1
|
Zhou R, Wang Y, Chen S, Cheng F, Yi Y, Lv C, Qin S. Anti-Inflammatory Effect of Dendrobium officinale Extract on High-Fat Diet-Induced Obesity in Rats: Involvement of Gut Microbiota, Liver Transcriptomics, and NF-κB/IκB Pathway. Antioxidants (Basel) 2025; 14:432. [PMID: 40298780 PMCID: PMC12024317 DOI: 10.3390/antiox14040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
The growing prevalence of obesity is being increasingly acknowledged as a major public health issue. This mainly stems from the excessive intake of dietary fats. Dendrobium officinale (DO), recognized as an herb with dual roles of food and medicine, is renowned for its diverse health-promoting effects. Nevertheless, the specifics of its antiobesity and anti-inflammatory properties and the underlying mechanisms are still obscure. The present study shows that treatment with Dendrobium officinale extract (DOE) alleviates obesity, liver steatosis, inflammation, and oxidative stress in rats that are obese due to a high-fat diet (HFD). Firstly, with respect to HFD obese rats, higher doses of DOE significantly reduced TG, TC, LDL-C, blood glucose, and liver AST and ALT, along with lipid droplets. Meanwhile, DOE supplementation significantly reduced oxidative stress induced by ROS and MDA and increased the levels of GSH-Px and SOD in liver tissues. Furthermore, integrated analysis of transcriptomic and microbiomic data revealed that DOE modulated inflammatory responses through the NF-κB/IκB pathway. This regulatory mechanism was evidenced by corresponding changes in the protein expression levels of both NF-κB and IκB. Additionally, DOE was found to modulate gut microbiota composition in obese rats, specifically reducing the relative abundance of Bilophila while increasing beneficial bacterial populations, particularly the genera Akkermansia and Roseburia. These findings suggest that DOE may help retain the homeostasis of the gut microbiota and improve metabolic health by regulating inflammation in the liver and intestine, thereby providing protection against obesity and related metabolic syndromes. Our study demonstrates that DOE, as a natural botanical extract, can effectively facilitate the prevention or treatment of metabolic syndrome through precision dietary interventions.
Collapse
Affiliation(s)
- Runze Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.Z.); (Y.W.); (S.C.); (F.C.)
| | - Yixue Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.Z.); (Y.W.); (S.C.); (F.C.)
| | - Shiyun Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.Z.); (Y.W.); (S.C.); (F.C.)
| | - Fanjia Cheng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.Z.); (Y.W.); (S.C.); (F.C.)
| | - Yuhang Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Chenghao Lv
- Hunan Provincial Key Laboratory of Liver Visceral Manifestation in Traditional Chinese Medicine, Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (R.Z.); (Y.W.); (S.C.); (F.C.)
| |
Collapse
|
2
|
Zhao W, Li J, Cai J, Gao J, Hu Y, Dong C. Research Progress on the Antifibrotic Activity of Traditional Chinese Medicine Polysaccharides. Chem Biodivers 2025; 22:e202402012. [PMID: 39563554 DOI: 10.1002/cbdv.202402012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition and proliferation fibrous tissue, a condition associated with various chronic diseases, such as liver cirrhosis, inflammation of the lungs, and myocarditis. Clinical treatment options for fibrotic diseases are currently limited and have poor efficacy. However, recent studies have increasingly demonstrated that polysaccharides exhibit significant antifibrotic activity by modulating cell proliferation and migration, inhibiting inflammation and oxidative stress associated fibrosis and regulating gut microbiota. This review provides an overview of recent advances in polysaccharide research for antifibrosis and offers new perspectives on the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Wenjing Zhao
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Jieming Li
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Juntao Cai
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Jie Gao
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Yulong Hu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| | - Chunhong Dong
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Polysaccharide Research Center, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, China
| |
Collapse
|
3
|
Chen XW, Long J, Zhang Q, Huang LH, Sun XY. Sulfated Undaria pinnatifida polysaccharides inhibit kidney stone formation through crystalline modulation and relieving cellular oxidative damage and inflammation. Biomater Sci 2025; 13:1512-1528. [PMID: 39928054 DOI: 10.1039/d4bm01362j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Background: Calcium oxalate (CaOx) crystal deposition and its resultant cellular oxidative damage and inflammation are important causes of renal stone formation. It is clinically important to conduct research on multifunctional anti-stone drugs targeting these predisposing factors. Methods: We modified natural Undaria pinnatifida polysaccharide (UPP0) by sulfation via the sulfur trioxide-pyridine method, resulting in four sulfated polysaccharides with varying sulfate group (-OSO3-) contents: 1.59% (UPP0), 6.03% (UPP1), 20.83% (UPP2), and 36.39% (UPP3), and compared their differences in the inhibition of crystalline formation, renal injury, and inflammation in the process of renal stone formation at chemical and cellular levels. Results: The UPPS were able to inhibit the nucleation, growth and aggregation of CaOx crystals in vitro. Among them, UPP3 with the maximum sulfate group content showed the greatest crystallization inhibition ability. The nucleation inhibition and aggregation inhibition of UPP3 at a concentration of 0.5 mg mL-1 were as high as 80.21% and 72.34%, respectively. The CaOx crystal size regulated by UPP3 was significantly reduced from 25.9 ± 2.8 μm to 5.9 ± 1.2 μm. Furthermore, UPPS were observed to up-regulate the expression of the antioxidant enzyme superoxide dismutase (SOD) in cells, reduce the levels of ROS and malonaldehyde (MDA), enhance lysosomal integrity, decrease intracellular Ca2+ levels, inhibit the decline in mitochondrial membrane potential, reduce the production of cellular inflammatory factors (TNF-α, MCP-1, IL-18, and IL-1β), and ultimately inhibit cell apoptosis. Conclusion: UPPS combine multiple biological functions of crystallization regulation, antioxidant and anti-inflammatory, and have important potential in the prevention of kidney stones. Sulfation modification can improve the biological activity of UPP0 and provide a reference for screening and optimization methods of stone drugs.
Collapse
Affiliation(s)
- Xue-Wu Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China.
| | - Jun Long
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China.
| | - Quan Zhang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China.
| | - Ling-Hong Huang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China.
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China.
| |
Collapse
|
4
|
Zhang S, Zhou R, Xie X, Xiong S, Li L, Li Y. Polysaccharides from Lycium barbarum, yam, and sunflower ameliorate colitis in a structure and intrinsic flora-dependent manner. Carbohydr Polym 2025; 349:122905. [PMID: 39643421 DOI: 10.1016/j.carbpol.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Polysaccharides have been suggested to ameliorate metabolic diseases. However, their differential colitis-mitigating effects in mouse models with different colony structures remain poorly understood. Therefore, this study investigated the effects of polysaccharides from Lycium barbarum (LBP), sunflower (SP), and yam (YP) on colitis in C57BL/6 J (B6) mice born via vaginal delivery (VD) and in both caesarean section (CS)- and VD-born Institute of Cancer Research (ICR) mice. LBP was mainly composed of glucose (30.2 %), galactose (27.5 %), and arabinose (26.9 %). The main components of SP and YP were galacturonic acid (75.8 %) and glucose (98.1 %), respectively. Interestingly, LBP effectively alleviated body weight loss, reduced inflammatory cytokine levels, and restored intestinal barrier function in all three mouse models. Moreover, LBP decreased the abundance of norank_f__norank_o__Clostridia_UCG-014, Coriobacteriaceae_UCG-002, and norank_f_Eubacterium_coprostanoligenes_group in B6 mice, and the abundance of these genera positively correlated with pro-inflammatory cytokine levels. LBP increased the abundance of Lactobacillus, which was positively correlated with the levels of the protective factor, IL-10, in CS-born ICR mice. Collectively, our study suggests the potential application of LBP in the treatment of ulcerative colitis. We also provide an alternative method for restoring intestinal homeostasis in CS-born offspring.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoran Xie
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Zeng X, Tang S, Dong X, Dong M, Shao R, Liu R, Li T, Zhang X, Wong YH, Xie Q. Analysis of metagenome and metabolome disclosed the mechanisms of Dendrobium officinale polysaccharide on DSS-induced ulcerative colitis-affected mice. Int J Biol Macromol 2024; 277:134229. [PMID: 39089548 DOI: 10.1016/j.ijbiomac.2024.134229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Currently, there is no known cause for ulcerative colitis (UC), an inflammatory bowel disease that is difficult to treat. This assay aimed to investigate the protective effects and mechanisms of Dendrobium officinale polysaccharide (DOP) in mice with acute UC induced by dextran sulphate sodium (DSS). We found that DOP could improve weight loss, decrease the disease activity index (DAI), and regulate the release of interleukin 2 (IL-2), IL-4, IL-6, and IL-10 in DSS-induced acute UC mice. Additionally, DOP preserved the integrity of the intestinal barrier in UC mice by increasing goblet cell density and maintaining tight junctions. DOP significantly enhanced total antioxidant capacity (T-AOC), and reduced glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA) levels in the bloodstream. In terms of serum biochemistry, DOP markedly elevated levels of bilirubin (BIL), alkaline phosphatase (ALP), total bile acid (TBA), creatinine (Crea), and creative kinase isoenzyme (CKMB). Furthermore, DOP increased the relative abundance of Lactobacillales. DOP also improved intestinal health and stimulated the synthesis of potent anti-inflammatory and antiviral substances by regulating the metabolism of purines, prostaglandins, and leukotrienes. Therefore, DOP can be considered a functional dietary supplement for the treatment of UC, as it improves the condition of DSS-induced UC mice.
Collapse
Affiliation(s)
- Xiaona Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, PR China; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China
| | - Shengqiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, PR China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China
| | - Xiaoying Dong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, PR China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China
| | - Mengyue Dong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China
| | - Runlin Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China
| | - Tong Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China
| | - Yung Hou Wong
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China.
| |
Collapse
|
7
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
8
|
Su Q, Yang SP, Guo JP, Rong YR, Sun Y, Chai YR. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway. Microbiol Immunol 2024; 68:281-293. [PMID: 38886542 DOI: 10.1111/1348-0421.13159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
Collapse
Affiliation(s)
- Qing Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shu-Ping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- School of Medical Technology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jun-Ping Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi-Ren Rong
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
9
|
Cai L, Xu L, Shen K, Wang Q, Ni R, Xu X, Ma X. Sophorae tonkinensis radix polysaccharide attenuates acetaminophen-induced liver injury by regulating the miR-140-5p-related antioxidant mechanism. J Tradit Complement Med 2024; 14:467-476. [PMID: 39035693 PMCID: PMC11259709 DOI: 10.1016/j.jtcme.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 07/23/2024] Open
Abstract
STRP1, a polysaccharide active ingredient isolated from the traditional Chinese medicine Sophorae tonkinensis radix, has demonstrated a protective effect against acetaminophen (APAP)-induced liver injury (AILI). The underlying molecular mechanism was investigated in this study. Here, an acute liver damage mouse model was generated by APAP (400 mg/kg) and used to identify the protective effect of STRP1 (200 mg/kg) on mouse livers. In vitro cell experiments were used to further verify the related signaling pathways. Initially, in our study, STRP1 treatment reduced APAP-induced liver injury by decreasing aminotransferase activity and cell apoptosis and increasing cell proliferation. Furthermore, STRP1 treatment significantly increased Nrf2 expression and alleviated oxidative stress caused by reactive oxygen species in AILI. Based on bioinformatics and experimental studies, miR-140-5p was identified and found to be reduced by STRP1, increasing Nrf2 expression. Additionally, Nrf2 played an important role in the protective impact of STRP1-suppressed miR-140-5p expression. Generally, these results showed that STRP1-mediated suppression of miR-140-5p expression mitigates AILI by activating the Nrf2-mediated Nrf2-Keap1 pathway. This study revealed that STRP1 might be a potential treatment agent for AILI.
Collapse
Affiliation(s)
- Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, PR China
| | - Kai Shen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Qin Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Ronghua Ni
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| |
Collapse
|
10
|
Wang J, Xue X, Zhao X, Luo L, Liu J, Dai S, Zhang F, Wu R, Liu Y, Peng C, Li Y. Forsythiaside A alleviates acute lung injury by inhibiting inflammation and epithelial barrier damages in lung and colon through PPAR-γ/RXR-α complex. J Adv Res 2024; 60:183-200. [PMID: 37579917 PMCID: PMC11156707 DOI: 10.1016/j.jare.2023.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
INTRODUCTION Acute lung injury (ALI) is a lung disease characterized by inflammation and still requires further drug development. Forsythiaside A as the active compound of Forsythiae Fructus has the therapeutic potential for ALI. OBJECTIVE To investigate the mechanism of forsythiaside A in treating ALI through PPAR-γ and its conjugate RXR-α based on gut-lung axis. METHODS This study constructed in vitro and in vivo injury models using LPS and TNF-α. Forsythiaside A was used for the drug treatment, and RXR-α inhibitor UVI3003 was used to interfere with PPAR-γ/RXR-α complexes in the cells. HE staining was used for histopathological examination. Serum endotoxin contents were determined using limulus lysate kit. IHC staining and Western blot were conducted to assess the protein expressions. ELISA was applied to examine the content of pro-inflammatory cytokines in the cell supernatants. The protein interactions were analyzed via CO-IP. RESULTS In vivo results showed that forsythiaside A regulated PPAR-γ/RXR-α and inhibited TLR4/MAPK/NF-κB and MLCK/MLC2 signal pathways, thus inhibiting inflammation and epithelial barrier damages of lung and colon in ALI mice induced by intratracheal LPS. PPAR-γ/RXR-α were promoted by forsythiaside A in lungs, whereas inhibited by forsythiaside A in colons. Additionally, in vitro results showed that forsythiaside A suppressed inflammation and epithelial barrier damages in macrophages and lung/colon epithelial cells, by manipulating PPAR-γ/RXR-α to suppress the LPS- and TNF-α-induced activation of TLR4/MAPK/NF-κB and NF-κB/MLCK/MLC2 signal pathways. Moreover, further mechanism study indicated that forsythiaside A showed a cell-specific regulatory effect on PPAR-γ/RXR-α complex. Specifically, the PPAR-γ/RXR-α protein interactions were promoted by forsythiaside A in LPS-induced macrophages RAW264.7 and TNF-α-induced lung epithelial cells A549, but inhibited by forsythiaside A in TNF-α-induced colon epithelial cells SW620. CONCLUSION In the treatment of ALI, Forsythiaside A inhibited inflammation and epithelial barrier damages of lung and colon through its regulation on PPAR-γ/RXR-α complex.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Tan F, Zhou X, Ren L, Kong CS. Effect of Lactiplantibacillus plantatum HFY11 on Colitis in Mice. Foods 2024; 13:1496. [PMID: 38790796 PMCID: PMC11120446 DOI: 10.3390/foods13101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to examine the potential impact of the intervention of Lactiplantibacillus plantatum HFY11 (LP-HFY11) on colitis using in vivo animal trials. The impact of LP-HFY11 intervention on colitis was determined by measuring the levels of relevant indicators in the intestine, colon, and blood after oxazolone-induced colitis in BALB/c mice. The results of the trial show that LP-HFY11 improved the colon weight-to-length ratio, reduced the colitis-induced colon length shortening, and reduced colonic abstinence. Furthermore, it decreased the levels of myeloperoxidase, nitric oxide, and malondialdehyde activities while increasing the glutathione content in the colon tissue of colitis-affected animals. LP-HFY11 lowered the interleukin-10 (IL-10) level and increased the IL-2 level in the serum of colitis mice. LP-HFY11 also upregulated the expression of neuronal nitric oxide synthase, endothelial nitric oxide synthase, c-Kit, and stem cell factor (SCF), and downregulated the expression of IL-8, C-X-C chemokine receptor type 2 (CXCR2), and inducible nitric oxide synthase (iNOS) in the colon tissue of mice with colitis. LP-HFY11 decreased the expression of Firmicutes in the gut while increasing the expression of Bacteroidetes, Bifidobacteria, and Lactobacillus. This indicates that LP-HFY11 could control physiological alterations in the serum and colon tissue, as well as the expression of gut microorganism.
Collapse
Affiliation(s)
- Fang Tan
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea; (F.T.); (X.Z.); (L.R.)
| | - Xianrong Zhou
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea; (F.T.); (X.Z.); (L.R.)
| | - Lixuan Ren
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea; (F.T.); (X.Z.); (L.R.)
| | - Chang-Suk Kong
- Department of Bioscience, Silla University, Busan 46958, Republic of Korea; (F.T.); (X.Z.); (L.R.)
- Department of Food and Nutrition, Silla University, Busan 46958, Republic of Korea
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
12
|
Yang X, Guo C, Yu L, Lv Z, Li S, Zhang Z. Dendrobium officinale polysaccharide alleviates thiacloprid-induced kidney injury in quails via activating the Nrf2/HO-1 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2655-2666. [PMID: 38224485 DOI: 10.1002/tox.24137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Thiacloprid (THI) is a neonicotinoid insecticide, and its wide-ranging use has contributed to severe environmental and health problems. Dendrobium officinale polysaccharide (DOP) possesses multiple biological activities such as antioxidant and antiapoptosis effect. Although present research has shown that THI causes kidney injury, the exact molecular mechanism and treatment of THI-induced kidney injury remain unclear. The study aimed to investigate if DOP could alleviate THI-induced kidney injury and identify the potential molecular mechanism in quails. In this study, Japanese quails received DOP (200 mg/kg) daily with or without THI (4 mg/kg) exposure for 42 days. Our results showed that DOP improved hematological changes, biochemical indexes, and nephric histopathological changes induced by THI. Meanwhile, THI exposure caused oxidative stress, apoptosis, and autophagy. Furthermore, THI and DOP cotreatment significantly activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, restored antioxidant enzyme activity, and reduced apoptosis and autophagy in quail kidneys. In summary, our study demonstrated that DOP mitigated THI-mediated kidney injury was associated with oxidative stress, apoptosis, and autophagy via activation of the Nrf2/HO-1 signaling pathway in quails.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Lai CH, Huo CY, Xu J, Han QB, Li LF. Critical review on the research of chemical structure, bioactivities, and mechanism of actions of Dendrobium officinale polysaccharide. Int J Biol Macromol 2024; 263:130315. [PMID: 38382782 DOI: 10.1016/j.ijbiomac.2024.130315] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Dendrobium officinale (Tie-Pi-Shi-Hu) is a precious traditional Chinese medicine (TCM). The principal active components are polysaccharides (DOP), which have a high potency in therapeutic applications. However, limitations in structure analysis and underlying mechanism investigation impede its further research. This review systemically and critically summarises current understanding in both areas, and points out the influence of starch impurities and the role of gut microbiota in DOP research. As challenges faced in studying natural polysaccharide investigations are common, this review contributes to a broader understanding of polysaccharides beyond DOP.
Collapse
Affiliation(s)
- Cheuk-Hei Lai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chu-Ying Huo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
14
|
He X, Liu L, Gu F, Huang R, Liu L, Nian Y, Zhang Y, Song C. Exploration of the anti-inflammatory, analgesic, and wound healing activities of Bletilla Striata polysaccharide. Int J Biol Macromol 2024; 261:129874. [PMID: 38307430 DOI: 10.1016/j.ijbiomac.2024.129874] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Bletilla Striata (BS) Polysaccharide (BSP) is one of the main components of the traditional Chinese medicinal plant Bletilla striata Rchb. F. BSP has been widely used in antimicrobial and hemostasis treatments in clinics. Despite its use in skin disease treatment and cosmetology, the effects of BSP on wound healing remain unclear. Here we investigated the anti-inflammatory, antioxidant, and analgesic effects of BSP and explored its impact on morphological changes and inflammatory mediators during wound healing. A carrageenan-induced mouse paw edema model was established to evaluate the anti-inflammatory effect of BSP. Antioxidant indicators, including NO, SOD, and MDA, were measured in the blood and liver. The increased pain threshold induced by BSP was also determined using the hot plate test. A mouse excisional wound model was applied to evaluate the wound healing rate, and HE staining and Masson staining were used to detect tissue structure changes. In addition, ELISA was employed to detect the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in serum. BSP significantly decreased the concentration of NO and MDA in serum and liver while increasing SOD activity. It exhibited a notable improvement in mouse paw edema induced by carrageenan. BSP dose-dependently delayed the appearance of licking behavior in mice, indicating its analgesic effect. Compared to the control group, the wound healing rate was significantly improved in the BSP treatment group. HE and Masson staining results showed that the BSP and 'Jingwanhong' ointment groups had slightly milder inflammatory responses and significantly promoted more new granulation tissue formation. The levels of serum inflammatory mediators TNF-α, IL-1β, and IL-6 were reduced to varying degrees. The results demonstrated that BSP possesses anti-inflammatory, antioxidant, analgesic, and wound healing properties, and it may promote wound healing through inhibition of inflammatory cytokine synthesis and release.
Collapse
Affiliation(s)
- Xiaomei He
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Longyun Liu
- School of Biotechnology, Hefei Vocational and Technical College, Hefei 230000, China
| | - Fangli Gu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Renshu Huang
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Li Liu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
| | - Yuting Nian
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Cheng Song
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China.
| |
Collapse
|
15
|
Zeng B, Yan Y, Zhang Y, Wang C, Huang W, Zhong X, Chen Z, Xie M, Yang Z. Dendrobium officinale Polysaccharide (DOP) inhibits cell hyperproliferation, inflammation and oxidative stress to improve keratinocyte psoriasis-like state. Adv Med Sci 2024; 69:167-175. [PMID: 38521458 DOI: 10.1016/j.advms.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Psoriasis is a skin disease characterized by excessive proliferation, inflammation and oxidative stress in keratinocytes. The present study aimed to investigate the therapeutic effects of Dendrobium officinale polysaccharide (DOP) on keratinocyte psoriasis-like models. METHODS The HaCaT keratinocyte inflammation models were induced by interleukin (IL)-22 or lipopolysaccharide (LPS), respectively, and oxidative stress damage within cells was elicited by H2O2 and treated using DOP. CCK-8 and EdU were carried out to detect cell proliferation. ELISA, qRT-PCR, and Western blot were conducted to measure the expression of pro-inflammatory cytokines IL17A, IL-23, IL1β, tumor necrosis factor alpha (TNF-α), and IL-6. Reactive oxygen species (ROS) level in keratinocytes was detected by flow cytometry. Cell proliferation-associated proteins (PCNA, Ki67, Cyclin D1) and pathway proteins (p-AKT and AKT), and oxidative stress marker proteins (Nrf-2, CAT, SOD1) were detected by Western blot. RESULT DOP did not affect the proliferation of normal keratinocytes, but DOP was able to inhibit the proliferative activity of IL-22-induced overproliferating keratinocytes and suppress the expression of proliferation-related factors PCNA, Ki67, and Cyclin D1 as well as the proliferation pathway p-AKT. In addition, DOP treatment was able to inhibit IL-22 and LPS-induced inflammation and H2O2-induced oxidative stress, including the expression of IL17A, IL-23, IL1β, TNF-α, IL-6, and IL1β, as well as the expression levels of intracellular ROS levels and cellular oxidative stress-related indicators SOD, MDA, CAT, Nrf-2 and SOD1. CONCLUSION DOP inhibits keratinocyte hyperproliferation, inflammation and oxidative stress to improve the keratinocyte psoriasis-like state.
Collapse
Affiliation(s)
- Bijun Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Yining Yan
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Yujin Zhang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Chang Wang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Wenting Huang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Xinyi Zhong
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Zi Chen
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Mengzhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhibo Yang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China.
| |
Collapse
|
16
|
Guo L, Yang Y, Pu Y, Mao S, Nie Y, Liu Y, Jiang X. Dendrobium officinale Kimura & Migo polysaccharide and its multilayer emulsion protect skin photoaging. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116974. [PMID: 37517571 DOI: 10.1016/j.jep.2023.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale Kimura & Migo is traditionally used to treat skin diseases, gastrointestinal diseases, and other diseases. Dendrobium officinale polysaccharides (DOP) are the main component of Dendrobium officinale that accounts for its bioactivity, which shows a variety of effects such as moisturizing, antioxidant and anti-fatigue. However, there is no comprehensive study on the effect of DOP on skin photoaging combined with in vitro and in vivo models, and its specific mechanism is still unclear. AIM OF THE STUDY Our study aimed to explore the effect and underlying mechanism of DOP on skin photoaging, as well as to improve the stability and transdermal absorption of DOP. MATERIALS AND METHODS DOP was extracted, purified and structurally characterized. In vitro HaCaT cell photoaging model was used to examine the photoprotection effect of DOP. Cell viability was detected by CCK-8; Intracellular reactive oxygen species were determined by DCFH-DA; DNA damage, cell apoptosis and cell cycle arrest were examined by flow cytocytometry. For autophagy flux detection, the adenovirus loaded with mRFP-GFP-LC3 was introduced into cells. Further, to enhance the stability and absorption of DOP, we designed and prepared the W/O/W type DOP multilayer emulsions (ME) by a two-step emulsification method. The emulsion stability, drug loading and encapsulation rate, DOP stability and DOP transdermal rate were detected. In vivo photoaging animal model was applied to compare the difference of photoaging protection effect between DOP solution and DOP ME. Specifically, skin appearance, histological change, antioxidant system, proinflammatory indicators, matrix metalloproteinases and autophagy level of skin tissues were examined and compared. RESULTS The results showed that DOP achieve photoaging protection by inhibiting oxidative stress, alleviating cell cycle arrest and apoptosis, and enhancing autophagy flux in photoaged HaCaT cells. The W/O/W type DOP multilayer emulsion (ME) with high encapsulation rate and strong stability was found to significantly improve the stability and transdermal absorption of DOP. In addition, our results showed that DOP (ME) remarkably improved skin condition of photoaged mice. Specifically, DOP (ME) enhanced the expression of antioxidant enzymes and autophagy and decreased the levels of pro-inflammatory factors and matrix metalloproteinases in the skin of photoaged mice as compared with DOP solution. CONCLUSIONS In conclusion, DOP was effective in improving skin photoaging, and the DOP multilayer emulsion we designed enhanced the stability and skin absorption of DOP, boosting DOP's protective effect against photoaging.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Yang
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, 610041, China; Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Shuangfa Mao
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, 610041, China; Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine; Animal Research Institute, Sichuan University, Chengdu, 610041, China; Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China; Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China; Tianfu Jincheng Laboratory & Institute of Future Medical Innovation, City of Future Medicine, Chengdu, 641400, China.
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Zhang S, Zhang M, Li W, Ma L, Liu X, Ding Q, Yu W, Yu T, Ding C, Liu W. Research progress of natural plant polysaccharides inhibiting inflammatory signaling pathways and regulating intestinal flora and metabolism to protect inflammatory bowel disease. Int J Biol Macromol 2023; 253:126799. [PMID: 37703965 DOI: 10.1016/j.ijbiomac.2023.126799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Natural plant polysaccharides are macromolecular substances with a wide range of biological activities. They have a wide range of biological activities, especially play an important role in the treatment of inflammatory bowel disease. The molecular weight of polysaccharides, the composition of monosaccharides and the connection of glycosidic bonds will affect the therapeutic effect on inflammatory bowel disease. Traditional Chinese medicine plant polysaccharides and various types of plant polysaccharides reduce the levels of inflammatory cytokines IL-1β, IL-6, IL-8 and IL-17, increase the level of anti-inflammatory factor IL-10, regulate NF-κB signaling pathway, and NLRP3 inflammasome to relieve colitis. At the same time, they can play a protective role by regulating the balance of intestinal flora in mice with colitis and increasing the abundance of probiotics to promote the metabolism of polysaccharide metabolites SCFAs. This review summarizes the research on the treatment of inflammatory bowel disease by many natural plant polysaccharides, and provides a theoretical basis for the later treatment of polysaccharides on inflammatory bowel disease.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Mingxu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lina Ma
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Weimin Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Taojing Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
18
|
Hao Y, Lao S, Liu H, Chen X, Ye G, Wang Z, Liao W. Isolation and characterization of a nephroprotective polysaccharide from Dendrobium chrysotoxum Lindl against LPS-induced acute kidney injury mice. Int J Biol Macromol 2023; 253:126614. [PMID: 37652331 DOI: 10.1016/j.ijbiomac.2023.126614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The structure and bioactivity of a novel polysaccharide from Dendrobium Chrysotoxum Lindl (DCP-1) were investigated. The crude polysaccharides of Dendrobium Chrysotoxum Lindl (DCP) were extracted by hot water extraction, and the protein was removed by enzymatic hydrolysis and Sevage. After purification, the chemical structure of polysaccharides was identified by infrared spectroscopy, methylation analysis and nuclear magnetic resonance spectroscopy. Then, a mouse model of acute kidney injury (AKI) was constructed using lipopolysaccharide (LPS), and pretreated with DCP. Structure characterization demonstrated that the number-average molecular weight and mass average molar mass of DCP-1 were 28.43 kDa and 15.00 kDa, respectively. DCP-1 mainly consisted of mannose (37.8 %) and glucose (55.6 %). The main linkage types of DCP-1 were contained 1,4-Linked Manp and 1,4-Linked Glcp. And DCP-1 was demonstrated to be an O-acetylglucomannan with β-ᴅ-configuration in pyranoid form. Besides, the bioactivity of DCP was further investigated. The results showed that DCP exhibited notable anti-inflammatory activity in LPS-induced AKI mice. After treated with DCP, the creatinine (CREA) and urea nitrogen (BUN) in serum were successfully down-regulated in AKI mice. DCP treatment prevented the characteristic morphological changes of LPS-induced renal tubular injury. The results showed that DCP treatment significantly reduced the concentration of oxidative damage indicators (MDA, SOD) and the expression of inflammatory indices (TNF-α, IL-6, MCP-1, COX-2). In general, the newly extracted polysaccharide DCP showed excellent nephroprotective effect, which enabled it to be an ideal natural medicine for kidney diseases therapy.
Collapse
Affiliation(s)
- Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China
| | - Shenghui Lao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China
| | - Hailin Liu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China
| | - Guangying Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zaihua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, China.
| |
Collapse
|
19
|
Shi Y, Zhou L, Zheng G, Jing Y, Zhang X, Yuan J, Zhang Q, Li H, Huang S, Xie T, Xiong Q. Therapeutic mechanism exploration of polysaccharides from Dendrobium officinale on unilateral ureteral obstruction operation-induced renal fibrosis based on improving oxidative stress injury mediated by AhR/NOX4 pathway. Int J Biol Macromol 2023; 253:126920. [PMID: 37717864 DOI: 10.1016/j.ijbiomac.2023.126920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Dendrobium officinale polysaccharides (DOP) has been reported to possess remarkable effects on improving renal function, oxidative stress damage and fibrotic diseases. However, the role and mechanism of DOP in preventing and treating renal fibrosis remain unclear. The purpose of this paper was to explore the therapeutic effects and underlying mechanisms of DOP on renal fibrosis. Firstly, renal fibrosis model was induced by unilateral ureteral obstruction operation (UUO) in male BALB/c mice. Subsequently, the anti-renal fibrosis effect of DOP was evaluated. It turned out that DOP significantly attenuated UUO induced renal fibrosis. The beneficial effects of DOP on renal fibrosis were concretely manifested in the relief of clinical symptoms, improvement of renal function, reduction of extracellular matrix collagen aggregation, attenuation of structural damage and inflammation, and decrement of profibrotic factors secretion. Meanwhile, DOP could also alleviate oxidative stress injury and inhibit the AhR/NOX4 pathway proteins expression. Furthermore, multivariate statistical analysis, AhR interference and overexpression experiments showed that the effect of DOP on alleviating renal fibrosis was closely related to the improvement of oxidative stress injury mediated by the AhR/NOX4 pathway. Overall, the data in the present paper indicated that DOP could alleviate renal fibrosis through improving AhR/NOX4 mediated oxidative stress injury.
Collapse
Affiliation(s)
- Yingying Shi
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Li Zhou
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, PR China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Xu Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Qianghua Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China
| | - Hailun Li
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, PR China.
| | - Song Huang
- School of Pharmaceutical Science, and Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, PR China.
| |
Collapse
|
20
|
Ye D, Zhao Q, Ding D, Ma BL. Preclinical pharmacokinetics-related pharmacological effects of orally administered polysaccharides from traditional Chinese medicines: A review. Int J Biol Macromol 2023; 252:126484. [PMID: 37625759 DOI: 10.1016/j.ijbiomac.2023.126484] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Polysaccharides (TCMPs) derived from traditional Chinese medicines (TCMs), such as Ganoderma lucidum, Astragalus membranaceus, Lycium barbarum, and Panax ginseng, are considered to be the main active constituents in TCMs. However, the significant pharmacological effects of orally administered TCMPs do not align well with their poor pharmacokinetics. This article aims to review the literature published mainly from 2010 to 2022, focusing on the relationship between pharmacokinetics and pharmacological effects. It has been found that unabsorbed TCMPs can exert local pharmacological effects in the gut, including anti-inflammation, anti-oxidation, regulation of intestinal flora, modulation of intestinal immunity, and maintenance of intestinal barrier integrity. Unabsorbed TCMPs can also produce systemic pharmacological effects, such as anti-tumor activity and immune system modulation, by regulating intestinal flora and immunity. Conversely, some TCMPs can be absorbed and distributed to various tissues, especially the liver, where they exhibit tissue-protecting effects against inflammation and oxidative stress-induced damage and improve glucose and lipid metabolism. In future studies, it is important to improve quality control and experimental design. Furthermore, research on enhancing the oral bioavailability of TCMPs, exploring the activity of TCMP metabolites, investigating pharmacokinetic interactions between TCMPs and oral drugs, and developing oral drug delivery systems using TCMPs holds great significance.
Collapse
Affiliation(s)
- Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhao
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai 200070, China
| | - Ding Ding
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
21
|
Wu W, Zhao Z, Zhao Z, Zhang D, Zhang Q, Zhang J, Fang Z, Bai Y, Guo X. Structure, Health Benefits, Mechanisms, and Gut Microbiota of Dendrobium officinale Polysaccharides: A Review. Nutrients 2023; 15:4901. [PMID: 38068759 PMCID: PMC10708504 DOI: 10.3390/nu15234901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium officinale polysaccharides (DOPs) are important active polysaccharides found in Dendrobium officinale, which is commonly used as a conventional food or herbal medicine and is well known in China. DOPs can influence the composition of the gut microbiota and the degradation capacity of these symbiotic bacteria, which in turn may determine the efficacy of dietary interventions. However, the necessary analysis of the relationship between DOPs and the gut microbiota is lacking. In this review, we summarize the extraction, structure, health benefits, and related mechanisms of DOPs, construct the DOPs-host axis, and propose that DOPs are potential prebiotics, mainly composed of 1,4-β-D-mannose, 1,4-β-D-glucose, and O-acetate groups, which induce an increase in the abundance of gut microbiota such as Lactobacillus, Bifidobacterium, Akkermansia, Bacteroides, and Prevotella. In addition, we found that when exposed to DOPs with different structural properties, the gut microbiota may exhibit different diversity and composition and provide health benefits, such as metabolism regulations, inflammation modulation, immunity moderation, and cancer intervention. This may contribute to facilitating the development of functional foods and health products to improve human health.
Collapse
Affiliation(s)
- Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Zhaoer Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Jiayu Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhengyi Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| |
Collapse
|
22
|
Piao XM, Feng MF, Zhao WP, Wu ZH, Zhang WW, Hou HM, Wang JH, Wang LB, Huang J, Zhang Y. Dendrocandin U from Dendrobium officinale Kimura et Migo Inhibits M1 Polarization in Alveolar Macrophage by Suppressing NF-κB Signaling Pathway. Chem Biodivers 2023; 20:e202300999. [PMID: 37933979 DOI: 10.1002/cbdv.202300999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Dendrobium officinale Kimura et Migo is a valuable and homologous medicine and food traditional Chinese medicine. Currently there are few studies on the anti-inflammatory activity of lipophilic components. The aim of this study was to explore the anti-inflammatory effect and mechanism of the lipophilic compounds in Dendrobium officinale. Six compounds were isolated and identified, including three bibenzyl compounds, dendrocandin U, dendronbibisline B, erianin, and three lignans, (-)-syringaresinol, (+)-syringaresinol-O-β-D-glucopyranoside, 5-methoxy-(+)-isolariciresinol. Among them, dendronbibisline B and 5-methoxy-(+)-isolariciresinol were isolated from Dendrobium officinale for the first time. Besides, we found dendrocandin U, dendronbibisline B and (-)-syringaresinol exhibited the anti-inflammation to inhibit nitric oxide secretion induced by lipopolysaccharide (LPS)/interferon (IFN-γ) in MH-S cells. Furthermore, dendrocandin U could inhibit the expression of tumor necrosis factor-α (TNF-α), Cluster of Differentiation 86 (CD86), and reduce inflammatory morphological changes of macrophages. Meanwhile, we confirmed that the anti-inflammation mechanism of dendrocandin U was to inhibit M1 polarization by suppressing toll-like receptor 4 (TLR4)/recombinant myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway. In this paper, dendrocandin U with significant anti-inflammatory activity was found from Dendrobium officinale, which could provide a basis for the study of its anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xian-Mei Piao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Ming-Feng Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Wei-Ping Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Zhi-Hang Wu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Wen-Wen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Hui-Min Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Jin-Hui Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Li-Bo Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| |
Collapse
|
23
|
Zhang P, Zhang X, Zhu X, Hua Y. Chemical Constituents, Bioactivities, and Pharmacological Mechanisms of Dendrobium officinale: A Review of the Past Decade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14870-14889. [PMID: 37800982 DOI: 10.1021/acs.jafc.3c04154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dendrobium officinale, a plant in the Orchidaceae family, has been used in traditional Chinese medicine for thousands of years. Sweet and slightly cold in nature, it can invigorate the stomach, promote fluid production, nourish Yin, and dissipate heat. Over the past decade, more than 60 compounds have been derived from D. officinale, including flavonoids, bibenzyl, and phenanthrene. Various studies have explored the underlying pharmacological mechanisms of these compounds, which have shown antitumor, hypoglycemic, hypertensive, gastrointestinal-regulatory, visceral organ protection, antiaging, and neurorestorative effects. This paper presents a systematic review of the structural classification, biological activity, and pharmacological mechanisms of different chemical components obtained from D. officinale over the past decade. This review aims to provide a reference for future study and establish a foundation for clinical applications. Furthermore, this review identifies potential shortcomings in current research as well as potential directions and methodologies in future plant research.
Collapse
Affiliation(s)
- Ping Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingyi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunfen Hua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
24
|
Zou W, Fu Z, Guo X, Yao L, Hong H, Luo Y, Tan Y. Whey Protein Hydrolysate Exerts Anti-Inflammatory Effects to Alleviate Dextran Sodium Sulfate (DSS)-Induced Colitis via Microbiome Restoration. Nutrients 2023; 15:4393. [PMID: 37892468 PMCID: PMC10610201 DOI: 10.3390/nu15204393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Whey protein hydrolysate (WPH) has been shown to have a variety of bioactivities. This study aimed to investigate the preventive effect of WPH on dextran sodium sulfate (DSS)-induced colitis in C57BL/6J mice. The results indicated that WPH intervention for 37 days was effective in delaying the development of colonic inflammation, and high doses of WPH significantly inhibited weight loss (9.16%, n = 8, p < 0.05), protected the colonic mucosal layer, and significantly reduced the levels of inflammatory factors TNF-α, IL-6, and IL-1β in mice with colitis (n = 8, p < 0.05). In addition, WPH intervention was able to up-regulate the short-chain fatty acids secretion and restore the gut microbiome imbalance in mice with colitis. Notably, high-dose WPH intervention increased the relative abundance of norank_f_Muribaculaceae by 1.52-fold and decreased the relative abundance of Romboutsia and Enterobacter by 3.77-fold and 2.45-fold, respectively, compared with the Model group. WPH intervention protected colitis mice mainly by reversing the microbiome imbalance and regulating the major histocompatibility complex (MHC) class I pathway. This study showed that WPH has anti-inflammatory activity and a promising colitis management future.
Collapse
Affiliation(s)
- Wenrong Zou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Zixin Fu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Xiaohong Guo
- Department of Product and Development, Hebei Dongkang Dairy Co., Ltd., Shijiazhuang 052165, China; (X.G.); (L.Y.)
| | - Lei Yao
- Department of Product and Development, Hebei Dongkang Dairy Co., Ltd., Shijiazhuang 052165, China; (X.G.); (L.Y.)
| | - Hui Hong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Yongkang Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| | - Yuqing Tan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.Z.); (Z.F.); (H.H.); (Y.L.)
| |
Collapse
|
25
|
Mu Y, Che B, Tang K, Zhang W, Xu S, Li W, He J, Liu M, Chen P, Zhong S, Li G. Dendrobium officinale polysaccharides improved reproductive oxidative stress injury in male mice treated with cyclophosphamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106431-106441. [PMID: 37728673 DOI: 10.1007/s11356-023-29874-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
Polysaccharides from Dendrobium officinale polysaccharides (DOPs) are the main bioactive components of Dendrobium officinale, which have the functions of antioxidation and immune regulation. However, it is not clear whether DOPs have any effect on the prevention of reproductive disorders induced by oxidative stress. The purpose of this study was to explore the protective effect of DOPs on reproductive oxidative stress injury in male mice and its possible mechanism. In this study, the mouse model of reproductive injury was established by intraperitoneal injection of cyclophosphamide (CTX). The reproductive function was evaluated by relative testicular mass, sperm parameters, and sex hormone levels. The oxidative stress level of male mice with reproductive injury treated with DOPs was analyzed by the levels of 8-hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA), and nitric oxide (NO) in sperm. The expression of follicle-stimulating hormone receptor (FSHR) mRNA, androgen-binding (ABP) mRNA, and c-kit mRNA was detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to explore its mechanism. After CTX administration, the sperm density, sperm motility, normal sperm morphology, and sex hormone levels in mice were significantly lower than those in the control group (P < 0.05). At the same time, the expression of p53 protein was upregulated, and the expression of Bcl-2 protein was downregulated (P < 0.05). In addition, the expression of FSHR and ABP mRNA on Sertoli cells was also significantly inhibited (P < 0.05). DOPs can effectively reduce the oxidative stress injury of testicular tissue. After DOP treatment, the sperm quality and sex-related hormone levels of mice were significantly improved and positively correlated with the dose of DOPs (P < 0.05). Administration of DOPs can reduce the damage caused by oxidative stress by reducing the level of oxidative stress, improving the hormone environment in testes, and regulating the expression of specific genes in Sertoli cells and spermatogenic cells.
Collapse
Affiliation(s)
- Yi Mu
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
- Department of Urology, Guiyang Public Health Clinical Center, Guiyang, 550002, China
| | - Bangwei Che
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Kaifa Tang
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Miao Liu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Peng Chen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Siwen Zhong
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Guangyu Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
26
|
Tang Y, Zhang X, Lin Y, Sun J, Chen S, Wang W, Li J. Insights into the Oxidative Stress Alleviation Potential of Enzymatically Prepared Dendrobium officinale Polysaccharides. Molecules 2023; 28:molecules28073071. [PMID: 37049834 PMCID: PMC10095697 DOI: 10.3390/molecules28073071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
(1) Background: The extraction parameters can dramatically alter the extraction rate and biological activity of polysaccharides. (2) Methods: Here, an enzyme-assisted extraction (EAE) was employed to extract D. officinale polysaccharides (DOPs), and its optimal extraction conditions were established by single-factor and Box-Behnken design (BBD) experiments. Further, on the basis of in vitro antioxidant capacity, the paraquat (PQ)-induced oxidative stress of Caenorhabditis elegans (C. elegans) was chosen as a research model to explore the antioxidant activity of DOPs. (3) Results: The results showed that the extraction yield of DOPs reached 48.66% ± 1.04% under the optimal condition. In vitro experiments had shown that DOPs have considerable ABTS+ radical scavenging capacity (EC50 = 7.27 mg/mL), hydroxyl radical scavenging capacity (EC50 = 1.61 mg/mL), and metal chelating power (EC50 = 8.31 mg/mL). Furthermore, in vivo experiments indicated that DOPs (0.25 mg/mL) significantly prolonged the lifespan, increased antioxidant enzyme activity, and upregulated the expression of daf-16 (>5.6-fold), skn-1 (>5.2-fold), and sir-2.1 (>2.3-fold) of C. elegans. (4) Conclusions: DOPs can be efficiently extracted by EAE and are effective in the reduction of oxidative stress levels in C. elegans.
Collapse
Affiliation(s)
- Yingqi Tang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiong Zhang
- Hangzhou Zaoxianyibu Food Technology Co., Ltd., Hangzhou 310018, China
| | - Yudan Lin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jiehan Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shihao Chen
- Hangzhou Jiuxian Biotechnology Co., Ltd., Hangzhou 311618, China
| | - Weimin Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jia Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
27
|
Zeng FS, Yao YF, Wang LF, Li WJ. Polysaccharides as antioxidants and prooxidants in managing the double-edged sword of reactive oxygen species. Biomed Pharmacother 2023; 159:114221. [PMID: 36634589 DOI: 10.1016/j.biopha.2023.114221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Polysaccharides, a class of naturally occurring carbohydrates, were widely presented in animals, plants, and microorganisms. Recently, health benefits of polysaccharides have attracted much attention due to their unique characteristics in reactive oxygen species (ROS) management. ROS, by-products of aerobic metabolism linked to food consumption, exhibited a dual role in protecting cells and fostering pathogenesis collectively termed double-edged sword. Some interesting studies reported that polysaccharides could behave as prooxidants under certain conditions, besides antioxidant capacities. Potentiation of the bright side of ROS could contribute to the host defense that was vitally important for the polysaccharides acting as biological response modifiers. Correspondingly, disease prevention of polysaccharides linked to the management of ROS production was systematically described and discussed in this review. Furthermore, major challenges and future prospects were presented, aiming to provide new insight into applying polysaccharides as functional food ingredients and medicine.
Collapse
Affiliation(s)
- Fan-Sen Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yu-Fei Yao
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Le-Feng Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
28
|
Nan X, Zhao W, Liu WH, Li Y, Li N, Hong Y, Cui J, Shang X, Feng H, Hung WL, Peng G. Bifidobacterium animalis subsp. lactis BL-99 ameliorates colitis-related lung injury in mice by modulating short-chain fatty acid production and inflammatory monocytes/macrophages. Food Funct 2023; 14:1099-1112. [PMID: 36594489 DOI: 10.1039/d2fo03374g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pulmonary inflammation as one of the extraintestinal manifestations of ulcerative colitis (UC) has attracted extensive attention, and its pathogenesis is closely related to gut dysbiosis. Bifidobacterium animalis subsp. lactis BL-99 (BL-99) can alleviate osteoporosis caused by UC, but less research has been done on other extraintestinal manifestations (EIM) caused by UC. This study aimed to explore the role and potential mechanisms of BL-99 on DSS-induced pulmonary complications in colitis mice. The results showed that BL-99 decreased weight loss, disease activity index score, colonic pathology score, and the production of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6) in colitis mice. BL-99 also alleviated DSS-induced lung pathological damage by suppressing the infiltration of pro-inflammatory cytokines, inflammatory monocytes, and macrophages. Furthermore, 16S rRNA gene sequencing showed lower abundances of several potentially pathogenic bacteria (e.g., Burkholderia, Shigella, and Clostridium perfringens) and enrichment in specific beneficial bacteria (e.g., Adlercreutzia and Bifidobacterium animalis) in colitis mice with BL-99 treatment. Targeted metabolomics suggested that BL-99 intervention promoted the production of intestinal acetate and butyrate. Finally, we observed that the pulmonary expression of primary acetate and butyrate receptors, including FFAR2, FFAR3, and, GPR109a, was up-regulated in BL-99-treated mice, which negatively correlated with inflammatory monocytes and macrophages. Altogether, these results suggest that BL-99 might be utilized as a probiotic intervention to prevent the incidence of colitis-related lung injury owing to its ability to shape the intestinal microbiota and suppress inflammation.
Collapse
Affiliation(s)
- Xinmei Nan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Wen Zhao
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Wei-Hsien Liu
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Yalan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Na Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yanfei Hong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Jiaqi Cui
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Xuekai Shang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Haotian Feng
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Wei-Lian Hung
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Guiying Peng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
29
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Wang B, Lin Y, Zhou M, Fu S, Zhu B, Chen Y, Ding Z, Zhou F. Polysaccharides from Tetrastigma Hemsleyanum Diels et Gilg attenuate LPS-induced acute lung injury by modulating TLR4/COX-2/NF-κB signaling pathway. Biomed Pharmacother 2022; 155:113755. [DOI: 10.1016/j.biopha.2022.113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
31
|
Huang P, Zhang J, Duan W, Jiao J, Leng A, Qu J. Plant polysaccharides with anti-lung injury effects as a potential therapeutic strategy for COVID-19. Front Pharmacol 2022; 13:982893. [DOI: 10.3389/fphar.2022.982893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
When coronavirus disease 2019 (COVID-19) develops into the severe phase, lung injury, acute respiratory distress syndrome, and/or respiratory failure could develop within a few days. As a result of pulmonary tissue injury, pathomorphological changes usually present endothelial dysfunction, inflammatory cell infiltration of the lung interstitium, defective gas exchange, and wall leakage. Consequently, COVID-19 may progress to tremendous lung injury, ongoing lung failure, and death. Exploring the treatment drugs has important implications. Recently, the application of traditional Chinese medicine had better performance in reducing fatalities, relieving symptoms, and curtailing hospitalization. Through constant research and study, plant polysaccharides may emerge as a crucial resource against lung injury with high potency and low side effects. However, the absence of a comprehensive understanding of lung-protective mechanisms impedes further investigation of polysaccharides. In the present article, a comprehensive review of research into plant polysaccharides in the past 5 years was performed. In total, 30 types of polysaccharides from 19 kinds of plants have shown lung-protective effects through the pathological processes of inflammation, oxidative stress, apoptosis, autophagy, epithelial–mesenchymal transition, and immunomodulation by mediating mucin and aquaporins, macrophage, endoplasmic reticulum stress, neutrophil, TGF-β1 pathways, Nrf2 pathway, and other mechanisms. Moreover, the deficiencies of the current studies and the future research direction are also tentatively discussed. This research provides a comprehensive perspective for better understanding the mechanism and development of polysaccharides against lung injury for the treatment of COVID-19.
Collapse
|
32
|
Niu W, Chen Y, Wang L, Li J, Cui Z, Lv J, Yang F, Huo J, Zhang Z, Ju J. The combination of sodium alginate and chlorogenic acid enhances the therapeutic effect on ulcerative colitis by the regulation of inflammation and the intestinal flora. Food Funct 2022; 13:10710-10723. [PMID: 36173280 DOI: 10.1039/d2fo01619b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (CA) and sodium alginate (SA) each have good therapeutic effects on ulcerative colitis (UC) owing to their antioxidant and anti-inflammatory activity. This study aimed to investigate the effects of CA alone and in combination with SA on inflammatory cells and UC mice. In the Lipopolysaccharide (LPS)-induced RAW 264.7 inflammatory cell model, Nitric oxide (NO) and interleukin-6 (IL-6) levels were significantly lower after treatment with CA plus SA than with CA alone. In the DSS-induced UC mouse model, compared with CA alone, CA plus SA showed a better ability to alleviate weight loss, reduce the disease activity index (DAI), improve the colonic mucosa, reduce the expression of inflammatory factors in the serum and myeloperoxidase (MPO) in colonic tissue, increase superoxide dismutase (SOD) levels, protect the intestinal mucosa and regulate the abundance of Actinobacteriota, Lactobacillus, Bifidobacterium, Bacteroides, Subdoligranulum and Streptococcus. Thus, CA plus SA can improve the therapeutic efficacy of CA in UC by regulating inflammatory factors, oxidative stress, and the intestinal flora and by protecting ulcerative wounds. These findings broaden our understanding of the role of the combination of SA and CA in enhancing the effects of CA on UC and provide strategies for prevention and treatment.
Collapse
Affiliation(s)
- Wei Niu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuxuan Chen
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ligui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhao Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiajie Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fuyan Yang
- Anhui University of Chinese Medicine, Hefei, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Wang B, Sun T, Sun L, Li L, Wan H, Ding Z, Ye X. Amygdalin attenuates PM2.5-induced human umbilical vein endothelial cell injury via the TLR4/NF-κB and Bcl-2/Bax signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1476-1485. [PMID: 36178164 PMCID: PMC9828314 DOI: 10.3724/abbs.2022136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
Mounting evidence supports that long-term exposure to fine particle pollutants (PM2.5) is closely implicated in cardiovascular diseases, especially atherosclerosis. Amygdalin is reported to attenuate external stimuli-induced cardiovascular diseases. However, the underlying mechanisms are still not understood. In this study, we aim to explore the protective effects of amygdalin on PM2.5-induced human umbilical vein endothelial cell (HUVEC) injury and unravel the specific mechanisms by MTT, DCFH-DA, biochemical, immunofluorescence, ELISA, RT-qPCR, flow cytometry, TUNEL and western blot analysis. The results reveal that amygdalin reverses PM2.5-induced cytotoxicity and attenuates intracellular ROS production. Moreover, amygdalin increases the levels of SOD and GSH and alleviates the MDA content. Additionally, amygdalin causes a decline of IL-6, IL-1β, TNF-α and COX-2 levels. Moreover, amygdalin inhibits NF-κB p50 and TLR4 protein expressions and NF-κB p65 nuclear translocation. Concomitantly, a decline of phospho-NF-κB p65/NF-κB p65 and phospho-IκB-α/IκB-α is detected. Meanwhile, amygdalin pretreatment reduces HUVEC apoptosis. In addition, amygdalin triggers an upregulation of Bcl-2 and a downregulation of Bax after stimulation with PM2.5. Collectively, these results suggest that amygdalin suppresses PM2.5-induced HUVEC injury by regulating the TLR4/NF-κB and Bcl-2/Bax signaling pathways, indicating that amygdalin may be a novel target for atherosclerosis treatments.
Collapse
Affiliation(s)
- Bixu Wang
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Tong Sun
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Ling Sun
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Lan Li
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | - Haitong Wan
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | - Zhishan Ding
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Xiaoqing Ye
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| |
Collapse
|
34
|
Xu X, Zhang C, Wang N, Xu Y, Tang G, Xu L, Feng Y. Bioactivities and Mechanism of Actions of Dendrobium officinale: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6293355. [PMID: 36160715 PMCID: PMC9507758 DOI: 10.1155/2022/6293355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Dendrobium officinale has a long history of being consumed as a functional food and medicinal herb for preventing and managing diseases. The phytochemical studies revealed that Dendrobium officinale contained abundant bioactive compounds, such as bibenzyls, polysaccharides, flavonoids, and alkaloids. The experimental studies showed that Dendrobium officinale and its bioactive compounds exerted multiple biological properties like antioxidant, anti-inflammatory, and immune-regulatory activities and showed various health benefits like anticancer, antidiabetes, cardiovascular protective, gastrointestinal modulatory, hepatoprotective, lung protective, and neuroprotective effects. In this review, we summarize the phytochemical studies, bioactivities, and the mechanism of actions of Dendrobium officinale, and the safety and current challenges are also discussed, which might provide new perspectives for its development of drug and functional food as well as clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Lin Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
35
|
Jiang W, Ruan W, Wang Z. Dendrobium officinale polysaccharide inhibits vascular calcification via anti-inflammatory and anti-apoptotic effects in chronic kidney disease. FASEB J 2022; 36:e22504. [PMID: 35980507 DOI: 10.1096/fj.202200353rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022]
Abstract
Vascular calcification is very common in patients with chronic kidney disease (CKD), but so far, there is no effective treatment. Dendrobium officinale polysaccharide (DOP), a natural component of Chinese herbal medicine, has been shown to exert anti-inflammatory and anti-apoptotic activity. Inflammation and apoptosis play an essential role in the progression of vascular calcification. However, the exact role and molecular mechanisms of DOP in vascular calcification remain unclear. In this study, we investigated the effects of DOP on vascular calcification using vascular smooth muscle cells (VSMCs), arterial rings, and CKD rats. Alizarin red staining and gene expression analysis revealed that DOP inhibited calcification and osteogenic differentiation of rat VSMCs in a dose-dependent manner. Similarly, ex vivo studies revealed that DOP inhibited the calcification of rat arterial rings. Furthermore, the administration of DOP alleviated vascular calcification in CKD rats. Moreover, DOP treatment suppressed VSMC inflammation and apoptosis. Finally, DOP treatment upregulated mRNA and protein levels of heme oxygenase-1 (HMOX-1); both pharmacological inhibition of HMOX-1 by the HMOX-1 inhibitor zinc protoporphyrin-9ZnPP9 and knockdown of HMOX-1 by siRNA markedly abrogated the suppression of inflammation and osteogenic differentiation of VSMCs by DOP. Collectively, these results suggest that DOP alleviates vascular calcification in CKD by suppressing apoptosis and inflammation via HMOX-1 activation. These results may provide a promising treatment for vascular calcification in CKD.
Collapse
Affiliation(s)
| | - Wenfeng Ruan
- Department of Orthopedics, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Zhengqiang Wang
- Department of Orthopedics, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| |
Collapse
|
36
|
Extraction, Structure and Immunoregulatory Activity of Low Molecular Weight Polysaccharide from Dendrobium officinale. Polymers (Basel) 2022; 14:polym14142899. [PMID: 35890675 PMCID: PMC9315851 DOI: 10.3390/polym14142899] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
The ethanol precipitation method has been widely-used for Dendrobium officinale polysaccharides preparation. However, the alcohol-soluble fractions have always been ignored, which causes significant wastes of resources and energies. In this study, the extraction, physicochemical properties, and immune regulation activity of an edible D. officinale polysaccharide (DOPs) isolated from the supernatant after 75% ethanol precipitation were systematically investigated. The structural characteristics determination results showed that DOPs was mainly composed of glucose and mannose at a molar ratio of 1.00:5.78 with an average molecular weight of 4.56 × 103 Da, which was made up of α-(1,3)-Glcp as the main skeleton, and the α-(1,4)-Glcp and β-(1,4)-Manp as the branches. Subsequently, the cyclophosphamide (CTX)-induced immunosuppressive mice model was established, and the results demonstrated that DOPs could dose-dependently protect the immune organs against CTX damage, improve the immune cells activities, and promote the immune-related cytokines (IL-2, IFN-γ and TNF-α) secretions. Furthermore, DOPs treatment also effectively enhanced the antioxidant enzymes levels (SOD, GSH-Px) in sera and livers, therefore weakening the oxidative damage of CTX-treated mice. Considering these above data, DOPs presented great potential to be explored as a natural antioxidant and supplement for functional foods.
Collapse
|
37
|
Wang J, Luo L, Zhao X, Xue X, Liao L, Deng Y, Zhou M, Peng C, Li Y. Forsythiae Fructuse extracts alleviates LPS-induced acute lung injury in mice by regulating PPAR-γ/RXR-α in lungs and colons. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115322. [PMID: 35483561 DOI: 10.1016/j.jep.2022.115322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae Fructuse (FF), the dried fruit of Forsythia suspensa (Thunb.) Vahl, is used as a traditional Chinese medicine that has been reported to exert good anti-inflammatory effects in the treatment of many lung diseases. AIM OF THE STUDY The purpose of this study was to investigate the anti-inflammatory mechanism of FF in the treatment of acute lung injury (ALI) based on gut-lung axis. MATERIALS AND METHODS ALI model was established by the intratracheal instillation of 5 mg/kg LPS in ICR mice. Mice were administered intragastrically with dexamethasone (DEX), and low-dose, medium-dose and high-dose of FF extracts (LFF, MFF and HFF) in addition to the mice of control (CON) and model (MOD) groups. Pathological observation and inflammation scoring of lung tissues were based on HE staining. Limulus lysate assay was used to detect endotoxin levels in serum. Western blot and Real-time quantitative PCR were respectively applied to detect the protein and mRNA expressions in both lung and colon tissues. RESULTS Lung pathological injury, inflammatory score and inflammatory genes (IL-6, IL-1β, TNF-α) could be effectively suppressed by FF in LPS-induced ALI mice. FF also increased the proteins of epithelial markers (E-cadherin, ZO-1 and Claudin-1) in lung and colon tissues, and decreased colonic inflammatory genes for protecting the epithelial barriers of lung and colon. The protein expression of TLR4/MAPK/NF-κB inflammatory signaling pathway in lung and colon was significantly inhibited by FF via the regulation of PPAR-γ, a nuclear hormone receptor that forms the heterodimer with RXR-α to inhibit inflammatory gene transcription. More specifically, FF promoted the upregulation of protein, phosphorylated proteins and genes of PPAR-γ/RXR-α in lungs, while inhibited the protein overexpression and phosphorylation of PPAR-γ/RXR-α in colons. CONCLUSIONS FF exhibited anti-inflammatory effects and protected the epithelial barriers in lungs and colons by regulating PPAR-γ/RXR-α in the treatment of LPS-induced ALI.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
38
|
Yuan S, Li Y, Li J, Xue JC, Wang Q, Hou XT, Meng H, Nan JX, Zhang QG. Traditional Chinese Medicine and Natural Products: Potential Approaches for Inflammatory Bowel Disease. Front Pharmacol 2022; 13:892790. [PMID: 35873579 PMCID: PMC9301246 DOI: 10.3389/fphar.2022.892790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| |
Collapse
|
39
|
Zhang QP, Cheng J, Liu Q, Xu GH, Li CF, Yi LT. Dendrobium officinale polysaccharides alleviate depression-like symptoms via regulating gut microbiota-neuroinflammation in perimenopausal mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
40
|
Niu W, Dong Y, Fu Z, Lv J, Wang L, Zhang Z, Huo J, Ju J. Effects of molecular weight of chitosan on anti-inflammatory activity and modulation of intestinal microflora in an ulcerative colitis model. Int J Biol Macromol 2021; 193:1927-1936. [PMID: 34748786 DOI: 10.1016/j.ijbiomac.2021.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
This study investigated the therapeutic effects and mechanisms of chitosans (CSs) with different molecular weights on ulcerative colitis (UC). Three size classes of CSs (Mw ≤ 3, 50, and 200 kDa) were used in this study. The effect of large CSs (Mw ≤ 200 kDa) on UC was the best, followed by that of medium CSs (Mw ≤ 50 kDa), and that of small CSs (Mw ≤ 3 kDa) was the least in the LPS-induced Raw 264.7 cell model and DSS-induced UC mice model. The therapeutic mechanisms of three CSs are related to anti-oxidation, anti-inflammation, and regulation of immunoglobulin and intestinal flora by attenuating body weight loss, decreasing the disease activity index (DAI) and MPO activity, suppressing proinflammatory cytokines and IgG levels, down-regulating the level of oxidative stress, increasing anti-inflammatory cytokines, SOD activity and Prevotellaceae_UCG-001 levels, and reducing the abundance of Proteobacteria, Actinobacteria, and Escherichia-Shigella. In general, the molecular weight of CSs influences their efficacy against UC. CSs with an optimal molecular weight demonstrate good development prospects for ameliorating UC.
Collapse
Affiliation(s)
- Wei Niu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuelin Dong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ziwei Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiajie Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ligui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|