1
|
Liu M, Song XZ, Yang L, Fang YH, Lan L, Cui JS, Lu XC, Zhu HY, Quan LH, Han HM. 1,25-dihydroxyvitamin D3 improves non-alcoholic steatohepatitis phenotype in a diet-induced rat model. Front Endocrinol (Lausanne) 2025; 16:1528768. [PMID: 40190400 PMCID: PMC11968344 DOI: 10.3389/fendo.2025.1528768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 04/09/2025] Open
Abstract
We studied the potential protective effects of 1,25-dihydroxyvitamin D3 (1,25 VD3) supplementation on liver damage induced by a choline-deficient (CD) diet in rats, where impaired liver function leads to decreased 25-hydroxyvitamin D3 levels, the precursor for the active 1,25 VD3. The CD diet reduced serum 25 VD3 levels and increased liver enzymes, indicative of liver damage. Conversely, 1,25 VD3 supplementation alleviated liver damage, reducing liver enzymes and improving histopathological features characteristic of non-alcoholic steatohepatitis (NASH). Oxidative stress and inflammation were mitigated by 1,25 VD3, as evidenced by decreased malondialdehyde and nuclear factor kappa B (NF-κB) expression, and increased total antioxidant capacity (TAOC). 1,25 VD3 also enhanced fatty acid metabolism by increasing peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase-1 (CPT-1) expression, promoting lipid transport and oxidation. Additionally, 1,25 VD3 supplementation modulated inflammation by increasing PPARγ expression, reducing NF-κB expression, and decreasing pro-inflammatory cytokines (TNF-α, IL-1β). Anti-inflammatory cytokines (IL-10, IL-4) were increased, and macrophage polarization was shifted towards an anti-inflammatory M2 phenotype. Moreover, 1,25 VD3 upregulated CYP2J3, a cytochrome P450 epoxygenase that converts arachidonic acid to anti-inflammatory epoxyeicosatrienoic acids (EETs) and decreased soluble epoxide hydrolase activity, likely contributing to increased EET levels. Correlation studies revealed positive associations between 1,25 VD3 supplementation, CYP2J3 expression, EETs, as well as negative correlations with NF-κB and TNF-α. PPARα expression positively correlated with TAOC and CPT-1, while PPARγ expression negatively correlated with inflammatory markers. These findings demonstrate the therapeutic potential of 1,25 VD3 in alleviating NASH through regulation of fatty acid metabolism, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Mei Liu
- Department of Gastroenterology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Xiang-Zhun Song
- Department of Gastroenterology, Jilin Provincial People’s Hospital, Changchun, Jilin, China
| | - Liu Yang
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, China
| | - Yu-Hui Fang
- Department of Dermatology, Fuyang People’s Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Liu Lan
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jing-Shu Cui
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Xiao-Chen Lu
- Department of Gastroenterology, Jimo District People’s Hospital, Qingdao, Shandong, China
| | - Hai-Yang Zhu
- Department of Gastroenterology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Lin-Hu Quan
- Department of College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong-Mei Han
- Department of Gastroenterology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
2
|
Samaha MM, El-Desoky MM, Hisham FA. AdipoRon, an adiponectin receptor agonist, modulates AMPK signaling pathway and alleviates ovalbumin-induced airway inflammation in a murine model of asthma. Int Immunopharmacol 2024; 136:112395. [PMID: 38833845 DOI: 10.1016/j.intimp.2024.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Asthma is a long-term disease that causes airways swelling and inflammation and in turn airway narrowing. AdipoRonis an orally active synthetic small molecule that acts as a selective agonist at theadiponectin receptor 1 and 2. The aim of the current study is to delineate the protective effect and the potential underlying mechanism ofadipoRon inairway inflammationinduced byovalbumin (OVA) in comparison withdexamethasone. Adult maleSwiss Albino micewere sensitized to OVA on days 0 and 7, then challenged with OVA on days 14, 15 and 16. AdipoRon was administered orally for 6 days starting from the 11th day till the 16th and 1 h prior to OVA in the challenge days. Obtained results from asthmatic control group showed a significant decrease in serum adiponectin concentration, an increase in inflammatory cell counts inthe bronchoalveolar lavage fluid(BALF), CD68 protein expression, inflammatory cytokine concentration and oxidative stress as well. Administration of adipoRon enhanced antioxidant mechanisms limiting oxidative stress by significantly increasing reduced glutathione (GSH) pulmonary content, decreasing serum lactate dehydrogenase (LDH) together with malondialdehyde (MDA) significant reduction in lung tissue. In addition, it modulated the levels of serum immunoglobulin E (IgE), pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, nuclear factor kappa B (NF-κB) and the anti-inflammatory one IL-10 improving lung inflammation as revealed by histopathological evaluation. Furthermore, lung tissue expression of nuclear factor erythroid 2-related factor (Nrf2) and 5'AMP-activated protein kinase (AMPK) were significantly increased adipoRon. Notably, results of adipoRon received group were comparable to those of dexamethasone group. In conclusion, our study demonstrates that adipoRon can positively modulate adiponectin expression with activation of AMPK pathway and subsequent improvement in inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Manal M El-Desoky
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma A Hisham
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Seidita A, Cusimano A, Giuliano A, Meli M, Carroccio A, Soresi M, Giannitrapani L. Oxidative Stress as a Target for Non-Pharmacological Intervention in MAFLD: Could There Be a Role for EVOO? Antioxidants (Basel) 2024; 13:731. [PMID: 38929170 PMCID: PMC11201095 DOI: 10.3390/antiox13060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress plays a central role in most chronic liver diseases and, in particular, in metabolic dysfunction-associated fatty liver disease (MAFLD), the new definition of an old condition known as non-alcoholic fatty liver disease (NAFLD). The mechanisms leading to hepatocellular fat accumulation in genetically predisposed individuals who adopt a sedentary lifestyle and consume an obesogenic diet progress through mitochondrial and endoplasmic reticulum dysfunction, which amplifies reactive oxygen species (ROS) production, lipid peroxidation, malondialdehyde (MDA) formation, and influence the release of chronic inflammation and liver damage biomarkers, such as pro-inflammatory cytokines. This close pathogenetic link has been a key stimulus in the search for therapeutic approaches targeting oxidative stress to treat steatosis, and a number of clinical trials have been conducted to date on subjects with NAFLD using drugs as well as supplements or nutraceutical products. Vitamin E, Vitamin D, and Silybin are the most studied substances, but several non-pharmacological approaches have also been explored, especially lifestyle and diet modifications. Among the dietary approaches, the Mediterranean Diet (MD) seems to be the most reliable for affecting liver steatosis, probably with the added value of the presence of extra virgin olive oil (EVOO), a healthy food with a high content of monounsaturated fatty acids, especially oleic acid, and variable concentrations of phenols (oleocanthal) and phenolic alcohols, such as hydroxytyrosol (HT) and tyrosol (Tyr). In this review, we focus on non-pharmacological interventions in MAFLD treatment that target oxidative stress and, in particular, on the role of EVOO as one of the main antioxidant components of the MD.
Collapse
Affiliation(s)
- Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Giuliano
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maria Meli
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Antonio Carroccio
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maurizio Soresi
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
4
|
Chen H, Zhang H, Li AM, Liu YT, Liu Y, Zhang W, Yang C, Song N, Zhan M, Yang S. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats. Redox Biol 2024; 70:103062. [PMID: 38320454 PMCID: PMC10850784 DOI: 10.1016/j.redox.2024.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE To investigate the regulatory effect and mechanism of Vitamin D receptor (VDR) on mitochondrial function in renal tubular epithelial cell under diabetic status. METHODS The diabetic rats induced by streptozotocin (STZ) and HK-2 cells under high glocose(HG)/transforming growth factor beta (TGF-β) stimulation were used in this study. Calcitriol was administered for 24 weeks. Renal tubulointerstitial injury and some parameters of mitochondrial function including mitophagy, mitochondrial fission, mitochondrial ROS, mitochondrial membrane potential (MMP), mitochondrial ATP, Complex V activity and mitochondria-associated ER membranes (MAMs) integrity were examined. Additionally, paricalcitol, 3-MA (an autophagy inhibitor), VDR over-expression plasmid, VDR siRNA and Mfn2 siRNA were applied in vitro. RESULTS The expression of VDR, Pink1, Parkin, Fundc1, LC3II, Atg5, Mfn2, Mfn1 in renal tubular cell of diabetic rats were decreased significantly. Calcitriol treatment reduced the levels of urinary albumin, serum creatinine and attenuated renal tubulointerstitial fibrosis in STZ induced diabetic rats. In addition, VDR agonist relieved mitophagy dysfunction, MAMs integrity, and inhibited mitochondrial fission, mitochondrial ROS. Co-immunoprecipitation analysis demonstrated that VDR interacted directly with Mfn2. Mitochondrial function including mitophagy, mitochondrial membrane potential (MMP), mitochondrial Ca2+, mitochondrial ATP and Complex V activity were decreased dramatically in HK-2 cells under HG/TGF-β ambience. In vitro pretreatment of HK-2 cells with autophagy inhibitor 3-MA, VDR siRNA or Mfn2 siRNA negated the activating effects of paricalcitol on mitochondrial function. Pricalcitol and VDR over-expression plasmid activated Mfn2 and then partially restored the MAMs integrity. Additionally, VDR restored mitophagy was partially associated with MAMs integrity through Fundc1. CONCLUSION Activated VDR could contribute to restore mitophagy through Mfn2-MAMs-Fundc1 pathway in renal tubular cell. VDR could recover mitochondrial ATP, complex V activity and MAMs integrity, inhibit mitochondrial fission and mitochondrial ROS. It indicating that VDR agonists ameliorate renal tubulointerstitial fibrosis in diabetic rats partially via regulation of mitochondrial function.
Collapse
Affiliation(s)
- Hong Chen
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ai-Mei Li
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yu-Ting Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Cheng Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Na Song
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ming Zhan
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, China.
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| |
Collapse
|
5
|
Zhang N, Liu T, Wang J, Xiao Y, Zhang Y, Dai J, Ma Z, Ma D. Si-Ni-San Reduces Hepatic Lipid Deposition in Rats with Metabolic Associated Fatty Liver Disease by AMPK/SIRT1 Pathway. Drug Des Devel Ther 2023; 17:3047-3060. [PMID: 37808345 PMCID: PMC10559901 DOI: 10.2147/dddt.s417378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Background Metabolic associated fatty liver disease (MAFLD) is a chronic disease characterized by excessive lipid deposition in the liver without alcohol or other clear liver-damaging factors. AMP-activated protein kinase (AMPK)/silencing information regulator (SIRT)1 signaling pathway plays an important role in MAFLD development. Si-Ni-San (SNS), a traditional Chinese medicine, has shown reducing hepatic lipid deposition in MAFLD rats, however, the underlying mechanisms of SNS are barely understood. Purpose The aim of this research was to investigate the mechanisms of SNS in reducing hepatic lipid deposition in MAFLD rats by regulating AMPK/SIRT1 signaling pathways. Methods The components of SNS were determined by high performance liquid chromatography with mass spectrometry (HPLC-MS) analysis. MAFLD rats were induced by high-fat and high-cholesterol diet (HFHCD), and treated by SNS. SNS-containing serum and Compound C (AMPK inhibitor) were used to treat palmitic acid (PA)-induced HepG2 cells. To elucidate the potential mechanism, lipid synthesis-related proteins (SREBP-1c and FAS), fatty acid oxidation (PPARα and CPT-1), and AMPK/SIRT1 signaling pathway (p-AMPK and SIRT1) were assessed by Western blot. Results SNS improved serum lipid levels, liver function and reduced hepatic lipid deposition in MAFLD rats. SNS-containing serum reduced lipid deposition in PA-induced HepG2 cells. SNS could up-regulate protein expressions of PPARα, CPT-1, p-AMPK and SIRT1, and down-regulate protein expressions of SREBP-1c and FAS. Similar effects of SNS-containing serum were observed in PA-induced HepG2 cells. Meanwhile, Compound C weakened the therapeutic effects of SNS-containing serum on lipid deposition. Conclusion SNS could reduce hepatic lipid deposition by inhibiting lipid synthesis and promoting fatty acid oxidation, which might be related with activating the AMPK/SIRT1 signaling pathway. This study could provide a theoretical basis for the clinical use of SNS to treat MAFLD.
Collapse
Affiliation(s)
- Ning Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Tong Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Jianan Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Yingying Xiao
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Ying Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Jun Dai
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Zhihong Ma
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050200, People’s Republic of China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People’s Republic of China
| |
Collapse
|
6
|
Yue C, Li D, Fan S, Tao F, Yu Y, Lu W, Chen Q, Yuan A, Wu J, Zhao G, Dong H, Hu Y. Long-term and liver-selected ginsenoside C-K nanoparticles retard NAFLD progression by restoring lipid homeostasis. Biomaterials 2023; 301:122291. [PMID: 37619263 DOI: 10.1016/j.biomaterials.2023.122291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent hepatic disease characterized as lipid accumulation, yet without any approved drug. And development of therapeutic molecules is obstructed by low efficiency and organ toxicity. Herein, we develop a long-term, low-toxic and liver-selected nano candidate, nabCK, to alleviate NAFLD. NabCK is simply composed by natural compound ginsenoside compound K (CK) and albumin. As a major metabolite of ginseng, ginsenoside CK has excellently modulating functions for lipid metabolism, but accompanied by an extremely poor bioavailability <1%. Albumin is a key lipid carrier secreted and metabolized by livers. Thereby, it can improve solubility and liver-localization of CK. In adipocytes and hepatocytes, nabCK prevents lipid deposition and eliminates lipid droplets. Transcriptomic analysis reveals that nabCK rectifies various pathways that involved in steatosis development, including lipid absorption, lipid export, fatty acid biosynthesis, lipid storage and inflammation. All these pathways are modulated by mTOR, the pivotal feedback sensor that is hyperactive in NAFLD. NabCK suppresses mTOR activation to restores lipid homeostasis. In high-fat diet (HFD) induced NAFLD mice, nabCK retards development of steatosis and fibrosis, coupling a protective effect on cardiac tissues from lipotoxicity. Together, nabCK is a safe and potent candidate to offer benefits for NAFLD treatment.
Collapse
Affiliation(s)
- Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China
| | - Dandan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China
| | - Shuxin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China
| | - Feng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yue Yu
- Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenjing Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Science, Nanjing University, Nanjing , 210093, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
7
|
Wu JM, Zhaori G, Mei L, Ren XM, Laga AT, Deligen B. Plantamajoside modulates immune dysregulation and hepatic lipid metabolism in rats with nonalcoholic fatty liver disease via AMPK/Nrf2 elevation. Kaohsiung J Med Sci 2023; 39:801-810. [PMID: 37265208 DOI: 10.1002/kjm2.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic metabolic syndrome with a rapidly increasing prevalence globally. Plantamajoside (PMS), a phenylethanoid glycoside component extracted from Plantago asiatica, has various biological properties. However, its effect on NAFLD remains unknown. The study aimed to explore the effect and mechanism of PMS on NAFLD in the high-fat diet (HFD)-feeding rats. PMS induced a decrease in body and liver weight, and the amelioration in the blood lipid parameters and pathological symptoms in HFD-feeding rats. The increase in the serum concentrations and the relative protein expressions of proinflammatory factors was decreased by the PMS treatment in HFD-induced NAFLD rats. Additionally, PMS reduced the excessive lipid vacuoles, and modified the relative expressions of proteins involved in the fatty acid synthesis and uptake in HFD-feeding rats. Mechanically, the downregulation of AMPK/Nrf2 pathway in HFD-feeding rats was restored by the PMS treatment. Inhibition of AMPK pathway reversed the PMS-induced the increase in the level of inflammatory factors, pathological symptoms, excessive lipid vacuoles, and the relative expression of proteins involved in the fatty acid synthesis and uptake. Collectively, PMS ameliorated immune dysregulation and abnormal hepatic lipid metabolism by activating AMPK/Nrf2 pathway in rats with NAFLD.
Collapse
Affiliation(s)
- Ji-Mu Wu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Getu Zhaori
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Li Mei
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Xiao-Man Ren
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Arong Tong Laga
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Batu Deligen
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
8
|
Reda D, Elshopakey GE, Albukhari TA, Almehmadi SJ, Refaat B, Risha EF, Mahgoub HA, El-Boshy ME, Abdelhamid FM. Vitamin D3 alleviates nonalcoholic fatty liver disease in rats by inhibiting hepatic oxidative stress and inflammation via the SREBP-1-c/ PPARα-NF-κB/IR-S2 signaling pathway. Front Pharmacol 2023; 14:1164512. [PMID: 37261280 PMCID: PMC10228732 DOI: 10.3389/fphar.2023.1164512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a chronic disease characterized by fat deposits in liver cells, which can lead to hepatitis and fibrosis. This study attempted to explore the protective effect of vitamin D3 (VitD) against NAFLD. Methods: Adult male albino rats were randomized into four separate groups: the negative control group was fed a standard rat chow; the positive group received a high-fat diet (20%) and 25% fructose water (NAFLD); the VitD control group was intramuscularly treated with VitD (1,000 IU/kg BW) 3 days per week for 10 weeks; and the NAFLD group was treated with VitD therapy. Biochemical and hepatic histological analyses were performed. Hepatic oxidative stress and inflammatory conditions were also studied. Hepatic expression of sterol regulatory element-binding protein 1-c (SREBP-1-c), peroxisome proliferator-activated receptor alpha (PPAR-α), and insulin receptor substrate-2 was analyzed by quantitative real-time polymerase chain reaction. Results and discussion: The NAFLD rats exhibited elevated terminal body weight, hepatic injury markers, dyslipidemia, glucose intolerance, and insulin resistance. Moreover, the NAFLD rats had increased SREBP-1-c expression and reduced PPAR-α and IRS-2 expressions. Histological analysis showed hepatic steatosis and inflammation in the NAFLD group. In contrast, VitD administration improved the serum biochemical parameters and hepatic redox status in NAFLD rats. Also, VitD treatment ameliorated hepatic inflammation and steatosis in the NAFLD group by decreasing the expression of SREBP-1-c and increasing the expression of PPAR-α. Overall, these results suggest that VitD could have a protective effect against NAFLD and its associated complication.
Collapse
Affiliation(s)
- Doha Reda
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Gehad E. Elshopakey
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Talat A. Albukhari
- Department of Haematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Samah J. Almehmadi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Engy F. Risha
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hebatallah A. Mahgoub
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed E. El-Boshy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Fatma M. Abdelhamid
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Alshaibi HF, Bakhashab S, Almuhammadi A, Althobaiti YS, Baghdadi MA, Alsolami K. Protective Effect of Vitamin D against Hepatic Molecular Apoptosis Caused by a High-Fat Diet in Rats. Curr Issues Mol Biol 2023; 45:479-489. [PMID: 36661517 PMCID: PMC9857557 DOI: 10.3390/cimb45010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The protective effects of vitamin D (VitD) in different diseases were studied. The liver is of great interest, especially with the presence of VitD receptors. A high-fat diet (HFD) is associated with many diseases, including liver injury. Consumption of saturated fatty acids triggers hepatic apoptosis and is associated with increased inflammation. We aimed in this study to investigate the protective effects of VitD on hepatic molecular apoptotic changes in response to an HFD in rats. Forty male Wistar albino rats were used and divided into four groups: control, HFD, control + VitD, and VitD-supplemented HFD (HFD + VitD) groups. After six months, the rats were sacrificed, and the livers were removed. RNA was extracted from liver tissues and used for the quantitative real-time RT-PCR of different genes: B-cell lymphoma/leukemia-2 (BCL2), BCL-2-associated X protein (Bax), Fas cell surface death receptor (FAS), FAS ligand (FASL), and tumor necrosis factor α (TNF-α). The results showed that an HFD increased the expression of the pro-apoptotic genes Bax, FAS, and FASL, and reduced the expression of the anti-apoptotic gene BCL2. Interestingly, a VitD-supplemented HFD significantly increased the BCL2 expression and decreased the expression of all pro-apoptotic genes and TNFα. In conclusion, VitD has a protective role against hepatic molecular apoptotic changes in response to an HFD.
Collapse
Affiliation(s)
- Huda F. Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-504687127
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed A. Baghdadi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21589, Saudi Arabia
| | - Khadeejah Alsolami
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
10
|
Marwaha RK, Verma M, Walekar A, Sonawane R, Trivedi C. An open-label, randomized, crossover study to evaluate the bioavailability of nanoemulsion versus conventional fat-soluble formulation of cholecalciferol in healthy participants. J Orthop 2023; 35:64-68. [PMID: 36407493 PMCID: PMC9672879 DOI: 10.1016/j.jor.2022.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background Nanoemulsion preparations of cholecalciferol available in the market claim to have better bioavailability than the conventional fat-soluble cholecalciferol. However, limited data are available in humans for such preparations. We, therefore, compared the relative bioavailability of two formulations of 60,000 IU cholecalciferol (nanoemulsion oral solution, water-miscible vitamin D3 [test] vs soft gelatin capsules [reference]) in healthy adult participants. Methods In this randomized, open-label, two sequence, single-dose, two-way crossover study (CTRI/2018/05/013839), Indian participants aged 18-45 years received single dose of nanoemulsion and capsule formulations, under fasting conditions. Blood samples collected over 120 h were assessed to determine cholecalciferol concentrations. Pharmacokinetic parameters (area under the concentration-time curve up to 120 h [AUC0-120h], maximum observed drug concentration [Cmax], time to reach maximum drug concentration [Tmax], terminal half-life [T½el], and terminal elimination rate constant [Kel]) were estimated using baseline corrected data and analyzed using analysis of variance. Results Among the 24 eligible participants, the relative bioavailability of nanoemulsion was significantly higher than the capsules by 36% (p = 0.0001) based on AUC0-120h. Similarly, Cmax of the nanoemulsion was significantly higher by 43% (p = 0.0001) than that of the capsules. The intra-participant variability for AUC0-120h and Cmax were 23.22% and 26.51%, respectively. The Tmax, T½el, and Kel were comparable for both the formulations. No adverse effects were noted with either of the two formulations. Conclusions Nanoemulsion oral solution of cholecalciferol showed a greater bioavailability compared with soft gelatin capsules, under fasting conditions, in healthy human participants.
Collapse
Affiliation(s)
- Raman Kumar Marwaha
- Consultant Endocrinologist and President, Society of Endocrine Health Care for Elderly, Adolescents and Children (SEHEAC), 92E/I, Ground Floor, Munirka Market, New Delhi, 110067, India
| | - Manish Verma
- Medical Affairs, CHC, Sanofi India Limited, Sanofi House, CTS No.117-B, L&T Business Park, Saki Vihar Road, Powai, Mumbai, 400072, India
| | - Ajit Walekar
- Clinical Study Unit, Sanofi Healthcare India Private Limited, Sanofi House, CTS No.117-B, L&T Business Park, Saki Vihar Road, Powai, Mumbai, 400072, India
| | - Rakesh Sonawane
- Medical Affairs, CHC, Sanofi India Limited, Sanofi House, CTS No.117-B, L&T Business Park, Saki Vihar Road, Powai, Mumbai, 400072, India
| | - Chirag Trivedi
- Clinical Study Unit, Sanofi Healthcare India Private Limited, Sanofi House, CTS No.117-B, L&T Business Park, Saki Vihar Road, Powai, Mumbai, 400072, India
| |
Collapse
|
11
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Canagliflozin interrupts mTOR-mediated inflammatory signaling and attenuates DMBA-induced mammary cell carcinoma in rats. Biomed Pharmacother 2022; 155:113675. [PMID: 36115110 DOI: 10.1016/j.biopha.2022.113675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Breast cancer prevalence has been globally increasing, therefore, introducing novel interventions in cancer treatment is of a significant importance. The present study was designed to investigate the anti-cancer effect of Canagliflozin (CNG) in an experimental model of DMBA-induced mammary carcinoma in female rats. METHODS 18 female rats were divided into three experimental groups: Normal control, DMBA control, DMBA+ CNG treated group. DMBA (7.5 mg/kg) was injected subcutaneously in the mammary cells twice weekly for 4 weeks and CNG (10 mg/kg) was orally administered daily for an additional 3 weeks while DMBA control rats only received the vehicle for 3 weeks. Tumors' weight and volume were measured, BRCA-1 and TAC were quantified in serum samples, mTOR, caspase-1, NFκB, IL-1β, NLRP3, GSDMD and MDA were quantified in tumors' homogenates. RESULTS CNG treatment increased the BRCA-1 expression, suppressed mTOR inflammatory pathway, attenuated tumor inflammatory mediators; NLRP3, GSDMD, NFκB, IL-1β, suppressed the oxidative stress and inhibited tumor expression of the proliferation biomarker; Ki67. CONCLUSION CNG modulated mTOR-mediated signaling pathway and attenuated pyroptotic, inflammatory pathways, suppressed oxidative stress and eventually inhibited DMBA-induced mammary carcinoma proliferation.
Collapse
|
13
|
ELKATTAWY HA, MAHMOUD ABDELMONEM ELSHERBINI D, ALI EBRAHIM H, ABDULLAH DM, AL-ZAHABY SA, NOSERY Y, EL-SAYED HASSAN A. Rho-kinase inhibition ameliorates non-alcoholic fatty liver disease in type 2 diabetic rats. Physiol Res 2022; 71:615-630. [PMID: 36047723 PMCID: PMC9841803 DOI: 10.33549/physiolres.934869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is linked to type 2 diabetes mellitus (T2DM), obesity, and insulin resistance. The Rho/ROCK pathway had been involved in the pathophysiology of diabetic complications. This study was designed to assess the possible protective impacts of the Rho/Rho-associated coiled-coil containing protein kinase (Rho/ROCK) inhibitor fasudil against NAFLD in T2DM rats trying to elucidate the underlying mechanisms. Animals were assigned into control rats, non-treated diabetic rats with NAFLD, and diabetic rats with NAFLD that received fasudil treatment (10 mg/kg per day) for 6 weeks. The anthropometric measures and biochemical analyses were performed to assess metabolic and liver function changes. The inflammatory and oxidative stress markers and the histopathology of rat liver tissues were also investigated. Groups with T2DM showed increased body weight, serum glucose, and insulin resistance. They exhibited disturbed lipid profile, enhancement of inflammatory cytokines, and deterioration of liver function. Fasudil administration reduced body weight, insulin resistance, and raised liver enzymes. It improved the disturbed lipid profile and attenuated liver inflammation. Moreover, it slowed down the progression of high fat diet (HFD)-induced liver injury and reduced the caspase-3 expression. The present study demonstrated beneficial amelioration effect of fasudil on NAFLD in T2DM. The mechanisms underlying these impacts are improving dyslipidemia, attenuating oxidative stress, downregulated inflammation, improving mitochondrial architecture, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hany A. ELKATTAWY
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Kingdom of Saudi Arabia,Medical Physiology Department, College of Medicine, Zagazig University, Egypt
| | - Dalia MAHMOUD ABDELMONEM ELSHERBINI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Kingdom of Saudi Arabia,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hasnaa ALI EBRAHIM
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Doaa M. ABDULLAH
- Clinical Pharmacology Department, College of Medicine, Zagazig University, Egypt
| | | | - Yousef NOSERY
- Pathology Department, College of Medicine, Zagazig University, Egypt
| | - Ahmed EL-SAYED HASSAN
- Medical Physiology Department, College of Medicine, Zagazig University, Egypt,Department of Basic Medical Sciences, College of Medicine, Sulaiman AlRajhi University, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Dałek P, Drabik D, Wołczańska H, Foryś A, Jagas M, Jędruchniewicz N, Przybyło M, Witkiewicz W, Langner M. Bioavailability by design — Vitamin D3 liposomal delivery vehicles. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 43:102552. [PMID: 35346834 PMCID: PMC8957331 DOI: 10.1016/j.nano.2022.102552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Vitamin D3 deficiency has serious health consequences, as demonstrated by its effect on severity and recovery after COVID-19 infection. Because of high hydrophobicity, its absorption and subsequent redistribution throughout the body are inherently dependent on the accompanying lipids and/or proteins. The effective oral vitamin D3 formulation should ensure penetration of the mucus layer followed by internalization by competent cells. Isothermal titration calorimetry and computer simulations show that vitamin D3 molecules cannot leave the hydrophobic environment, indicating that their absorption is predominantly driven by the digestion of the delivery vehicle. In the clinical experiment, liposomal vitamin D3 was compared to the oily formulation. The results obtained show that liposomal vitamin D3 causes a rapid increase in the plasma concentration of calcidiol. No such effect was observed when the oily formulation was used. The effect was especially pronounced for people with severe vitamin D3 deficiency.
Collapse
Affiliation(s)
- Paulina Dałek
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland.
| | - Dominik Drabik
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | | | - Magdalena Przybyło
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Specialized Hospital in Wrocław, Wrocław, Poland
| | - Marek Langner
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland; Lipid Systems sp. z o.o., Wrocław, Poland
| |
Collapse
|
15
|
Samaha MM, Helal MG, El-Sherbiny M, Said E, Salem HA. Diacerein versus adipoRon as adiponectin modulators in experimentally-induced end-stage type 2 diabetes mellitus in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103806. [PMID: 34974166 DOI: 10.1016/j.etap.2021.103806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The objective of the present study is to evaluate and compare the possible anti-diabetic effects of adipoRon and diacerein in type 2 diabetes mellitus (T2DM) rats. T2DM is marked by impaired oxidative, inflammatory and metabolic signaling. Indeed, T2DM progression is associated with elevated HbA1C%, low adiponectin and insulin concentration. Moreover, in this study epididymal adipose tissue and soleus muscle MDA contents significantly escalated, while serum TAC and epididymal adipose Nrf2 significantly declined. Nevertheless, serum TNF-α, epididymal NLRP3, NF-κB, PPARγ and CD68 expression rose significantly with a parallel significant reduction in serum IL-10 and soleus muscle expression of IRS1. Both adipoRon and diacerein significantly improved adiponectin and insulin secretion with augmentation of anti-oxidant defenses and diminution of oxidative burden, with obvious anti-inflammatory consequences (p < 0.05). Thus, adipoRon and diacerein positively modulated adiponectin expression with down-regulation of NF-κB/NLRP3/PPARγ expression with subsequent improvement in glycemic control, inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Faculty of Pharmacy, New Mansoura University, 7723730 New Mansoura, Egypt.
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Moosavian SA, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Emerging Role of Nanomedicine in the Management of Nonalcoholic Fatty Liver Disease: A State-of-the-Art Review. Bioinorg Chem Appl 2021; 2021:4041415. [PMID: 34659388 PMCID: PMC8519727 DOI: 10.1155/2021/4041415] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that can lead to end-stage liver disease needing a liver transplant. Many pharmacological approaches are used to reduce the disease progression in NAFLD. However, current strategies remain ineffective to reverse the progression of NAFLD completely. Employing nanoparticles as a drug delivery system has demonstrated significant potential for improving the bioavailability of drugs in the treatment of NAFLD. Various types of nanoparticles are exploited in this regard for the management of NAFLD. In this review, we cover the current therapeutic approaches to manage NAFLD and provide a review of recent up-to-date advances in the uses of nanoparticles for the treatment of NAFLD.
Collapse
Affiliation(s)
- Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
18
|
Lim H, Lee H, Lim Y. Effect of vitamin D 3 supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice. Exp Biol Med (Maywood) 2021; 246:1139-1147. [PMID: 33541129 PMCID: PMC8142114 DOI: 10.1177/1535370220987524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Vitamin D3 has been reported to protect liver against non-alcoholic fatty liver disease (NAFLD) by attenuating hepatic lipid dysregulation in type 2 diabetes mellitus (T2DM). However, the mechanism of vitamin D3 on hepatic lipid metabolism-associated autophagy in hyperglycemia-induced NAFLD remains yet to be exactly elucidated. C57BL/6J mice were intraperitoneally injected with 30 mg/kg of streptozotocin and fed a high-fat diet for induction of diabetes. All mice were administered with vehicle or vitamin D3 (300 ng/kg or 600 ng/kg) by oral gavage for 12 weeks. Histological demonstrations of the hepatic tissues were obtained by H&E staining and the protein levels related to lipid metabolism and autophagy signaling were analyzed by Western blot. Treatment with vitamin D3 improved insulin resistance, liver damage, and plasma lipid profiles, and decreased hepatic lipid content in the diabetic mice. Moreover, vitamin D3 administration ameliorated hepatic lipid dysregulation by downregulating lipogenesis and upregulating lipid oxidation under diabetic condition. Importantly, vitamin D3 treatment induced autophagy by activating AMP-activated protein kinase (AMPK), inactivating Akt and ultimately blocking mammalian target of rapamycin (mTOR) activation in the T2DM mice. Additionally, vitamin D3 was found to be effective in anti-apoptosis and anti-fibrosis in the liver of diabetic mice. The results suggested that vitamin D3 may ameliorate hepatic lipid dysregulation by activating autophagy regulatory AMPK/Akt-mTOR signaling in T2DM, providing insights into its beneficial effects on NAFLD in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hyewon Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
19
|
Zhou H, Zheng B, Zhang Z, Zhang R, He L, McClements DJ. Fortification of Plant-Based Milk with Calcium May Reduce Vitamin D Bioaccessibility: An In Vitro Digestion Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4223-4233. [PMID: 33787251 DOI: 10.1021/acs.jafc.1c01525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many plant-based milks lack key micronutrients found in bovine milk, such as calcium and vitamin D. In this study, we fortified almond milk with these two micronutrients and used a standardized gastrointestinal model to examine the impact of product formulation on their bioaccessibility. The impact of different forms (CaCl2 versus CaCO3) and concentrations (0, 1, or 2 g per 240 mL) of calcium on the physicochemical properties, lipid digestibility, and vitamin D bioaccessibility was examined. Soluble calcium (CaCl2) promoted particle aggregation by reducing the electrostatic repulsion, while colloidal calcium (CaCO3) did not because there were fewer free calcium ions. High levels of calcium (soluble or insoluble) reduced vitamin D bioaccessibility, which was attributed to insoluble calcium soap formation in the small intestine. Calcium bioaccessibility was higher for CaCO3 than CaCl2. These findings are useful for the development of nutritionally fortified plant-based milks with improved physicochemical and nutritional properties.
Collapse
Affiliation(s)
- Hualu Zhou
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Bingjing Zheng
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhiyun Zhang
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ruojie Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lili He
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
20
|
Al-Serwi RH, El-Sherbiny M, Eladl MA, Aloyouny A, Rahman I. Protective effect of nano vitamin D against fatty degeneration in submandibular and sublingual salivary glands: A histological and ultrastructural study. Heliyon 2021; 7:e06932. [PMID: 33997429 PMCID: PMC8102766 DOI: 10.1016/j.heliyon.2021.e06932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Poor nutritional habits and a low level of physical activity are associated with obesity, leading to increased caloric and fat intakes. A high-fat diet can significantly impact oral health through the accumulation of lipids in the salivary glands, which ultimately affect salivary gland function. Recently, an increasing number of supplement nano-formulations, such as nano vitamin D, have become available. However, only few studies have explored the effects of nano vitamin D on the maintenance of oral health. OBJECTIVE This study aimed to compare the histological effects of nano vitamin D to those of regular vitamin D on fatty degeneration in submandibular and sublingual salivary glands using a rat model. METHODS Twenty-four adult male albino Sprague-Dawley rats were divided into the following groups: untreated group, high-fat diet group, high-fat diet and regular vitamin D group, and high-fat diet and nano vitamin group.Thereafter, samples of the submandibular and sublingual salivary glands were dissected for histological and electron microscopic studies. Morphometric digital image analysis was used to quantitatively measure the changes in the size and number of acini and secretory granules. RESULTS Regular vitamin D had a partial protective effect. However, vitamin D could fully restore cellular structures to their normal state, thereby protecting against fatty degeneration of the salivary tissue and immune cell infiltration, particularly in the submandibular serous tissue. Nano vitamin D was more efficacious than regular vitamin D at restoring the number and size of submandibular serous secretory granules. CONCLUSION Employing nano vitamin D as a supplement to high-fat diets could protect against high-fat diet-induced salivary gland damage in rats.
Collapse
Affiliation(s)
- Rasha Hamed Al-Serwi
- Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashwag Aloyouny
- Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Ishrat Rahman
- Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| |
Collapse
|
21
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
22
|
Anticandidal efficacy of Brassica juncea seeds extract: characterization, in vitro and in vivo studies. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Xu N, Luo H, Li M, Wu J, Wu X, Chen L, Gan Y, Guan F, Li M, Su Z, Chen J, Liu Y. β-patchoulene improves lipid metabolism to alleviate non-alcoholic fatty liver disease via activating AMPK signaling pathway. Biomed Pharmacother 2020; 134:111104. [PMID: 33341045 DOI: 10.1016/j.biopha.2020.111104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been a leading cause of chronic metabolic disease, seriously posing healthy burdens to the public, whereas interventions available for it are limited to date. Patchouli oil had been reported to attenuate hepatic steatosis in our previous study. β-patchoulene (β-PAE) is a representative component separated from patchouli oil with multiple activities, but its effect against NAFLD is still unknown. To investigate the effect and potential mechanism of β-PAE on NAFLD, we used high fat diet (HFD) in vivo and free fatty acid (FFA) in vitro to induce hepatic steatosis in rats and L02 cells, respectively. Histological examination was evaluated via Hematoxylin-eosin and oil red O staining. The parameters for hepatic steatosis were estimated via biochemical kits, western blotting and quantitative real-time PCR. Compound C, the inhibitor of AMPK, was applied further to examine the precise mechanism of β-PAE on NAFLD. Our results indicated that β-PAE significantly attenuated HFD-induced weight gain, hepatic injury, lipid deposition in serum and hepatic tissue as well as FFA induced-lipid accumulation. Besides, β-PAE markedly improved the expression of AMP-activated protein kinase (AMPK) and its downstream factors which correlate with hepatic lipid synthesis and oxidation in vivo and in vitro. Nevertheless, Compound C abrogated the benefits derived from β-PAE in L02 cells. In conclusion, these results suggest that β-PAE exerts AMPK agonist-like effect to regulate hepatic lipid synthesis and oxidation, eventually prevent NAFLD progression.
Collapse
Affiliation(s)
- Nan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huijuan Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Minyao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiazhen Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xue Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuxuan Gan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Fengkun Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Mengyao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, 523808, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
24
|
Upadhyay T, Ansari VA, Ahmad U, Sultana N, Akhtar J. Exploring Nanoemulsion for Liver Cancer Therapy. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394716666200302123336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a leading cause of mortality worldwide, accounting for 8.8 million deaths in
2015. Among these, at least 0.78 million people died of liver cancer alone. The recognized risk
factors for liver cancer include chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection,
exposure to dietary aflatoxin, fatty liver disease, alcohol-induced cirrhosis, obesity, smoking,
diabetes, and iron overload. The treatment plan for early diagnosed patients includes radiation
therapy, tumour ablation, surgery, immunotherapy, and chemotherapy. Some sort of drug delivery
vehicles has to be used when the treatment plan is targeted chemotherapy. Nanoemulsions are a
class of biphasic liquid dosage form which are mixtures of oil and water stabilized by a surfactant.
They are either transparent or bluish in hue and serve as a wonderful carrier system for chemotherapeutic
drugs. These vehicles have a particle size in the range of 20-200 nm allowing them
to be delivered successfully in the deepest of tissues. Recent publications on nanoemulsions
reveal their acceptance and a popular choice for delivering both synthetic and herbal drugs to the
liver. This work focuses on some anti-cancer agents that utilized the advantages of nanoemulsion
for liver cancer therapy.
Collapse
Affiliation(s)
- Tanmay Upadhyay
- Faculty of Pharmacy, Integral University, Lucknow-226026, India
| | | | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow-226026, India
| | - Nazneen Sultana
- Faculty of Pharmacy, Integral University, Lucknow-226026, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow-226026, India
| |
Collapse
|
25
|
Ma M, Long Q, Chen F, Zhang T, Wang W. Active vitamin D impedes the progression of non-alcoholic fatty liver disease by inhibiting cell senescence in a rat model. Clin Res Hepatol Gastroenterol 2020; 44:513-523. [PMID: 31810868 DOI: 10.1016/j.clinre.2019.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) refers to an accumulation of excess fat in liver due to causes other than alcohol use. The relationship between vitamin D (VD) and NAFLD has been previously studied. Therefore, we aimed to explore the mechanism involved active VD regulating the progression of NAFLD by inhibiting cell senescence and to provide a potential approach for further nutritional treatment of NAFLD. METHODS Following the induction with high-fat diet and intraperitoneal injection of corn oil, the successfully established NAFLD rat models were treated with 1,25(OH)2D3 at 1μg/kg, 5μg/kg or 10μg/kg. Meanwhile, the levels of factors related to oxidative stress, cell senescence, the p53-p21 signaling pathway and inflammation in liver were determined. Then, cell senescence was also measured by using senescence-associated β-galactosidase (SAβ-gal) staining. RESULTS It was also found that active VD increased the concentration of VD in serum and VDR in liver of NAFLD rats, and alleviated hepatic fibrosis. Besides, treatment of 1,25(OH)2D3 at 1μg/kg, 5μg/kg or 10μg/kg reduced oxidative stress and inflammation, inhibited the p53-p21 signaling pathway and consequent cell senescence. Furthermore, treatment of 1,25(OH)2D3 at a dosage of 5μg/kg made the most impact on these factors. CONCLUSION Collectively, the evidences from this study demonstrated that active VD could alleviate the development of NAFLD through blocking the p53-p21 signaling pathway, which provided a novel nutritional therapeutic insight for NAFLD.
Collapse
Affiliation(s)
- Ming Ma
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China.
| | - Qi Long
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Fei Chen
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Ting Zhang
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Wenqiao Wang
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| |
Collapse
|
26
|
Zhang M, Zhang T, Zou Y, Han P, Liu K. Self-microemulsifying oral fast dissolving films of vitamin D3 for infants: Preparation and characterization. Food Sci Nutr 2019; 7:2577-2583. [PMID: 31428345 PMCID: PMC6694412 DOI: 10.1002/fsn3.1108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Combining the advantages of self-microemulsifying technology and oral fast dissolving technology, a self-microemulsifying oral fast dissolving films (SMEOFDF) of vitamin D3 was developed in this study. The pseudoternary phase diagram of microemulsion was constructed using water titration method, and the formulation of films was optimized by orthogonal experimental design. The prepared SMEOFDF of vitamin D3 was a thin film, in which the liquid drops of self-microemulsion were embedded. It had good mechanical properties (thickness 166.7 ± 3.30 µm, tensile strength 38.45 ± 3.72 MPa, elongation 23.38 ± 4.23%, and folding endurance >200 times), and its disintegration time was about 18 ± 1.23 s. After being redissolved in water, microemulsion could form spontaneously, with particle size of 181.2 nm and zeta potential of 16.1 mV. The release profile of vitamin D from SMEOFDF could be well described by first-order equation.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Tingrui Zhang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Ying Zou
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Ping Han
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Kehai Liu
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
- National Experimental Teaching Demonstration Center for Food Science and EngineeringShanghai Ocean UniversityShanghaiChina
| |
Collapse
|
27
|
Xia HM, Wang J, Xie XJ, Xu LJ, Tang SQ. Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats. Int J Mol Med 2019; 44:1523-1530. [PMID: 31364723 DOI: 10.3892/ijmm.2019.4285] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance and inflammation; however, the exact pathogenesis of NAFLD is not fully understood. Green tea polyphenols (GTP) exhibit beneficial effects against metabolic syndrome. However, the effect of GTP on NAFLD remains largely unknown. The aim of the present study was to investigate the effects of GTP on NAFLD in high‑fat diet (HFD)‑induced rats. The NAFLD rat model was induced with a HFD for 8 weeks. A total of 30 adult male Sprague Dawley rats were randomly divided into three groups: i) Normal control group; ii) HFD group; and iii) HFD with GTP group. Hematoxylin and eosin and Oil Red O analyses were performed. The levels of alanine aminotransferase (ALT), aspartate amino-transferase (AST) and inflammatory cytokines in the serum, as well as oxidative stress markers and hepatic lipids in the liver were measured. In addition, parameters associated with glucose metabolism were also assessed. Western blotting and RT‑qPCR were used to determine the expression levels of 5' adenosine monophosphate‑activated protein kinase (AMPK). HFD‑induced rats exhibited features associated with NAFLD. GTP intervention significantly reduced serum ALT and AST levels. Fasting serum glucose, insulin resistance and hepatic lipid levels were all decreased in the GTP‑treated rats. GTP also significantly decreased the levels of TNF‑α, IL‑6 and malondialdehyde. In contrast, superoxide dismutase levels were increased in the liver. Furthermore, GTP also significantly increased phosphorylation of AMPK and attenuated histopathological changes indicative of injury in liver tissue. GTP has a protective effect on HFD‑induced hepatic steatosis, insulin resistance and inflammation, and the underlying mechanism may involve the AMPK pathway.
Collapse
Affiliation(s)
- Hong-Miao Xia
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Wang
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Jie Xie
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li-Juan Xu
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Qi Tang
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
28
|
Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions. Food Res Int 2019; 120:264-274. [DOI: 10.1016/j.foodres.2019.02.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
|
29
|
Xu M, Jiang F, Li B, Zhang Z. 1α,25(OH) 2 D 3 alleviates high glucose-induced lipid accumulation in rat renal tubular epithelial cells by inhibiting SREBPs. J Cell Biochem 2019; 120:15211-15221. [PMID: 31020705 DOI: 10.1002/jcb.28786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 01/29/2023]
Abstract
Lipid accumulation is a vital event in the progression of diabetic nephropathy. 1,25-Dihydroxyvitamin D3 (1α,25(OH)2 D3 ) is considered to have a protective effect on diabetic nephropathy. However, it remains unclear whether 1α,25(OH)2 D3 can inhibit lipid accumulation, and the potential mechanisms responsible for lipid metabolism are incompletely understood. In this study, we evaluated the effects of 1α,25(OH)2 D3 on lipid metabolism in high glucose-exposed rat renal tubular epithelial NRK-52E cells. Results indicated that high glucose-enhanced lipid accumulation in NRK-52E cells and 1α,25(OH)2 D3 can remarkably decrease high glucose-induced lipid accumulation. Western blot showed that 1α,25(OH)2 D3 alleviated high glucose-induced upregulation of sterol regulatory element-binding protein-1c (SREBP-1c) and SREBP2, along with their established target genes fatty acid synthase (FASN) and hydroxymethylglutaryl CoA reductases (HMGCR). Overall, these findings suggest that 1α,25(OH)2 D3 downregulated the expressions of SREBPs to inhibit high glucose-induced lipid accumulation, which provides new sights into the protective effects of 1α,25(OH)2 D3 on diabetic nephropathy.
Collapse
Affiliation(s)
- Miao Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Department of Labor Hygiene and Environmental Health, School of Public Health, Soochow University, Suzhou, P R China
| | - Fei Jiang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Department of Labor Hygiene and Environmental Health, School of Public Health, Soochow University, Suzhou, P R China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, P R China
| | - Zengli Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Department of Labor Hygiene and Environmental Health, School of Public Health, Soochow University, Suzhou, P R China
| |
Collapse
|
30
|
Rafique A, Etzerodt A, Graversen JH, Moestrup SK, Dagnæs-Hansen F, Møller HJ. Targeted lipid nanoparticle delivery of calcitriol to human monocyte-derived macrophages in vitro and in vivo: investigation of the anti-inflammatory effects of calcitriol. Int J Nanomedicine 2019; 14:2829-2846. [PMID: 31114197 PMCID: PMC6488164 DOI: 10.2147/ijn.s192113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Vitamin D3 possesses anti-inflammatory and modulatory properties in addition to its role in calcium and phosphate homeostasis. Upon activation, macrophages (M) can initiate and sustain pro-inflammatory cytokine production in inflammatory disorders and play a pathogenic role in certain cancers. Purpose The main purpose of this study was to encapsulate and specifically target calcitriol to macrophages and investigate the anti-inflammatory properties of calcitriol in vitro and in vivo. Methods In this study we have designed and developed near-infrared calcitriol PEGylated nanoparticles (PEG-LNP(Cal)) using a microfluidic mixing technique and modified lipid nanoparticles (LNPs) to target the M specific endocytic receptor CD163. We have investigated LNP cellular uptake and anti-inflammatory effect in LPS-induced M in vitro by flow cytometry, confocal microscopy and gene expression analyses. LNP pharmacodynamics, bio-distribution and organ specific LNP accumulation was also investigated in mice in vivo. Results In vitro, we observed the specific uptake of PEG-LNP(Cal)-hCD163 in human M, which was significantly higher than the non-specific uptake of control PEG-LNP(Cal)-IgG(h) in M. Pretreatment with encapsulated calcitriol was able to attenuate intracellular TNF-expression, and M surface marker HLA-DR expression more efficiently than free calcitriol in LPS-induced M in vitro. Encapsulated calcitriol diminished mRNA gene levels of TNF-, NF-B, MCP-1 and IL-6, while upregulating IL-10. TNF- and IL-6 protein secretion also decreased. In mice, an in vivo pharmacodynamic study of PEG-LNP(Cal) showed a rapid clearance of IgG and CD163 modified LNPs compared to PEG-LNP(Cal). Antibody modified PEG-LNP(Cal) accumulated in the liver, spleen and kidney, whereas unmodified PEG-LNP(Cal) accumulation was only observed in the liver. Conclusion Our results show that calcitriol can be effectively targeted to M. Our data confirms the anti-inflammatory properties of calcitriol and this may be a potential way to deliver high dose bioactive calcitriol to M during inflammation in vivo.
Collapse
Affiliation(s)
- Aisha Rafique
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark,
| | - Anders Etzerodt
- Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonas H Graversen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Søren K Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark,
| |
Collapse
|
31
|
Marwaha RK, Dabas A. Bioavailability of nanoemulsion formulations vs conventional fat soluble preparations of cholecalciferol (D3) - An overview. J Clin Orthop Trauma 2019; 10:1094-1096. [PMID: 31708634 PMCID: PMC6834990 DOI: 10.1016/j.jcot.2019.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
Vitamin D deficiency is recognized as a pandemic affecting all ages and strata of population. The endogenous cutaneous synthesis of vitamin D is insufficient to maintain normal body requirement which necessitates the need for vitamin D supplementation or food-fortification. Conventional fat-soluble preparations of vitamin D have been traditionally used for prevention and therapeutic purposes. Recent advances in technology have enabled delivery of vitamin D through nanoemulsion formulations which ensure higher absorption and drug delivery. The following review briefly discusses the issues of bioavailability of nanoemulsion preparation of vitamin D vis-a-vis conventional fat soluble preparations.
Collapse
Affiliation(s)
- Raman Kumar Marwaha
- International Life Sciences Institute-India and President, Society for Endocrine Health Care of Elderly, Adolescents and Children (SEHEAC), New Delhi, India,Corresponding author. Flat no. 17, Gautam Apartments, Gautam Nagar, New Delhi, 110 049, India.
| | - Aashima Dabas
- Department of Pediatrics, Maulana Azad Medical College and Associated Lok Nayak Hospitals, New Delhi, India
| |
Collapse
|
32
|
Koop AH, Mousa OY, Pham LE, Corral-Hurtado JE, Pungpapong S, Keaveny AP. An Argument for Vitamin D, A, and Zinc Monitoring in Cirrhosis. Ann Hepatol 2018; 17:920-932. [PMID: 30600288 DOI: 10.5604/01.3001.0012.7192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Malnutrition is prevalent in cirrhosis. Vitamin and mineral deficiencies, including vitamin D, vitamin A, and zinc, are common and have been shown to correlate with survival. Our aim was to review the mechanisms of vitamin D, vitamin A, and zinc deficiencies in cirrhosis and the clinical assessment of affected patients, their outcomes based on the current literature, and management. This is a narrative review including the relevant literature for cirrhosis and vitamin D, vitamin A, and zinc deficiencies. Vitamin D deficiency has important effects in cirrhosis, regardless of the cause of chronic liver disease.These effects include associations with fibrosis and outcomes such as infections, hepatocellular carcinoma, and mortality. Vitamin A deficiency is associated with liver disease progression to cirrhosis and clinical decompensation, including occurrence of ascites or hepatic encephalopathy. Zinc deficiency can lead to hepatic encephalopathy and impaired immune function. Such deficiencies correlate with patient survival and disease severity. Caution should be applied when replacing vitamin D, vitamin A, and zinc to avoid toxicity. Identification and appropriate treatment of vitamin and mineral deficiencies in cirrhosis may reduce specific nutritional and cirrhosis-related adverse events. Routine monitoring of vitamin A, vitamin D and zinc levels in cirrhosis should be considered.
Collapse
Affiliation(s)
- Andree H Koop
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Omar Y Mousa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Ly Elaine Pham
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Surakit Pungpapong
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew P Keaveny
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|