1
|
Yang R, Xiang D, Yuan F, Yang Y, Wang P, Xu B, Li X. Unraveling Neurotoxicity Discrepancies: Comparative In vitro and In vivo Analysis of Colistin and Polymyxin B and the Underlying Mechanisms. Mol Neurobiol 2025; 62:4562-4575. [PMID: 39467983 DOI: 10.1007/s12035-024-04577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Polymyxins, including colistin and polymyxin B, are the final resort against Gram-negative bacterial infections. However, its clinical application is restricted due to concerns related to neurotoxicity. Despite the similar antibacterial spectrum and mode of action shared between colistin and polymyxin B, there is still a lack of definitive evidence to support the idea that their neurotoxicity profiles are identical. To comprehensively compare the neurotoxicity between colistin and polymyxin B both in vivo and in vitro and establish a theoretical foundation to guide the rational use of polymyxins within clinical settings. in vitro experiments simulated nerve damage by exposing N2a and RSC96 cells to colistin and polymyxin B. The evaluation of nerve injury included assessments of cell viability and apoptosis. To discern the variance in the mechanisms of nerve injury between colistin and polymyxin B, oxidative stress levels were examined, such as SOD, CAT, GSH, and malondialdehyde (MDA). In in vivo experiments, a rat nerve injury model was created by intraventricular injections of colistin and polymyxin B, respectively. The impact of these drugs on brain injury in rats, particularly within the hippocampus and medulla oblongata, was measured using HE and Nissl staining. The potential influence of polymyxins on the ferroptosis pathway was evaluated by assessing LPO and Fe2+ levels and the degree of mitochondrial impairment. At equivalent doses, colistin demonstrated a reduced level of neurotoxicity compared to polymyxin B, both in vitro and in vivo. in vitro experiments revealed greater cell viability and a lower apoptosis rate after colistin treatment than after polymyxin B treatment. This variance in outcomes could be attributed to the comparatively lower levels of oxidative stress associated with colistin administration. In a rat model, nerve injury resulted in observable damage to both the hippocampus and the medulla oblongata. A comprehensive assessment of the extent of damage in the CA1 to CA4 regions of the hippocampus, and the solitary tract nucleus of the medulla oblongata underscored that the neurotoxic effects of colistin remained milder compared to those elicited by polymyxin B. Even when evaluated at equivalent multiples of clinically recommended doses, colistin exhibited lower neurotoxicity in vivo than polymyxin B. For the first time, this study demonstrated the role of ferroptosis in polymyxin B-induced nerve damage. The activation levels observed within the ferroptosis pathway due to polymyxin B exceeded those triggered by colistin. Colistin exhibited a marked reduction in neurotoxicity compared to polymyxin B, evident in both the equivalent and clinically recommended doses. These findings suggest that, from the perspective of neurotoxicity, colistin presents a more favorable option for clinical use.
Collapse
Affiliation(s)
- Rui Yang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Debiao Xiang
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Fang Yuan
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Yuan Yang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Pengkai Wang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Bing Xu
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Xin Li
- The Third Hospital of Changsha, Changsha, China.
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China.
| |
Collapse
|
2
|
Liu M, Ye J, Wu R, Luo D, Huang T, Dai D, Wang K, Du Y, Ou J. Shengxue Busui Decoction activates the PI3K/Akt and VEGF pathways, enhancing vascular function and inhibiting osteocyte apoptosis to combat steroid-induced femoral head necrosis. Front Pharmacol 2025; 15:1506594. [PMID: 39926257 PMCID: PMC11803408 DOI: 10.3389/fphar.2024.1506594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Steroid-induced osteonecrosis of the femoral head (SONFH) is a debilitating condition with no specific treatment. Inhibiting osteocyte apoptosis may be a promising therapeutic approach. Shengxue Busui Decoction (SBD) has shown protective effects against SONFH, but its mechanisms are not fully understood. This study aims to investigate the effects of SBD on SONFH in rats, identifying its key active components and regulatory mechanisms using network pharmacology, bioinformatics, machine learning, and experimental validation. Methods Key active components and disease targets of SBD were identified through network pharmacology and bioinformatics. GO/KEGG enrichment and ssGSEA analyses were performed to identify critical pathways. Cytoscape and machine learning (SVM) were used for target prediction and molecular docking validation. A dexamethasone (Dex)-induced SONFH rat model was established, and SBD was administered for 60 days. Histological changes were assessed via HE staining, osteoclast activity through TRAP staining, apoptosis levels with TUNEL assays, and vascular function through hematological tests. ELISA was used to measure ALP and OCN levels. In vitro, Dex-induced osteoblast apoptosis in MC3T3-E1 cells was examined to assess SBD's effect on osteoblast proliferation, apoptosis, and signaling. Western blotting analyzed Caspase-9, Caspase-3, Bax, Bcl-2, and pathway-related proteins. ALP and Alizarin Red staining evaluated osteoblast differentiation and mineralization. Results Network pharmacology identified curcumin, berberine, and diosgenin as key active components of SBD, with the PI3K/Akt and VEGFR pathways as critical targets, and RAF1, FOXO3, and BRAF as hub genes. In vivo, SBD intervention significantly reduced bone structural damage and apoptosis, decreasing the rate of empty bone lacunae. SBD also increased osteogenic markers ALP and OCN in SONFH rats. In vitro, SBD inhibited osteoblast apoptosis, promoted PI3K/Akt and VEGF pathway expression, and enhanced osteoblast differentiation and mineralization. Conclusion This study integrates network pharmacology with experimental validation, showing that SBD protects against SONFH by inhibiting osteoblast apoptosis via PI3K/Akt and VEGFR pathways. SBD promotes osteoblast differentiation and mineralization, improving bone structure and vascular function. Curcumin, berberine, and diosgenin are likely key contributors to these effects, highlighting SBD as a potential therapeutic strategy for SONFH.
Collapse
Affiliation(s)
- Manting Liu
- Clifford Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiexiang Ye
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, China
| | - Runtian Wu
- Guangzhou Hospital of Integrated Traditional and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongqiang Luo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dandan Dai
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kexin Wang
- Clifford Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Du
- Clifford Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junwen Ou
- Clifford Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Ji S, Chen D, Ding F, Gu X, Xue Q, Zhou C, Cao M, Yu S. Salidroside exerts neuroprotective effects on retrograde neuronal death following neonatal axotomy via activation of PI3K/Akt pathway and deactivation of p38 MAPK pathway. Toxicol Appl Pharmacol 2025; 494:117178. [PMID: 39617258 DOI: 10.1016/j.taap.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Salidroside, a glucoside of tyrosol, is a powerful active ingredient extracted from the Chinese herb medicine Rhodiola rosea L.. As a neuroprotective agent, the application of salidroside in combination with neural tissue engineering has recently attracted much attention in peripheral nerve repair and reconstruction. However, the cellular and molecular mechanisms by which salidroside promotes nerve regeneration remain to be elucidated. We aim to evaluate the long-term neuroprotective potential of salidroside in an experimental rat model of neonatal sciatic nerve crush injury, with a focus on target-deprived neuronal death and the mechanisms involved. Behavioral analysis showed that salidroside dose-dependently improved voluntary hindlimb behavior and rod rotation ability following neonatal axotomy during an 8-week observation period. According to electrophysiology, Fluoro-Gold retrograde tracing, histological and immunohistochemical analyses, salidroside significantly improved nerve regeneration and reinnervation. Nissle and TUNEL staining, as well as caspase-3 activation assay indicated a beneficial effect of salidroside on retrograde loss and apoptosis of motoneurons within 2 weeks after axotomy. qPCR, ELISA and oxidative stress experiments revealed that salidroside improved the imbalance of spinal microenvironment, including oxidative stress and down-regulation of neurotrophic factors. Western blotting analysis showed that salidroside enhanced the activation of PI3K/Akt and inhibited the p38 MAPK signaling pathway following axotomy. The oxidative stress and axonal disconnection/regeneration models of primary motoneurons in vitro further confirmed the involvement of these two pathways in the neuroprotective effects of salidroside. These data provide a theoretical basis for the application of salidroside in peripheral nerve repair and reconstruction.
Collapse
Affiliation(s)
- Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China; Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Chun Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| | - Maohong Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
4
|
Huang Y, Liao M, Hu X, Hu H, Gong H. Advances in the clinical treatment of multidrug-resistant pathogens using polymyxins. J Antimicrob Chemother 2024; 79:3210-3229. [PMID: 39351975 DOI: 10.1093/jac/dkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Polymyxins are a vital class of antibiotics used to combat multidrug-resistant Gram-negative bacteria. However, their use is limited due to potential nephrotoxicity and the availability of alternative antibiotics. This review aims to examine the properties of polymyxins and the clinical advances in their use for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODS This review analyses literature on polymyxin properties and various clinical approaches, including intravenous drip infusion, nebulized or dry powder inhalation, and ointment application. Treatment efficacy in terms of bacterial eradication, cure rate and mortality rate are reviewed and evaluated. RESULTS Polymyxins have been reintroduced to treat critical infections due to the increasing prevalence of CR-GNB. Clinical trials and studies have confirmed that polymyxins can effectively treat CR-GNB infections when the formulation and administration are appropriate, with acceptable levels of nephrotoxicity. CONCLUSIONS In the future, the development of polymyxin formulations will aim to improve their clinical effectiveness while reducing toxicity and side effects and preventing the emergence of polymyxin-resistant strains. Enhanced efficacy and minimized potential side effects can be achieved by developing new polymyxin-delivery systems that provide a smart and controlled release or customized patient administration.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoning Gong
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Hassan NF, Ragab D, Ibrahim SG, Abd El-Galil MM, Hassan Abd-El-Hamid A, Hamed DM, Magdy William M, Salem MA. The potential role of Tirzepatide as adjuvant therapy in countering colistin-induced nephro and neurotoxicity in rats via modulation of PI3K/p-Akt/GSK3-β/NF-kB p65 hub, shielding against oxidative and endoplasmic reticulum stress, and activation of p-CREB/BDNF/TrkB cascade. Int Immunopharmacol 2024; 135:112308. [PMID: 38788447 DOI: 10.1016/j.intimp.2024.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Although colistin has a crucial antibacterial activity in treating multidrug-resistant gram-negative bacteria strains; it exhibited renal and neuronal toxicities rendering its use a challenge. Previous studies investigated the incretin hormones either glucose-dependent insulinotropic polypeptide (GIP) or glucagonlike peptide-1 (GLP-1) for their neuroprotective and nephroprotective effectiveness. The present study focused on investigating Tirzepatide (Tirze), a dual GLP-1/GIP agonist, as an adjuvant therapy in the colistin treatment protocol for attenuating its renal and neuronal complications. Rats were divided into; The normal control group, the colistin-treated group received colistin (300,000 IU/kg/day for 7 days; i.p.). The Tirze-treated group received Tirze (1.35 mg/kg on the 1,4,7thdays; s.c.) and daily colistin. Tirze effectively enhanced histopathological alterations, renal function parameters, and locomotor activity in rats. Tirze mechanistically acted via modulating various signaling axes evolved under the insult of phosphatidylinositol 3-kinases (PI3K)/phosphorylated protein kinase-B (p-Akt)/ glycogen synthase kinase (GSK)3-β hub causing mitigation of nuclear factor (NF)-κB (NF-κB) / tumor necrosis factor-α (TNF-α), increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ glutathione (GSH), downregulation of ER stress-related biomarkers (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)), antiapoptotic effects coupling with reduction of glial fibrillary acidic protein (GFAP) immunoreactivity and enhancement of phosphorylated c-AMP response element-binding (p-CREB) / brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) neuroprotective pathway. Briefly, Tirze exerts a promising role as adjuvant therapy in the colistin treatment protocol for protection against colistin's nephro- and neurotoxicity according to its anti-inflammatory, antioxidant, and antiapoptotic impacts besides its ability to suppress ER stress-related biomarkers.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Diaa Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Shaimaa G Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Dalia M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Maha A Salem
- Department of Pharmacology and Toxicology, pharmacy program, Saint Petersburg University in Cairo, Cairo, Egypt
| |
Collapse
|
6
|
Soroudi S, Mousavi G, Jafari F, Elyasi S. Prevention of colistin-induced neurotoxicity: a narrative review of preclinical data. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3709-3727. [PMID: 38091077 DOI: 10.1007/s00210-023-02884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/01/2023] [Indexed: 05/23/2024]
Abstract
Polymyxin E or colistin is an effective antibiotic against MDR Gram-negative bacteria. Due to unwanted side effects, the use of this antibiotic has been limited for a long time, but in recent years, the widespread of MDR Gram-negative bacteria infections has led to its reintroduction. Neurotoxicity and nephrotoxicity are the significant dose-limiting adverse effects of colistin. Several agents with anti-inflammatory and antioxidant properties have been used for the prevention of colistin-induced neurotoxicity. This study aims to review the preclinical studies in this field to prepare guidance for future human studies. The data was achieved by searching PubMed, Scopus, and Google Scholar databases. All eligible pre-clinical studies performed on neuroprotective agents against colistin-induced neurotoxicity, which were published up to September 2023, were included. Finally, 16 studies (ten in vitro and eight in vivo) are reviewed. Apoptosis (in 13 studies), inflammatory (in four studies), and oxidative stress (in 14 studies) pathways are the most commonly reported pathways involved in colistin-induced neurotoxicity. The assessed compounds include non-herbal (e.g., ascorbic acid, rapamycin, and minocycline) and herbal (e.g., curcumin, rutin, baicalein, salidroside, and ginsenoside) agents. Besides these compounds, some other measures like transplantation of mitochondria and the use of nerve growth factor and mesenchymal stem cells could be motivating subjects for future research. Based on the data from experimental (in vitro and animal) studies, a combination of colistin with neuroprotective agents could prevent or decrease colistin-induced neurotoxicity. However, well-designed randomized clinical trials and human studies are essential for demonstrating efficacy.
Collapse
Affiliation(s)
- Setareh Soroudi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Ghazal Mousavi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Fatemeh Jafari
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran.
| |
Collapse
|
7
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Rhodiola rosea and Salidroside commonly induce hormesis, with particular focus on longevity and neuroprotection. Chem Biol Interact 2023; 380:110540. [PMID: 37169278 DOI: 10.1016/j.cbi.2023.110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
The biological effects of Rhodiola rosea extracts and one of its major constituents, Salidroside, were evaluated for their capacity to induce hormesis/hormetic effects. The findings indicate that the Rhodiola rosea extracts and Salidroside commonly induce hormetic dose responses within a broad range of biological models, cell types and across a broad range of endpoints, with particular emphasis on longevity and neuroprotective endpoints. This paper represents the first integrative documentation and assessment of Rhodiola rosea extracts and Salidroside induction of hormetic effects. These findings have important biomedical applications and should have an important impact with respect to critical study design, dose selection and other experimental features.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
9
|
Li L, Yao W. The Therapeutic Potential of Salidroside for Parkinson's Disease. PLANTA MEDICA 2023; 89:353-363. [PMID: 36130710 DOI: 10.1055/a-1948-3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD), a neurological disorder, is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Its incidence increases with age. Salidroside, a phenolic compound extracted from Sedum roseum, reportedly has multiple biological and pharmacological activities in the nervous system. However, its effects on PD remain unclear. In this review, we summarize the effects of salidroside on PD with regard to DA metabolism, neuronal protection, and glial activation. In addition, we summarize the susceptibility genes and their underlying mechanisms related to antioxidation, inflammation, and autophagy by regulating mitochondrial function, ubiquitin, and multiple signaling pathways involving NF-κB, mTOR, and PI3K/Akt. Although recent studies were based on animal and cellular experiments, this review provides evidence for further clinical utilization of salidroside for PD.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Xiong L, Xiang D, Yuan F, Tong H, Yang R, Zhou L, Xu B, Deng C, Li X. Piceatannol-3'-O-β-D-glucopyranoside attenuates colistin-induced neurotoxicity by suppressing oxidative stress via the NRF2/HO-1 pathway. Biomed Pharmacother 2023; 161:114419. [PMID: 36822020 DOI: 10.1016/j.biopha.2023.114419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Multidrug-resistant Gram-negative bacteria are the most pressing problem in treating infectious diseases. As one of the primary drugs for multidrug-resistant Gram-negative bacteria, the neurotoxicity of colistin has become a significant challenge in clinical practice. PURPOSE This study aimed to investigate the potential effect of piceatannol-3'-O-β-D glucopyranoside (PG) on colistin-induced neurotoxicity and the underlying mechanism. METHODS In vitro, nerve cell damage models were established by exposing N2a cells to 400 μM colistin for 24 h. The effects of PG on cell viability, apoptosis level, and oxidative stress level were analyzed. A western blot experiment was performed to determine the NRF2 pathway, apoptosis, and autophagy-related proteins. Mitochondrial morphology and mitochondrial membrane potential were detected after staining using laser confocal microscopy. In vivo, nerve injury mouse model was established by intracerebroventricular colistin administration. Morphological changes in brain tissues were observed using HE and Nissl staining. RESULTS PG significantly reduced colistin-induced neuronal apoptosis levels. The apoptosis-related protein expressions were suppressed after PG intervention. Mechanistically, PG increased the levels of antioxidant factors and decreased the levels of oxidative factors, which might be related to the activation of the NRF2 pathway. In addition, PG treatment reversed the deviations in mitochondrial morphology and membrane potential. PG suppressed autophagy levels in N2a cells, possibly because PG inhibited colistin-induced apoptosis, thus reducing the level of spontaneous protective autophagy in cells. Nrf2 knockdown N2a cell models were applied to confirm that the activation of the NRF2 pathway played a vital role in PG alleviating the nerve damage caused by colistin. CONCLUSION PG is a potential treatment option for colistin-induced neurotoxicity. It mitigated colistin-induced oxidative stress-associated injury and mitochondrial damage by activating the NRF2/HO-1 pathway, thus reducing nerve cell apoptosis.
Collapse
Affiliation(s)
- Liguang Xiong
- Hunan University of Chinese Medicine, Changsha, China; Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Huan Tong
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Rui Yang
- Hunan University of Chinese Medicine, Changsha, China; Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Lili Zhou
- Hunan University of Chinese Medicine, Changsha, China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Changhui Deng
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China.
| |
Collapse
|
11
|
METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway. Toxicology 2021; 462:152961. [PMID: 34560125 DOI: 10.1016/j.tox.2021.152961] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 12/23/2022]
Abstract
Colistin is a cationic polypeptide antibiotic. Despite its nephrotoxicity, it is still widely used as a last-line antibiotic against infection worldwide with the emergence of multi-drug resistant Gram-negative bacilli. N-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for kidney development. However, m6A methylation impacts not only RNA stability, but also other RNA metabolism processes. How RNA decay affects the nephrotoxicity of colistin is largely unknown. Therefore, in this study, we verified that colistin could induce mouse kidney apoptosis through some apoptotic indicators, and confirmed the relationship between methylation and apoptosis through the detection of m6A methylation, thus elucidating the potential mechanism of colistin nephrotoxicity. The results showed that the renal tubule dilation and tubular structure were observed in the colistin group, and the oxidative stress index and ATPase activities were significantly different from those in the control group. Under electron microscope, the kidney in colistin group showed typical apoptotic morphological changes such as nuclear pyknosis, chromatin edge aggregation, and intact nuclear membrane, accompanied by significant changes in apoptosis-related genes. The level of m6A in the colistin group was significantly decreased, accompanied by downregulation of METTL3 mRNA and protein levels, and METTL3 was significantly correlated with apoptotic gene proteins. Data from this study suggested that m6A methylation was involved in oxidative stress-mediated apoptosis in the mechanism of colistin nephrotoxicity.
Collapse
|
12
|
Li Y, Deng Y, Zhu ZY, Liu YP, Xu P, Li X, Xie YL, Yao HC, Yang L, Zhang BK, Zhou YG. Population Pharmacokinetics of Polymyxin B and Dosage Optimization in Renal Transplant Patients. Front Pharmacol 2021; 12:727170. [PMID: 34512352 PMCID: PMC8424097 DOI: 10.3389/fphar.2021.727170] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Currently, polymyxin B has been widely used in the treatment of multidrug-resistant Gram-negative pathogen infections. Due to the limited pharmacokinetic/pharmacodynamic data, the optimal dosage regimen for the recently proposed therapeutic target of the area under the concentration-time curve over 24 h in steady state divided by the minimum inhibitory concentration 50–100 mg⋅h/L has not yet been established. Moreover, most studies have focused on critically ill patients, yet there have been no studies in the field of renal transplantation. To optimize the dosage strategy and reduce the risk of toxicity, a population pharmacokinetics model of polymyxin B with the Phoenix NLME program was developed in our study. A total of 151 plasma samples from 50 patients were collected in the present study. Polymyxin B plasma concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry. A one-compartment model adequately described the data, and the clearance and volume of distribution were 1.18 L/h and 12.09 L, respectively. A larger creatinine clearance was associated with increased clearance of polymyxin B (p < 0.01). Monte Carlo simulation showed that a regimen of a 75 mg loading dose with a 50 mg maintenance dose was a better option to achieve an optimal therapeutic effect (minimum inhibitory concentration ≤1 mg/L) and to reduce the incidence of side effects for patients with renal impairments. The developed model suggested that dosing adjustment should be based on renal function in renal transplant patients.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yang Deng
- Department of Pharmacy, Third Hospital of Changsha, Changsha, China
| | - Zhen-Yu Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Ping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin Li
- Department of Pharmacy, Third Hospital of Changsha, Changsha, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Heng-Chang Yao
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Yang
- Hubei Institute of Land Surveying and Mapping, Wuhan, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yan-Gang Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
13
|
Comparison of Conduits Fabricated by Fresh and Predegenerated Skeletal Muscles for Peripheral Nerve Repairing. J Craniofac Surg 2021; 33:354-359. [PMID: 34292250 DOI: 10.1097/scs.0000000000007882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Reconstruction of peripheral nerve injury remains a challenge for clinical medicine. Previous reports have confirmed that external oblique muscle-fabricated nerve conduit (EMC) could effectively be used to promote peripheral nerve regeneration. In this study, we compared between conduits fabricated from fresh muscle and conduits fabricated from predegenerated muscle for the repair of peripheral nerve defects in a mouse sciatic nerve transection model. We found that the number, diameter, and myelin sheath thickness of the myelinated nerve fibers of the regenerative nerve in the EMC group were larger than those of the predegenerated-EMC (P-EMC) group eight weeks after surgery. The sciatic function index and gastrocnemius wet-weight mass ratio in the EMC group were higher than those in the P-EMC group. The Bcl-2/Bax ratio and the number of Schwann cell nucleus in the proximal nerve stumps in the EMC group were greater than those in the P-EMC group. In conclusion, our results confirmed that the use of fresh skeletal muscle nerve conduit increased the Bcl-2/Bax ratio and promoted the survival of Schwann cells of the proximal nerve stump compared with that of predegenerated skeletal muscle nerve conduits, thus achieving better functional recovery after sciatic nerve defect.
Collapse
|
14
|
Wu Y, Ma Y, Li J, Zhou XL, Li L, Xu PX, Li XR, Xue M. The bioinformatics and metabolomics research on anti-hypoxic molecular mechanisms of Salidroside via regulating the PTEN mediated PI3K/Akt/NF-κB signaling pathway. Chin J Nat Med 2021; 19:442-453. [PMID: 34092295 DOI: 10.1016/s1875-5364(21)60043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 12/08/2022]
Abstract
Salidroside (SAL), a major bioactive compound of Rhodiola crenulata, has significant anti-hypoxia effect, however, its underlying molecular mechanism has not been elucidated. In order to explore the protective mechanism of SAL, the lactate dehydrogenase (LDH), reactive oxygen species (ROS), superoxide dismutase (SOD) and hypoxia-induced factor 1α (HIF-1α) were measured to establish the PC12 cell hypoxic model. Cell staining and cell viability analyses were performed to evaluate the protective effects of SAL. The metabolomics and bioinformatics methods were used to explore the protective effects of salidroside under hypoxia condition. The metabolite-protein interaction networks were further established and the protein expression level was examined by Western blotting. The results showed that 59 endogenous metabolites changed and the expression of the hub proteins of CK2, p-PTEN/PTEN, PI3K, p-Akt/Akt, NF-κB p65 and Bcl-2 were increased, suggesting that SAL could increase the expression of CK2, which induced the phosphorylation and inactivation of PTEN, reduced the inhibitory effect on PI3K signaling pathways and activated the PI3K/Akt/NF-κB survival signaling pathway. Our study provided an important insight to reveal the protective molecular mechanism of SAL as a novel drug candidate.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yi Ma
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xue-Lin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China
| | - Lei Li
- Central Laboratory, Capital Medical University, Beijing 100069, China
| | - Ping-Xiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China
| | - Xiao-Rong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China.
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China.
| |
Collapse
|
15
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
16
|
Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, Xiao J, Lu B. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40:2605-2649. [PMID: 32779240 DOI: 10.1002/med.21717] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hui Cao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Pharmacognosy Group, Uppsala University, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
17
|
Zhan J, Yan Z, Zhao M, Qi W, Lin J, Lin Z, Huang Y, Pan X, Xue X. Allicin inhibits osteoblast apoptosis and steroid-induced necrosis of femoral head progression by activating the PI3K/AKT pathway. Food Funct 2020; 11:7830-7841. [PMID: 32808945 DOI: 10.1039/d0fo00837k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is a major complication of long-term or excessive clinical use of glucocorticoids. Allicin is a classical ingredient extracted from garlic and has many functions such as anti-apoptosis and antibacterial effects. The purpose of this study was to investigate the effect and the mechanism of allicin on apoptosis of osteoblasts induced by dexamethasone (Dex) and SANFH in rats. In vitro, we performed CCK-8, western blotting, TUNEL and other experiments, and the results of these experiments showed that allicin could inhibit the Dex-induced abnormal expression of C-caspase3, C-caspase9, Bax, cytochrome C and Bcl-2 by activating the PI3K/AKT pathway. In vivo, the results of micro-CT, hematoxylin-eosin staining and immunohistochemical analysis suggested that allicin could effectively inhibit the progress of SANFH in rats. In summary, our experiments indicate that allicin is a potential drug for the treatment of SANFH.
Collapse
Affiliation(s)
- Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zijian Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Mengyao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Weihui Qi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yijiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
18
|
Dai C, Xiong J, Wang Y, Shen J, Velkov T, Xiao X. Nerve Growth Factor Confers Neuroprotection against Colistin-Induced Peripheral Neurotoxicity. ACS Infect Dis 2020; 6:1451-1459. [PMID: 32422040 DOI: 10.1021/acsinfecdis.0c00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotoxicity is an unwanted side effect for patients when receiving parenteral colistin therapy. The development of effective neuroprotective agents that can be coadministered during colistin therapy remains a priority area in antimicrobial chemotherapy. The present study aimed to investigate the protective effect of nerve growth factor (NGF) against colistin-induced peripheral neurotoxicity using a murine model. C57BL/6 mice were randomly divided into the following 6 groups: (i) untreated control, (ii) NGF alone (36 μg/kg/day administered intraperitoneally), (iii) colistin alone (18 mg/kg/day administered intraperitoneally), and (iv-vi) colistin (18 mg/kg/day) plus NGF (9, 18, and 36 μg/kg/day). After treatment for 7 days, neurobehavioral and electrophysiology changes, histopathological assessments of sciatic nerve damage, and oxidative stress biomarkers were examined. The mRNA expression levels of Nrf2, HO-1, Akt, Bax, and caspase-3 and -9 were assessed using quantitative RT-PCR. The results showed that, across all the groups wherein NGF was coadministered with colistin, a marked attenuation of colistin-induced sciatic nerve damage and improved sensory and motor function were observed. In comparison to the colistin only treatment group, animals that received NGF displayed upregulated Nrf2 and HO-1 mRNA expression levels and downregulated Bax and caspase-3 and -9 mRNA expression levels. In summary, our study reveals that NGF coadministration protects against colistin-induced peripheral neurotoxicity via the activation of Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of NGF as a neuroprotective agent for coadministration during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianli Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
19
|
Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants (Basel) 2020; 9:antiox9060506. [PMID: 32526966 PMCID: PMC7346118 DOI: 10.3390/antiox9060506] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of antimicrobial resistance in Gram-negative bacteria poses a huge health challenge. The therapeutic use of polymyxins (i.e., colistin and polymyxin B) is commonplace due to high efficacy and limiting treatment options for multidrug-resistant Gram-negative bacterial infections. Nephrotoxicity and neurotoxicity are the major dose-limiting factors that limit the therapeutic window of polymyxins; nephrotoxicity is a complication in up to ~60% of patients. The emergence of polymyxin-resistant strains or polymyxin heteroresistance is also a limiting factor. These caveats have catalyzed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and resistant organisms and/or minimize the unwanted side effects. Curcumin—an FDA-approved natural product—exerts many pharmacological activities. Recent studies showed that polymyxins–curcumin combinations showed a synergistically inhibitory effect on the growth of bacteria (e.g., Gram-positive and Gram-negative bacteria) in vitro. Moreover, curcumin co-administration ameliorated colistin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative stress, mitochondrial dysfunction, inflammation and apoptosis. In this review, we summarize the current knowledge-base of polymyxins–curcumin combination therapy and discuss the underlying mechanisms. For the clinical translation of this combination to become a reality, further research is required to develop novel polymyxins–curcumin formulations with optimized pharmacokinetics and dosage regimens.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, the University of Melbourne, Parkville 3052, Australia;
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| |
Collapse
|
20
|
Chen C, Li J, Zhang W, Shah SWA, Ishfaq M. Mycoplasma gallisepticum triggers immune damage in the chicken thymus by activating the TLR-2/MyD88/NF-κB signaling pathway and NLRP3 inflammasome. Vet Res 2020; 51:52. [PMID: 32276652 PMCID: PMC7149927 DOI: 10.1186/s13567-020-00777-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies reported that Mycoplasma gallisepticum (MG) causes immune dysregulation in chickens. However, the underlying mechanisms of immune dysregulation in chickens are still unclear. The thymus is a primary lymphoid organ where the proliferation, differentiation and selection of T-lymphocytes occur, whereas T-lymphocytes play a crucial role in innate immune responses. To evaluate the effects of MG-infection on chicken thymus, White Leghorn chickens were divided into (1) control group and (2) MG-infection group. ATPase activities were detected by commercial kits. The hallmarks of inflammation, autophagy and energy metabolism were examined in chicken thymus tissues by histopathology, transmission electron microscopy, immunofluorescence microscopy, RT-PCR and western blotting. Immunofluorescence examination revealed that the number of CD8+ lymphocytes has significantly reduced in MG-infection group. In addition, morphological analysis revealed that MG induced inflammatory cells infiltration. The mitochondria were swollen and chromatin material was condensed in MG-infection group. The mRNA and protein expression results showed that MG-infection triggered the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) inflammasome through TLR-2/MyD88/NF-κB signaling pathway. Meanwhile, the expressions of autophagy-related genes were reduced both at mRNA and protein level in MG-infection group. While, ATPase activities and the expression of energy metabolism-related genes were reduced in the thymus of MG-infected chickens. These results showed that MG-infection triggered inflammatory response through TLR-2/MyD88/NF-κB signaling pathway, activated NLRP3 inflammasome, reduced the level of autophagy and impaired energy metabolism, which then lead to tissue damage in chicken thymus. The data provide new insights in MG-infection-mediated immune damage and provide possible therapeutic targets for future targeted therapy.
Collapse
Affiliation(s)
- Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
21
|
Dai C, Xiao X, Zhang Y, Xiang B, Hoyer D, Shen J, Velkov T, Tang S. Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infect Dis 2020; 6:715-724. [PMID: 32037797 DOI: 10.1021/acsinfecdis.9b00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peripheral neurotoxicity often occurs in patients receiving parenteral polymyxin therapy (i.e., colistin methanesulfonate or polymyxin B). The present study aimed to investigate the protective effect of curcumin on colistin-induced peripheral neurotoxicity using a murine model. Female C57BL/6 mice (n = 10 in each group) were randomly divided into the following: (1) control group (saline), (2) curcumin only group (200 mg/kg/day; orally), (3) colistin only group (18 mg/kg/day; i.p.), (4) colistin (18 mg/kg/day) plus curcumin 50 mg/kg/day group, (5) colistin (18 mg/kg/day) plus curcumin 100 mg/kg/day group, (6) colistin (18 mg/kg/day) plus curcumin 200 mg/kg/day group; all mice were treated for 7 days. Orally applied curcumin was detected in the brain, cerebellum, and sciatic nerve. Co-administration of oral curcumin markedly improved colistin-induced impaired sensory and motor dysfunctions in a dose-dependent manner. Curcumin supplementation at 100 and 200 mg/kg significantly decreased lipid peroxidation and upregulated catalase (CAT) and superoxide dismutase (SOD) activities, ATP levels, and Na+/K+-ATPase activity in sciatic nerve tissue, compared to the colistin alone group. Curcumin supplementation at 200 mg/kg upregulated the levels of AKT, NGF, mTOR, Nrf2, and HO-1 mRNA and concomitantly downregulated Bax, caspases-3, and -9 mRNA; it also decreased caspase-3 and caspase-9 activity. In summary, for the first time, our study reveals that the protective effect of oral curcumin on colistin induced peripheral neurotoxicity is associated with the activation of NGF/Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of curcumin as an oral neuroprotective agent coadministered during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Biao Xiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
22
|
Li J, Zhang Y, Yang Z, Zhang J, Lin R, Luo D. Salidroside promotes sciatic nerve regeneration following combined application epimysium conduit and Schwann cells in rats. Exp Biol Med (Maywood) 2020; 245:522-531. [PMID: 32053008 DOI: 10.1177/1535370220906541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jiaqi Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Yongguang Zhang
- Department of Orthopaedics, 900 Hospital of the Joint Logistics Support Force/Xiamen University Dongfang Hospital, and Fuzong Clinical Medicine College of Fujian Medical University, Fuzhou 350025, China
| | - Zhimin Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jingxian Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| |
Collapse
|
23
|
Systematically investigating the pharmacological mechanism of Dazhu Hongjingtian in the prevention and treatment of acute mountain sickness by integrating UPLC/Q-TOF-MS/MS analysis and network pharmacology. J Pharm Biomed Anal 2019; 179:113028. [PMID: 31835126 DOI: 10.1016/j.jpba.2019.113028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Members of the genus Rhodiola L. have been widely used in Tibetan medicines for preventing and treating acute mountain sickness (AMS) for a long time. However, the pharmacological mechanisms of these medicines in treating AMS remain unclear. To address this problem, an integrative method combining ultra-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS)analysis and network pharmacology was employed. First, the chemical profiles of Dazhu Hongjingtian (DZ, a Chinese medicine preparation composed of R. kirilowii (Regel) Maxim) were identified or tentatively characterized. Second, the targets of DZ were predicted using the SwissTargetPrediction and STITCH databases; the targets of AMS were also collected from the Drugbank and TTD databases. Then, networks between targets and compounds or diseases were constructed by Cytoscape 3.6.1. Third, GO and pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). As a result, 40 ingredients of 53 compounds in DZ might be biologically active. These activities were related to the regulatory effects of the ingredients on 68 significant signaling pathways, such as the inflammation pathway, apoptosis pathway, HIF-1 signaling pathway, and others, by targeting 33 proteins, including PTGS2 and PTGS1, ALOX5 and ALOX15, BCL2 and BCL2L1, the protein kinase C (PKC) family and HIF1A, among others.
Collapse
|
24
|
Wang J, Ishfaq M, Xu L, Xia C, Chen C, Li J. METTL3/m 6A/miRNA-873-5p Attenuated Oxidative Stress and Apoptosis in Colistin-Induced Kidney Injury by Modulating Keap1/Nrf2 Pathway. Front Pharmacol 2019; 10:517. [PMID: 31156435 PMCID: PMC6530351 DOI: 10.3389/fphar.2019.00517] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 11/25/2022] Open
Abstract
Nephrotoxicity of colistin is the major factor limiting its clinical application. However, the exact mechanism of colistin-induced nephrotoxicity is still elusive. N6-Methyladenosine (m6A) modification has been implicated in many biological processes, however, its role in colistin-induced nephrotoxicity needs to be elucidated. Mouse renal tubular epithelial cells (mRTECs) were treated with 200 μM colistin with or without METTL3 overexpression. Cells injury, m6A assay, oxidative stress and apoptosis were examined. Levels of m6A are decreased after colistin treatment in mRTECs. METTL3 is the major factor involved in abnormal m6A modification. METTL3 overexpression plays a protective role against colistin-induced oxidative stress and apoptosis. Moreover, METTL3 interacts with the microprocessor protein DGCR8 and positively modulates miR-873-5p mature process in an m6A-dependent manner. Further experiments show that miR-873-5p could regulate Keap1-Nrf2 pathway against colistin-induced oxidative stress and apoptosis. These studies revealed an important role of METTL3/m6A in colistin-induced nephrotoxicity and provide a new insight on m6A modification in drug induced toxicity.
Collapse
Affiliation(s)
- Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
25
|
Dai C, Tang S, Biao X, Xiao X, Chen C, Li J. Colistin induced peripheral neurotoxicity involves mitochondrial dysfunction and oxidative stress in mice. Mol Biol Rep 2019; 46:1963-1972. [PMID: 30783935 DOI: 10.1007/s11033-019-04646-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Abstract
Polymyxin is a critical antibiotic against the infection caused by multidrug-resistant gram-negative bacteria. Neurotoxicity is one of main dose-limiting factors. The present study aimed to investigate the underlying molecular mechanism on colistin induced peripheral neurotoxicity using a mouse model. Forty mice were divided into control, colistin 1-, 3- and 7-day groups, the mice were intravenously injected with saline or colistin (sulfate) at the dose of 15 mg/kg/day for 1, 3 and 7 days, respectively. The results showed that, colistin treatment for 7 days markedly resulted in the demyelination, axonal degeneration and mitochondria swelling in the mice's sciatic tissues. Colistin treatment induces oxidative stress as well as the increases of mitochondrial permeability transition, decreases of membrane potential (ΔΨm) and activities of mitochondrial respiratory chain in the mice's sciatic nerve tissues. Furthermore, in the colistin-7 day group, adenosine-triphosphate (ATP) level Na+/K+-ATPase activity decreased to 75.2% (p < 0.01) and 80.1% (p < 0.01), respectively. Meanwhile, colistin treatment down-regulates the expression of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) mRNAs and up-regulates the expression of Bax and caspase-3 mRNAs. Our results reveal that colistin induced sciatic nerves damage involves oxidative stress, mitochondrial dysfunction and the inhibition of Akt/mTOR pathway.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiang Biao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
26
|
Dai C, Xiao X, Li J, Ciccotosto GD, Cappai R, Tang S, Schneider-Futschik EK, Hoyer D, Velkov T, Shen J. Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS Chem Neurosci 2019; 10:120-131. [PMID: 30362702 DOI: 10.1021/acschemneuro.8b00300] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotoxicity is one major unwanted side-effects associated with polymyxin (i.e., colistin and polymyxin B) therapy. Clinically, colistin neurotoxicity is characterized by neurological symptoms including dizziness, visual disturbances, vertigo, confusion, hallucinations, seizures, ataxia, and facial and peripheral paresthesias. Pathologically, colistin-induced neurotoxicity is characterized by cell injury and death in neuronal cell. This Review covers our current understanding of polymyxin-induced neurotoxicity, its underlying mechanisms, and the discovery of novel neuroprotective agents to limit this neurotoxicity. In recent years, an increasing body of literature supports the notion that polymyxin-induced nerve damage is largely related to oxidative stress and mitochondrial dysfunction. P53, PI3K/Akt, and MAPK pathways are also involved in colistin-induced neuronal cell death. The activation of the redox homeostasis pathways such as Nrf2/HO-1 and autophagy have also been shown to play protective roles against polymyxin-induced neurotoxicity. These pathways have been demonstrated to be upregulated by neuroprotective agents including curcumin, rapamycin and minocycline. Further research is needed toward the development of novel polymyxin formulations in combination with neuroprotective agents to ameliorate this unwanted adverse effect during polymyxins therapy in patients.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jichang Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, P. R. China
| | - Giuseppe D. Ciccotosto
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Roberto Cappai
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Elena K. Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Tony Velkov
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, P. R. China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
27
|
Edrees NE, Galal AA, Abdel Monaem AR, Beheiry RR, Metwally MM. Curcumin alleviates colistin-induced nephrotoxicity and neurotoxicity in rats via attenuation of oxidative stress, inflammation and apoptosis. Chem Biol Interact 2018; 294:56-64. [DOI: 10.1016/j.cbi.2018.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022]
|
28
|
Xue XH, Feng ZH, Li ZX, Pan XY. Salidroside inhibits steroid-induced avascular necrosis of the femoral head via the PI3K/Akt signaling pathway: In vitro and in vivo studies. Mol Med Rep 2017; 17:3751-3757. [PMID: 29286130 PMCID: PMC5802182 DOI: 10.3892/mmr.2017.8349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
Dexamethasone (Dex) and other glucocorticoids are widely used to treat serious infections and immunological diseases, however they may cause steroid-induced avascular necrosis of the femoral head (SANFH). Salidroside (Sal) has demonstrated an anti-apoptotic effect on neurocytes by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. In the present study, primary osteoblasts were used in vitro and in rats in vivo to determine the anti-apoptotic effect of Sal on SANFH. The result of the present study demonstrated that pretreatment with Sal increased the cell survival rate while decreasing the cell apoptosis and lactate dehydrogenase release rate. Additionally, Sal also caused the reduction of TUNEL positive cells in TUNEL staining assay. Sal decreased the expression of cleaved caspase-3, cleaved caspase-9, apoptosis regulator BAX and cytochrome C, while it increased the expression of B cell lymphoma-2 and phosphorylated-Akt in Dex-induced osteoblasts. In vivo Sal protected against SANFH in rats by decreasing the percentage of empty lacunae. The present study demonstrated that Sal alleviated Dex-induced osteoblast apoptosis by activating the PI3K/Akt signaling pathway and downregulating caspase-3 expression in osteoblasts. Sal also protected against SANFH in a rat model of SANFH by decreasing the percentage of empty lacunae. The inhibition of the mitochondrial apoptosis pathway was also involved. Further research is required to determine the full underlying mechanisms by which Sal has an effect.
Collapse
Affiliation(s)
- Xing-He Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhen-Hua Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhen-Xing Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiao-Yun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
29
|
Lu Z, Chen C, Wu Z, Miao Y, Muhammad I, Ding L, Tian E, Hu W, Ni H, Li R, Wang B, Li J. A Dual Role of P53 in Regulating Colistin-Induced Autophagy in PC-12 Cells. Front Pharmacol 2017; 8:768. [PMID: 29163157 PMCID: PMC5664992 DOI: 10.3389/fphar.2017.00768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the mechanism of p53 in regulating colistin-induced autophagy in PC-12 cells. Importantly, cells were treated with 125 μg/ml colistin for 12 and 24 h after transfection with p53 siRNA or recombinant plasmid. The hallmarks of autophagy and apoptosis were examined by real-time PCR and western blot, fluorescence/immunofluorescence microscopy, and electron microscopy. The results showed that silencing of p53 leads to down-regulation of Atg5 and beclin1 for 12 h while up-regulation at 24 h and up-regulation of p62 noted. The ratio of LC3-II/I and autophagic vacuoles were significantly increased at 24 h, but autophagy flux was blocked. The cleavage of caspase3 and PARP (poly ADP-ribose polymerase) were enhanced, while PC-12-sip53 cells exposed to 3-MA showed down-regulation of apoptosis. By contrast, the expression of autophagy-related genes and protein reduced in p53 overexpressing cells following a time dependent manner. Meanwhile, there was an increase in the expression of activated caspase3 and PARP, condensed and fragmented nuclei were evident. Conclusively, the data supported that silencing of p53 promotes impaired autophagy, which acts as a pro-apoptotic induction factor in PC-12 cells treated with colistin for 24 h, and overexpression of p53 inhibits autophagy and accelerates apoptosis. Hence, it has been suggested that p53 could not act as a neuro-protective target in colistin-induced neurotoxicity.
Collapse
Affiliation(s)
- Ziyin Lu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Department of Animal Production, College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Chunli Chen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyong Wu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yusong Miao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ishfaq Muhammad
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liangjun Ding
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Erjie Tian
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wanjun Hu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huilin Ni
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bo Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichang Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|