fungal growth at 50 mg/L. The phytohormone content of the leaves was measured across all treatments to investigate potential ENMs antifungal mechanisms. The results suggest that ENMs increased plant resistance to fungal infection by altering the content of endogenous hormones, particularly zeatin riboside (ZR). Our study demonstrates that ENMs exhibited distinctly antifungal effects against P. pannosa on roses, and could be utilized as a novel plant protection strategy after a comprehensive assessment of potential environmental risk.
Collapse
Affiliation(s)
- Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peihong Fang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States; Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zhiqian Xiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Haitao Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, Heilongjiang 150070, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, United States
| |
Collapse
|
30
|
Abd-Elsalam KA, Al-Dhabaan FA, Alghuthaymi M, Njobeh PB, Almoammar H. Nanobiofungicides: Present concept and future perspectives in fungal control. NANO-BIOPESTICIDES TODAY AND FUTURE PERSPECTIVES 2019:315-351. [DOI: 10.1016/b978-0-12-815829-6.00014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
31
|
Mao Z, Yao M, Li Y, Fu Z, Li S, Zhang L, Zhou Z, Tang Q, Han X, Xia Y. miR-96-5p and miR-101-3p as potential intervention targets to rescue TiO 2 NP-induced autophagy and migration impairment of human trophoblastic cells. Biomater Sci 2018; 6:3273-3283. [PMID: 30345998 DOI: 10.1039/c8bm00856f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Autophagy induced by titanium dioxide nanoparticles (TiO2 NPs) has been realized nowadays, but the underlying mechanisms remain largely unknown. Animal studies have confirmed that autophagy might be an important mechanism to impair placenta development, but the reversal of damage is not clear. Here, we used human HTR-8/SVneo (HTR) cells as a proper model to explore how autophagy is regulated in TiO2 NP-exposed human placenta cells. Our studies showed that TiO2 NPs could enter HTR cells and locate in cytoplasm. Although they did not affect cell viability even under 100 μg ml-1, autophagy was observed and cell migration ability was severely impaired. Further study showed that TiO2 NPs increased the expressions of both miR-96-5p and miR-101-3p and then, they targeted mTOR and decreased the expression of mTOR proteins. In addition, miR-96-5p also targeted Bcl-2 to down-regulate Bcl-2 protein level, which is also a key regulator of autophagy. We proved that when two microRNA inhibitors were added, cell autophagy was, to a greater extent, reversed compared with the result when one inhibitor was added, and the cell migration ability was also reversed to a greater degree. Our studies revealed that TiO2 NPs might impair placenta development via autophagy. Moreover, miR-96-5p as well as miR-101-3p may act as potential targets to reverse TiO2 NP-induced autophagy and placenta dysfunction.
Collapse
Affiliation(s)
- Zhilei Mao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang H, Xue L, Li B, Tian H, Zhang Z, Tao S. Therapeutic potential of bixin in PM2.5 particles-induced lung injury in an Nrf2-dependent manner. Free Radic Biol Med 2018; 126:166-176. [PMID: 30120979 DOI: 10.1016/j.freeradbiomed.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
Fine particulate matter (PM 2.5) is a well-known air pollutant threatening public health. Studies has confirmed that long-term exposure to the particles could reduce the pulmonary function, cause exacerbation of asthma and chronic obstructive pulmonary disease, and increase incidence and mortality of lung cancer. Bixin is a natural compound that is widely used as a food additive. Our previous studies demonstrated that bixin i.p. administration could protect against particles intratracheal exposure (56 days)-induced lung injury in an Nrf2-dependent manner. But the detail mechanisms are still unclarified. Our current study aimed to explore the further therapeutic potential and mechanism of bixin to slow the progression of lung injury and inflammation in vivo and in vitro. The results from the in vivo study showed that bixin treatment attenuated the accumulation of inflammatory cells, decreased the levels of tissue apoptosis, and increase the ability of cell proliferation. Besides that, bixin also could regulate the expression of MMP9, TGFβ1, and its downstream Fibronectin (FN), along with activation of Nrf2 signals. In vitro experiments in human bronchial epithelial cells demonstrated that Nrf2 activated by bixin contributes to tissue repair by alleviating oxidative stress, increasing proliferation and migration, decreasing apoptosis, which may be partially through modulating the expression of MMP9, TGFβ1, and FN. This study provides convincing experimental evidences that bixin could be used therapeutically to promote tissue repair and improve pulmonary injury induced by particles exposure.
Collapse
Affiliation(s)
- Hong Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Bingyan Li
- Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Zengli Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou 215123, China; School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
33
|
Hou Y, Zhang W, Li S, Wang Z, Zhong H, Liu Z, Guo Z. Investigating the autophagy pathway in silver@gold core-shell nanoparticles-treated cells using surface-enhanced Raman scattering. Analyst 2018; 143:3677-3685. [PMID: 29975376 DOI: 10.1039/c8an00405f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have shown that nanoparticles can induce autophagy, and the main approach for investigating autophagy induced by nanoparticles is via traditional methods such as TEM and biochemical assay. These methods measurements suffer from the disadvantages of complicated experimental processes, cell destruction, as well as lack of characterization of individual stages of the autophagy pathway. Surface-enhanced Raman scattering (SERS) has been extensively used in biological applications. With the combination of SERS and chemometric methods, such as principal component analysis-linear discriminant analysis (PCA-LDA), identification and distribution mapping of endosomes and lysosomes in the endocytosis of Au nanoparticles has been achieved by segregating the spectra from complex SERS data sets in the previous study. In this study, silver@gold core-shell nanoparticles (Ag@Au NPs) were synthesized by reduction of gold ions on the surface of the silver nanoparticles, and the autophagy induced by Ag@Au NPs was studied with Ag@Au NPs serving both as an autophagy inducer and as a high-performance SERS substrate. Pro-survival autophagy induced by Ag@Au NPs was proved by the western blot assay, flow cytometry and fluorescent staining. Furthermore, the autophagy pathway in Ag@Au NPs-treated cells was first elucidated by SERS combined with a modified reference-based PCA-LDA methodology. This study provides a feasible way of using SERS to elucidate the autophagy pathway induced by nanoparticles.
Collapse
Affiliation(s)
- Yuqing Hou
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Z, Liang ZC, Zhang JH, Tian SL, Le Qu J, Tang JN, De Liu S. Nano-sized TiO 2 (nTiO 2) induces metabolic perturbations in Physarum polycephalum macroplasmodium to counter oxidative stress under dark conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:108-117. [PMID: 29454986 DOI: 10.1016/j.ecoenv.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Nano-sized TiO2 (nTiO2) exerts an oxidative effect on cells upon exposure to solar or UV irradiation and ecotoxicity of the nTiO2 is an urgent concern. Little information is available regarding the effect of TiO2 on cells under dark conditions. Metabolomics is a unique approach to the discovery of biomarkers of nTiO2 cytotoxicity, and leads to the identification of perturbed metabolic pathways and the mechanism underlying nTiO2 toxicity. In the present study, gas chromatography mass spectrometry (GC/MS)-based metabolomics was performed to investigate the effect of nTiO2 on sensitive cells (P. polycephalum macroplasmodium) under dark conditions. According to the multivariate pattern recognition analysis, at least 60 potential metabolic biomarkers related to sugar metabolism, amino acid metabolism, nucleotide metabolism, polyamine biosynthesis, and secondary metabolites pathways were significantly perturbed by nTiO2. Notably, many metabolic biomarkers and pathways were related to anti-oxidant mechanisms in the living organism, suggesting that nTiO2 may induce oxidative stress, even under dark conditions. This speculation was further validated by the biochemical levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), and total soluble phenols (TSP). We inferred that the oxidative stress might be related to nTiO2-induced imbalance of cellular ROS. To the best of our knowledge, the present study is the first to investigate the nTiO2-induced metabolic perturbations in slime mold, provide a new perspective of the mechanism underlying nTiO2 toxicity under dark conditions, and show that metabolomics can be employed as a rapid, reliable and powerful tool to investigate the interaction among organisms, the environment, and nanomaterials.
Collapse
Affiliation(s)
- Zhi Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Cheng Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jian Hua Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Sheng Li Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jun Le Qu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, China
| | - Jiao Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shi De Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
35
|
Athie-García MS, Piñón-Castillo HA, Muñoz-Castellanos LN, Ulloa-Ogaz AL, Martínez-Varela PI, Quintero-Ramos A, Duran R, Murillo-Ramirez JG, Orrantia-Borunda E. Cell wall damage and oxidative stress in Candida albicans ATCC10231 and Aspergillus niger caused by palladium nanoparticles. Toxicol In Vitro 2018; 48:111-120. [DOI: 10.1016/j.tiv.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
|
36
|
Peng Q, Huo D, Li H, Zhang B, Li Y, Liang A, Wang H, Yu Q, Li M. ROS-independent toxicity of Fe 3O 4 nanoparticles to yeast cells: Involvement of mitochondrial dysfunction. Chem Biol Interact 2018; 287:20-26. [PMID: 29572073 DOI: 10.1016/j.cbi.2018.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
Fe3O4 nanoparticles, one kind of magnetic nanomaterials (NMs), are widely used in drug delivery, biological imaging, sensors, catalysts and pollution management. However, its toxicity to biological systems and related toxicity mechanisms remain to be explored. In this study, we investigate the effect of as-synthesized Fe3O4 nanoparticles on growth of Saccharomyces cerevisiae, an important model fungus. Growth inhibition assays showed that Fe3O4 nanoparticles remarkably inhibited yeast growth. Interestingly, this inhibitory effect was not attributed to the well-known plasma membrane damage, cell wall damage and ROS accumulation. Further investigations revealed that the nanoparticles strongly impaired mitochondrial functions, resulting in abnormal mitochondrial morphology, decreased mitochondrial membrane potential (MMP) and attenuated ATP production. Most importantly, the respiratory chain complex Ⅳ, rather than other respiratory chain complexes and ATP synthases, was found to be the main target of the nanoparticles. This study uncovers a novel ROS-independent toxicity mechanism of Fe3O4 nanoparticles to eukaryotic cells.
Collapse
Affiliation(s)
- Qi Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Da Huo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Hongyue Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Yang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Anping Liang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Hui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300091, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
37
|
Cervantes-Avilés P, Cuevas-Rodríguez G. Changes in nutrient removal and flocs characteristics generated by presence of ZnO nanoparticles in activated sludge process. CHEMOSPHERE 2017; 182:672-680. [PMID: 28528313 DOI: 10.1016/j.chemosphere.2017.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to evaluate the impact generated by ZnO NPs on the activated sludge process treating raw (RWW) and filtered wastewater (FWW). It was analyzed the oxygen uptake rate, nutrient removal, flocs characteristics and the morphological interactions between activated sludge and ZnO NPs, in presence of 450-2000 mg/L. The results showed that the presence of more than 450 mg/L of ZnO NPs in raw and filtered wastewater inhibited the oxygen uptake by activated sludge. The highest inhibition was 35% in presence of 1500 mg/L in RWW. The organic matter removal was only inhibited in the presence of 450 and 900 mg/L of ZnO NPs; while ammonia removal decreased for all concentrations of ZnO NPs in both types of wastewater, around 13% for RWW and up to 9% for FWW. The orthophosphate removal improved as the concentration of ZnO NPs increased for both wastewater types, enhancing up to 8% for RWW and 17% for FWW. The flocs size of activated sludge exposed to ZnO NPs in RWW decreased as the concentration of ZnO NPs increased; while for FWW, an opposite effect was observed. The elemental mapping allowed detect the Zn inside of microorganisms, which may correspond to a toxicity mechanism in RWW and FWW. These results indicated that the changes in nutrient removal and flocs characteristics caused by the presence of ZnO NPs on the activated sludge are related to wastewater characteristics, such as suspended solids, type of substrate and concentration of ZnO NPs.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Department of Civil Engineering & Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Guanajuato, Gto., CP 36000, Mexico
| | - Germán Cuevas-Rodríguez
- Department of Civil Engineering & Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Guanajuato, Gto., CP 36000, Mexico.
| |
Collapse
|
38
|
Hao Y, Cao X, Ma C, Zhang Z, Zhao N, Ali A, Hou T, Xiang Z, Zhuang J, Wu S, Xing B, Zhang Z, Rui Y. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals. FRONTIERS IN PLANT SCIENCE 2017; 8:1332. [PMID: 28824670 PMCID: PMC5539092 DOI: 10.3389/fpls.2017.01332] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) have great potential for use in the fields of biomedicine, building materials, and environmental protection because of their antibacterial properties. However, there are few reports regarding the antifungal activities of NPs on plants. In this study, we evaluated the antifungal roles of NPs against Botrytis cinerea, which is a notorious worldwide fungal pathogen. Three common carbon nanomaterials, multi-walled carbon nanotubes, fullerene, and reduced graphene oxide, and three commercial metal oxidant NPs, copper oxide (CuO) NPs, ferric oxide (Fe2O3) NPs, and titanium oxides (TiO2) NPs, were independently added to water-agar plates at 50 and 200-mg/L concentrations. Detached rose petals were inoculated with spores of B. cinerea and co-cultured with each of the six nanomaterials. The sizes of the lesions on infected rose petals were measured at 72 h after inoculation, and the growth of fungi on the rose petals was observed by scanning electron microscopy. The six NPs inhibited the growth of B. cinerea, but different concentrations had different effects: 50 mg/L of fullerene and CuO NPs showed the strongest antifungal properties among the treatments, while 200 mg/L of CuO and Fe2O3 showed no significant antifungal activities. Thus, NPs may have antifungal activities that prevent B. cinerea infections in plants, and they could be used as antifungal agents during the growth and post-harvesting of roses and other flowers.
Collapse
Affiliation(s)
- Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Xiaoqian Cao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Chuanxin Ma
- Stockbridge School of Agriculture, University of Massachusetts, AmherstMA, United States
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New HavenCT, United States
| | - Zetian Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Na Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Tianqi Hou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Zhiqian Xiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Jian Zhuang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Sijie Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, AmherstMA, United States
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural UniversityBeijing, China
- Stockbridge School of Agriculture, University of Massachusetts, AmherstMA, United States
| |
Collapse
|
39
|
Cervantes-Avilés P, Díaz Barriga-Castro E, Palma-Tirado L, Cuevas-Rodríguez G. Interactions and effects of metal oxide nanoparticles on microorganisms involved in biological wastewater treatment. Microsc Res Tech 2017; 80:1103-1112. [PMID: 28685923 DOI: 10.1002/jemt.22907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022]
Abstract
To clarify the toxicological effects of metal oxide nanoparticles (NPs) on microorganisms with environmental relevance, it is necessary to understand their interactions. In this work, they were studied the effects and the morphological interactions of two metal oxide NPs (ZnO and TiO2 ) with microorganisms, during aerobic treatment of wastewater. The effects were evaluated according to nutrient removal from wastewater, while morphological interactions were determined by three different techniques such as TEM, HAADF-STEM, as well as an elemental mapping. According to results about effects of both NPs, they inhibited the removal of organic matter and ammonia nitrogen, and enhanced the orthophosphate removal. Related to morphological interactions, the electron-dense material of both NPs was mainly observed bounded to cell membrane. In tests with ZnO NPs, it was also observed electron-dense material internalized in microorganisms without physical damage in cell membrane. The elemental mapping was useful to determine that the electron-dense material corresponded to Zn and Ti. Both interactions, internalization and attachment of NPs on cell membrane of microorganisms may trigger the negative effect in the removal of organic matter and nitrogen.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto. 36000, México
| | - Enrique Díaz Barriga-Castro
- Central Laboratory of Analytical Instrumentation, Research Center on Applied Chemistry, Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila, 25294, México
| | - Lourdes Palma-Tirado
- Microscopy Unit, Neurobiology Institute, National Autonomous University of México, UNAM Campus Juriquilla 1-1141, Querétaro, 76001, México
| | - Germán Cuevas-Rodríguez
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto. 36000, México
| |
Collapse
|
40
|
Cervantes-Avilés P, Camarillo Piñas N, Ida J, Cuevas-Rodríguez G. Influence of wastewater type on the impact generated by TiO 2 nanoparticles on the oxygen uptake rate in activated sludge process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:35-44. [PMID: 28039817 DOI: 10.1016/j.jenvman.2016.12.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Physicochemical characteristics of wastewater have a relationship with the stability of TiO2 nanoparticles (NPs). This in turn has an effect on the toxicity of TiO2 NPs in microorganisms. In this work, the effect of TiO2 NPs on activated sludge process was evaluated using three different types of wastewater: synthetic, raw, and filtered. The results showed that aggregate size of TiO2 NPs and their specific adsorption of substrates were influenced by the type of substrates and the presence of suspended solids in the wastewater. It was also shown that TiO2 NPs in raw wastewater severely inhibited oxygen uptake by microorganisms as compared to uptake in synthetic or filtered wastewater. The attachment of TiO2 NP aggregates on cell membranes was observed for all types of wastewater. However, the internalization of TiO2 NPs by microorganisms was observed only for raw and filtered wastewater. These results indicate that the effects caused by TiO2 NPs on activated sludge were different depending on the wastewater used for the experiment.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto. 36000, Mexico
| | - Nayeli Camarillo Piñas
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto. 36000, Mexico
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Germán Cuevas-Rodríguez
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto. 36000, Mexico.
| |
Collapse
|
41
|
Kim MS, Stees M, Karuturi BVK, Vijayaraghavalu S, Peterson RE, Madsen GL, Labhasetwar V. Pro-NP™ protect against TiO2 nanoparticle-induced phototoxicity in zebrafish model: exploring potential application for skin care. Drug Deliv Transl Res 2017; 7:372-382. [DOI: 10.1007/s13346-017-0374-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|