1
|
Zhang Y, Ma D, Zhang X, Chen W, Wang X, Sun R, Li K. miR-128-3p Reduces Proliferation and Immune Escape in Acute Myeloid Leukemia Through Targeted Regulation of ZEB1. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05255-8. [PMID: 40381097 DOI: 10.1007/s12010-025-05255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
microRNAs have received wide attention as potential therapeutic targets. This study explored the action of miR-128-3p in acute myeloid leukemia (AML). miR-128-3p expression in AML was determined by quantitative PCR method. MTT proliferation assay and immunoblot assay were employed to detect proteins related to proliferation and apoptosis in THP-1 cells overexpressing miR-128-3p. RNA immunoprecipitation and dual luciferase reporting system were utilized to verify downstream targets of miR-128-3p. Flow cytometry was conducted to analyze the apoptosis rate and immune escape of THP-1 cells in the T-cell co-culture system. miR-128-3p was lowly expressed in AML patients (reduced by 41.6%). Overexpression of miR-128-3p inhibited THP-1 cell proliferation and immune escape, and stimulated apoptosis. ZEB1 was a downstream target of miR-128-3p, and up-regulation of miR-128-3p inhibited ZEB1 mRNA and protein expression (respectively reduced by 65.8% and 42.0%). Upregulating ZEB1 reversed the inhibitory effect of upregulating miR-128-3p on THP-1 cell proliferation and immune escape. Upregulating ZEB1 promoted PD-L1 protein expression (increased by 0.75-fold). Blocking PD-L1 reversed the promotion of THP-1 cell proliferation and immune escape by upregulating ZEB1. The miR-128-3p/ZEB1/PD-L1 axis is involved in regulating the proliferation and immune escape of AML cells, providing new insights into the molecular mechanism of miR-128-3p in AML and, more importantly, a new target for immunotherapy of AML.
Collapse
Affiliation(s)
- YanBin Zhang
- Department of Hematology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing City, 100730, China
| | - DanDong Ma
- Department of Inspection Division, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, 441000, Hubei Province, China
| | - XiaoJuan Zhang
- Department of Hematology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing City, 100730, China
| | - WenKun Chen
- Department of Hematology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing City, 100730, China
| | - XueJiao Wang
- Department of Hematology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing City, 100730, China
| | - Rui Sun
- Department of Hematology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing City, 100730, China
| | - KuiXing Li
- Department of Hematology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing City, 100730, China.
| |
Collapse
|
2
|
Maurya N, Meena A, Luqman S. Role of microRNAs in lung oncogenesis: Diagnostic implications, resistance mechanisms, and therapeutic strategies. Int J Biol Macromol 2025:144261. [PMID: 40381781 DOI: 10.1016/j.ijbiomac.2025.144261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 04/16/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Lung cancer continues to pose a significant global health concern, presenting a formidable challenge on a worldwide scale, necessitating a deeper understanding of molecular mechanisms underlying its pathogenesis and treatment responses. microRNA (miRNA) modulation in the context of lung cancer therapeutics aims to unravel the complexities of miRNA-mediated regulatory networks. This comprehensive review elucidates microRNA's diverse roles in lung cancer, encompassing their involvement in key signaling pathways, cellular processes, the regulation of oncogenic or tumor-suppressive targets, and drug sensitivity. Moreover, this review critically examines the potential of miRNAs as diagnostic and prognostic biomarkers and their implications in therapeutic interventions for lung cancer. microRNAs are effective in making lung cancer therapy more efficient. They can make tumor cells more responsive to chemotherapy, radiation, and targeted therapies. microRNAs can target the drug efflux mechanism, increasing the effectiveness of chemotherapy agents and decreasing resistance. Furthermore, microRNAs play a crucial role in developing and inhibiting the resistance mechanisms against conventional treatments; improving the dysregulated expression of microRNAs enhances the therapeutic efficacy of existing therapies. By compiling knowledge on miRNA-mediated processes related to lung cancer, this review offers a comprehensive resource for researchers to understand and address the complexities of oncogenesis, diagnostics, resistance mechanisms, and therapeutic strategies.
Collapse
Affiliation(s)
- Nidhi Maurya
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India
| | - Abha Meena
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India.
| |
Collapse
|
3
|
Xie Y, Wang X, Wang W, Pu N, Liu L. Epithelial-mesenchymal transition orchestrates tumor microenvironment: current perceptions and challenges. J Transl Med 2025; 23:386. [PMID: 40176117 PMCID: PMC11963649 DOI: 10.1186/s12967-025-06422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical process in cancer progression, facilitating tumor cells to develop invasive traits and augmenting their migratory capabilities. EMT is primed by tumor microenvironment (TME)-derived signals, whereupon cancer cells undergoing EMT in turn remodel the TME, thereby modulating tumor progression and therapeutic response. This review discusses the mechanisms by which EMT coordinates TME dynamics, including secretion of soluble factors, direct cell contact, release of exosomes and enzymes, as well as metabolic reprogramming. Recent evidence also indicates that cells undergoing EMT may differentiate into cancer-associated fibroblasts, thereby establishing themselves as functional constituents of the TME. Elucidating the relationship between EMT and the TME offers novel perspectives for therapeutic strategies to enhance cancer treatment efficacy. Although EMT-directed therapies present significant therapeutic potential, the current lack of effective targeting approaches-attributable to EMT complexity and its microenvironmental context dependency-underscores the necessity for mechanistic investigations and translational clinical validation.
Collapse
Affiliation(s)
- Yuqi Xie
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Hu G, Cai P, Li J, Yu L, Zhao B, Chen G. Serum exosomal miR-454-3p contributes to malignant progression of lung cancer by inhibiting HHEX. Mol Cell Probes 2025; 80:102019. [PMID: 39929349 DOI: 10.1016/j.mcp.2025.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Lung cancer is a common cancer. Exosomes are emerging mediators of intercellular communication, and miRNAs serve a crucial position in cancer progression. This project intends to discover whether exosomal miR-454-3p affects tumor progression and its underlying mechanisms. METHODS Exosomes were isolated utilizing ultracentrifugation. The exosomal biomarkers level was monitored by western blot (WB). The miR-454-3p levels were assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and HHEX expression were detected by qRT-PCR and WB. Cell growth and metastasis were detected through CCK-8, colony formation assay and transwell. Meanwhile, the dual luciferase reporter system and immunoprecipitation (RIP) assay was applied to clarify the interactions between miR-454-3p and HHEX. RESULTS We successfully isolated serum exosomes from NSCLC patients. Then, our team discovered that miR-454-3p was elevated in serum-derived exosomes from NSCLC patients. Functional analysis disclosed that exosomes accelerated NSCLC cell proliferation and metastasis. Silencing of exosomal miR-454-3p hindered NSCLC cell proliferation and metastasis. Subsequently, the starbase database declared that miR-454-3p was interacted with HHEX. HHEX overexpression reversed the promotion of NSCLC cell proliferation and metastasis by exosomal miR-454-3p. CONCLUSIONS Exosomal miR-454-3p enhanced the progression of NSCLC cells through HHEX. miR-454-3p may be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Gangqin Hu
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Peng Cai
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Jingjing Li
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Liuyang Yu
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Bolin Zhao
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Guiming Chen
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China.
| |
Collapse
|
5
|
Hsu CY, Altalbawy FMA, Oghenemaro EF, Uthirapathy S, Chandra M, Nathiya D, Kaur P, Ravi Kumar M, Kadhim AJ, Kariem M. Exosomal lncRNAs in the Tumor Angiogenesis: As Therapeutic Targets in Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202400940. [PMID: 40165644 DOI: 10.1002/ardp.202400940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Exosomes, as mediators of intercellular communication, can be released from different types of cells and regulate the function of the target cell by transferring cargo, such as proteins, DNA, and RNA. Recent investigations have revealed a preponderance of long noncoding RNAs (lncRNAs), a subclass of noncoding RNAs, within exosomes, where they exhibit notable stability and are implicated in the development and progression of neoplastic processes, such as tumor angiogenesis. Angiogenesis, as a hallmark of cancer, provides diffusible nutrients and oxygen to the distant cells and guarantees tumorigenesis and metastasis. Exosomal lncRNAs, including MALAT1, OIP5-AS1, PART1, SNHG family, FAM225A, ATB, RAMP2-AS1, UCA1, TRPM2-AS, FGD5-AS1, and LINC0016, could modulate tumor angiogenesis by activating signaling cascades and mediators within the target cells, such as microRNAs (miRNAs). Regulation of tumor angiogenesis through modulation of exosomal lncRNAs could be a reliable strategy for cancer therapy. In this review, we discuss the characteristics and biogenesis of exosomes and lncRNAs and how exosomal lncRNAs are involved in various processes of tumorigenesis. Our primary focus is on exosomal lncRNAs, their impact on tumor angiogenesis, and their potential as novel diagnostic markers and therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, Egypt
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Dastmalchi N, Alipour MR, Safaralizadeh R, Hajiasgharzadeh K. An Updated Review on Dysregulated lncRNAs and their Contribution to the Various Molecular Types of Lung Carcinoma. Anticancer Agents Med Chem 2025; 25:490-498. [PMID: 39754779 DOI: 10.2174/0118715206336608241104065557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 01/06/2025]
Abstract
Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates. This reveals a need to recognize novel techniques to treat malignancy and decrease the burden of lung cancer. Long noncoding RNAs (lncRNAs) manage vital cellular and biochemical functions. lncRNAs play crucial roles in transcriptional and translational processes and signaling cascades. Recently, lncRNAs have been reported to be associated with malignancy where their expression is deregulated, leading to abnormal cellular activities and signaling pathways. In various malignancies, including lung cancer, lncRNA deregulation disrupts normal cellular function, promoting tumorigenesis and influencing patient outcomes and treatment responses. Studies have shown that lncRNAs can act as both oncogenes and tumor suppressors, depending on the lung cancer subtype, specifically in Non-small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC). This dual role of lncRNAs as critical biomarkers might provide insights into lung cancer development and progression. lncRNAs have been discussed as key biomarkers in lung cancer. A comprehensive understanding of the biological activities of lncRNAs in NSCLC and SCLC may improve prognosis, diagnosis, and therapeutic methods. Researchers are increasingly interested in lncRNAs as potential diagnostic biomarkers and therapeutic targets in cancer treatment. As researchers continue to explore lncRNAs, their pivotal roles in lung cancer become increasingly evident. This review highlights the function of lncRNAs in lung carcinogenesis and discusses their molecular mechanisms of function.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
7
|
Abbaszadeh M, Naseri B, Masoumi J, Baghbani E, Baradaran B, Sadeghi MR. Thalidomide augments maturation and T helper 1-inducing capacity of monocyte-derived dendritic cells in vitro. BIOIMPACTS : BI 2024; 15:30588. [PMID: 40256218 PMCID: PMC12008494 DOI: 10.34172/bi.30588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction Dendritic cells (DCs) possess specialized abilities to present antigens and stimulate T cells, making them essential in triggering adaptive immune responses. Thalidomide and its derivatives are classified as a group of medications that possess immunomodulatory properties. Numerous studies have demonstrated the contentious impact of these drugs on DCs. Therefore, the objective of the present study was to assess the influence of Thalidomide therapy on the maturation and stimulation of monocyte-derived DCs, and subsequently examine the consequences of these treated DCs on the immune responses of autologous T cells. Methods The immature DCs derived from monocytes were subjected to exposure to Thalidomide and Lipopolysaccharides (LPS) on the fifth day of differentiation, followed by a 24-hour incubation period. On the sixth day, the phenotypic features of the DCs in both the control and treatment groups were assessed using flow cytometry. Subsequently, the gene expression in both the DCs and autologous T cells co-cultured with the DCs was evaluated using the real-time PCR method. Results Thalidomide-treated DCs exhibited a significant augmentation in the expression of maturation and stimulatory surface markers CD11c, HLA-DR, and CD86 (P ≤ 0.01), as well as gene expression of TNF-α and IL-12 (P ≤ 0.01) when compared to the control group. Furthermore, co-culture of Thalidomide-treated DCs with T cells increased T-bet and IFN-γ (P ≤ 0.01) expression, while diminished FOXP3 and TGF-β (P ≤ 0.01) expression compared to T cells co-cultured with untreated DCs. Conclusion Our findings indicate that in vitro Thalidomide treatment shifts DCs towards an immunogenic state and elevates their T helper 1 inducing capacity, which may be efficient in immunotherapy of various cancers.
Collapse
Affiliation(s)
- Mohsen Abbaszadeh
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Li N, Fu J, Wang Q, Rao Q, Yao L, Shao X, Zhang P. MiR-454-3p regulates high glucose-induced mesothelial-mesenchymal transition and glycolysis in peritoneal mesothelial cells by targeting STAT3. Ren Fail 2024; 46:2394635. [PMID: 39192609 PMCID: PMC11360635 DOI: 10.1080/0886022x.2024.2394635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The quality of life of patients receiving long-term peritoneal dialysis (PD) is significantly impacted by the onset of peritoneal fibrosis (PF), and one of the pathological changes is mesothelial-mesenchymal transition (MMT). In this study, we investigated the potential roles of miR-454-3p and signal transducer and activator of transcription 3 (STAT3) in the progression of peritoneal MMT and the underlying mechanisms. METHODS Peritoneums were collected to detect morphology via hematoxylin-eosin staining and differentially expressed miRNAs were detected via RT-qPCR. PD effluent-derived cell populations in the peritoneal cavity were isolated from the effluents of 20 PD patients to determine miR-454-3p, STAT3, and MMT markers via Western blotting and RT-qPCR. The relationship between miR-454-3p and STAT3 was examined via a dual-luciferase reporter assay. Western blotting and RT-qPCR were utilized to evaluate the expression of STAT3, MMT markers, and glycolytic enzymes. Immunofluorescence staining revealed the localization and expression of MMT markers and STAT3. RESULTS MiR-454-3p was downregulated in the peritoneums and PD effluent-derived cell populations of long-term PD patients. High glucose (HG) treatment promoted HMrSV5 cell MMT and glycolysis. MiR-454-3p overexpression alleviated HG-induced MMT and suppressed the expression of STAT3 and glycolytic enzymes. In contrast, the miR-454-3p inhibitor exacerbated HG-induced MMT and promoted the expression of glycolytic enzymes and STAT3. Moreover, STAT3 was the target of miR-454-3p. CONCLUSIONS This study demonstrated the protective role of miR-454-3p in HG-induced MMT and glycolysis in HMrSv5 cells, suggesting that miR-454-3p may prevent MMT by suppressing glycolytic enzymes via the STAT3/PFKFB3 pathway in the HG environment.
Collapse
Affiliation(s)
- Nan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiao Fu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiufeng Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qingqing Rao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Yao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoqi Shao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Pei Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Hao M, Li T, Xiao L, Liu Y. METTL3-induced FGD5-AS1 contributes to the tumorigenesis and PD-1/PD-L1 checkpoint to enhance the resistance to paclitaxel of endometrial carcinoma. J Cell Mol Med 2024; 28:e17971. [PMID: 37755125 PMCID: PMC10902565 DOI: 10.1111/jcmm.17971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Endometrial cancer (EC), a widely occurring cancer in the uterus, is among the top four most frequent malignancies in women. To improve approaches for combating this disease, it is essential to gain a more comprehensive comprehension of the intricate causes of EC. Accumulating evidence highlight the essential role of long non-coding RNA (LncRNA) in EC progression, while its biological and mechanical function has not been fully revealed. In this study, a LncRNA microarray analysis was performed using four pairs of paclitaxel (PTX) resistant EC cells, FGD5-AS1 was identified as a significantly upregulated gene. Biologically, it was found that FGD5-AS1 enhances chemoresistance of EC cells to PTX treatment and blocking immune escape via PD-1/PD-L1 checkpoint. Furthermore, FGD5-AS1 exerted an oncogene role in EC cells via promoting cell proliferation and migration. Mechanically, METTL3 could upregulate FGD5-AS1 expression via N6-methyladenosine (m6A) modification. The biological roles of METTL3 were exerted via modulating FGD5-AS1 expression in EC. Collectively, our research has shed light on the involvement of the METTL3/FGD5-AS1 axis in the development of PTX resistance in EC. This finding offers a new avenue for further exploration of the underlying mechanisms of chemoresistance in EC and provides valuable insights for the development of potential therapeutic targets in the treatment of EC.
Collapse
Affiliation(s)
- Min Hao
- Department of Obstetrics and GynecologyBeijing Friendship Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Tianjie Li
- Department of Obstetrics and GynecologyBeijing Friendship Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Ling Xiao
- Department of Obstetrics and GynecologyBeijing Friendship Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Yun Liu
- Department of Obstetrics and GynecologyBeijing Friendship Hospital Affiliated to Capital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Zhang S, Xia Y, Chen W, Dong H, Cui B, Liu C, Liu Z, Wang F, Du J. Regulation and Therapeutic Application of Long non-Coding RNA in Tumor Angiogenesis. Technol Cancer Res Treat 2024; 23:15330338241273239. [PMID: 39110070 PMCID: PMC11307360 DOI: 10.1177/15330338241273239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor growth and metastasis rely on angiogenesis. In recent years, long non-coding RNAs have been shown to play an important role in regulating tumor angiogenesis. Here, we review the multidimensional modes and relevant molecular mechanisms of long non-coding RNAs in regulating tumor angiogenesis. In addition, we summarize new strategies for tumor anti-angiogenesis therapies by targeting long non-coding RNAs. The aim of this study is to provide new diagnostic targets and treatment strategies for anti-angiogenic tumor therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Yunxiu Xia
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Zhiqiang Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Medical Integration and Practice Center, Shandong University, Jinan, P.R. China
- Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| |
Collapse
|
12
|
Wei J, Zhu X, Sun AY, Yan X, Meng X, Ge S. Long non-coding RNA FGD5 antisense RNA 1 targets Baculovirus inhibitor 5 via microRNA-497-5p to alleviate calcific aortic valve disease. Clin Hemorheol Microcirc 2024; 86:285-302. [PMID: 37355887 DOI: 10.3233/ch-221692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Calcific aortic valve disease (CAVD) is featured by thickening and calcification of the aortic valve. Osteoblast differentiation is a crucial step in valve calcification. Long non-coding RNAs (LncRNAs) participate in the osteogenic differentiation of mesenchymal cells. However, the character of lncRNA FGD5 antisense RNA 1 (FGD5-AS1) in CAVD is uncertain. After collection of human aortic valve tissue samples, detection of FGD5-AS1, microRNA (miR)-497-5p and Baculovirus inhibitor 5 (BIRC5) was conducted. Valve mesenchymal cells were isolated from CAVD patients and induced to differentiate to osteoblasts, and transfected with FGD5-AS1, miR-497-5p and BIRC5 plasmids. Detection of the alkaline phosphatase activity was after osteogenic induction of human aortic valve interstitial cells (hAVICs); Detection of the degree of calcium nodules and osteoblast differentiation markers (RUNX2 and OPN) was conducted. After establishment of a mouse model of CAVD, detection of the thickness of aortic valve leaflets, and the degree of calcification of the valve leaflets, and evaluation of echocardiographic parameters were implemented. Experimental data manifested in CAVD patients, lncRNAFGD5-AS1 and BIRC5 were reduced, but miR-497-5p was elevated; Enhancing lncRNA FGD5-AS1 or repressing miR-497-5p mitigated CAVD by restraining osteogenic differentiation; LncRNA FGD5-AS1 sponged miR-497-5p to target BIRC5; Repressive BIRC5 turned around the therapeutic action of elevated FGD5-AS1 or depressed miR-497-5p on hAVICs; Enhancive FGD5-AS1 in vivo was available to reduce ApoE-/- mouse CAVD induced via high cholesterol diet. All in all, lncRNAFGD5-AS1 targets BIRC5 via miR-497-5p to alleviate CAVD.
Collapse
Affiliation(s)
- Jun Wei
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - XueShuang Zhu
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - AYu Sun
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - XiaoTian Yan
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xing Meng
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Zhao Z, Yua Y. Antibiotic adoption effects on nutrition and quality of life in lung cancer patients undergoing radiotherapy and chemotherapy: A meta-analysis. Technol Health Care 2024; 32:4515-4536. [PMID: 39520156 PMCID: PMC11612965 DOI: 10.3233/thc-240660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Lung cancer (LC) is one of the leading causes of death worldwide. Treatment methodologies such as chemotherapy and radiotherapy have improved patient survival rates. Nevertheless, these treatments can also lead to adverse reactions and impact patients' nutritional status and quality of life (QOL). Antibiotics are commonly used for treating infections, but there is still controversy regarding their potential adverse effects on LC patients. OBJECTIVE This work aimed to investigate the impact of antibiotic adoption on the nutritional status and QOL of LC patients undergoing radiotherapy or chemotherapy, providing valuable insights for the clinical management of LC. METHODS A meta-analysis approach was employed to comprehensively evaluate the relationship by synthesizing relevant literature. Published studies were identified through searches in databases such as PubMed, EMBASE, Cochrane Library, Web of Science, and CNKI. The inclusion criteria encompassed randomized controlled trials, cohort studies, and cross-sectional studies. Assessment indicators included patient weight, BMI, hemoglobin levels, and QOL. Meta-analysis was conducted using software such as the Cochrane Collaboration and RevMan5.3. Heterogeneity was evaluated using the Higgins I2 index, where values between 25% and 50% indicate moderate heterogeneity, and values greater than 50% indicate substantial heterogeneity. RESULTS 12 eligible studies involving 1,917 patients were finally included. LC patients who received antibiotics during radiotherapy or chemotherapy were found to have a higher risk of malnutrition. The antibiotic group exhibited a more significant decrease in body mass index (BMI) (P< 0.05) and lower serum albumin levels (P< 0.05) versus the control (C) group. Additionally, the overall QOL scores in the antibiotic group were dramatically lower than those in the C group, showing a significant difference with P< 0.05. Sensitivity analysis indicated that the overall conclusions of this work were robust and unbiased. CONCLUSION Antibiotics in LC patients undergoing radiotherapy or chemotherapy may increase the risk of malnutrition and decrease their QOL. Hence, physicians should carefully consider antibiotics and take necessary preventive measures and supportive treatments to improve LC patients' nutritional status and QOL.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiangzhaung, Hebei, China
| | - Yadong Yua
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiangzhaung, Hebei, China
| |
Collapse
|
14
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Khan S, Punnoose K, Bishara NZA, Ali R, Khan S, Ahmad S, Marouf HAA, Mirza S, Ishrat R, Haque S. Identification of potential inhibitor molecule against MabA protein of Mycobacterium leprae by integrated in silico approach. J Biomol Struct Dyn 2023; 41:11231-11246. [PMID: 36661253 DOI: 10.1080/07391102.2022.2160818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023]
Abstract
Leprosy is one of the chronic diseases with which humanity has struggled globally for millennia. The potent anti-leprosy medications rifampicin, clofazimine and dapsone, among others, are used to treat leprosy. Nevertheless, even in regions of the world where these drugs have been successfully implemented, resistance continues to be observed. Due to the problems with the current treatments, this disease should be fought at every level of society with new drugs. The purpose of this research was to identify natural candidates with the ability to inhibit MabA (gene-fabG1) with fewer negative effects. The work was accomplished through molecular docking, followed by a dynamic investigation of protein-ligand, which play a significant role in the design of pharmaceuticals. After modelling the protein structure with MODELLER 9.21v, AutoDock Vina was used to perform molecular docking with 13 3 D anti-leprosy medicines and a zinc library to determine the optimal protein-ligand interaction. In addition, the docking result was filtered based on binding energy, ADMET characteristics, PASS analysis and the most crucial binding residues. The ZINC08101051 chemical compound was prioritized for further study. Using an all-atom 100 ns MD simulation, the binding pattern and conformational changes in protein upon ligand binding were studied. Recommendation for subsequent validation based on deviation, fluctuation, gyration and hydrogen bond analysis, followed by main component and free energy landscape.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Kurian Punnoose
- Department of Oral and Maxillofacial surgery, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Nashwa Zaki Ali Bishara
- Department of Preventive Dental Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Rafat Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shahira Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi, India
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Hussein Abdel-Aziz Marouf
- Department of Oral and Maxillofacial surgery, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Shadab Mirza
- Department of Health Services Administration, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
16
|
Liu W, Zuo B, Liu W, Huo Y, Zhang N, Yang M. Long non-coding RNAs in non-small cell lung cancer: implications for preventing therapeutic resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188982. [PMID: 37734560 DOI: 10.1016/j.bbcan.2023.188982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Lung cancer has the highest mortality and morbidity rates among all cancers worldwide. Despite many complex treatment options, including radiotherapy, chemotherapy, targeted drugs, immunotherapy, and combinations of these treatments, efficacy is low in cases of resistance to therapy, metastasis, and advanced disease, contributing to low overall survival. There is a pressing need for the discovery of novel biomarkers and therapeutic targets for the early diagnosis of lung cancer and to determine the efficacy and outcomes of drug treatments. There is now substantial evidence for the diagnostic and prognostic value of long noncoding RNAs (lncRNAs). This review briefly discusses recent findings on the roles and mechanisms of action of lncRNAs in the responses to therapy in non-small cell lung cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Bingli Zuo
- Human Resources Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Wenting Liu
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong Province 261041, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| |
Collapse
|
17
|
Ma Y, Xu X, Wang H, Liu Y, Piao H. Non-coding RNA in tumor-infiltrating regulatory T cells formation and associated immunotherapy. Front Immunol 2023; 14:1228331. [PMID: 37671150 PMCID: PMC10475737 DOI: 10.3389/fimmu.2023.1228331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive microenvironment. Selective depletion or functional attenuation of tumor-infiltrating Tregs, while eliciting effective T-cell responses, represents a potential approach for anti-tumor immunity. Furthermore, it does not disrupt the Treg-dependent immune homeostasis in healthy organs and does not induce autoimmunity. Yet, the shared cell surface molecules and signaling pathways between Tregs and multiple immune cell types pose challenges in this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and thus can potentially improve antitumor responses. Here, we review recent advances in research of tumor-infiltrating Tregs, with a focus on the functional roles of immune checkpoint and inhibitory Tregs receptors and the regulatory mechanisms of ncRNAs in Treg plasticity and functionality.
Collapse
Affiliation(s)
- Yue Ma
- Department of Gynecology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Xin Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huaitao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyan Piao
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| |
Collapse
|
18
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
19
|
Yang H, Liu Y, Chen L, Zhao J, Guo M, Zhao X, Wen Z, He Z, Chen C, Xu L. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules 2023; 13:877. [PMID: 37371458 DOI: 10.3390/biom13060877] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is a commonly diagnosed cancer and the leading cause of cancer-related deaths, posing a serious health risk. Despite new advances in immune checkpoint and targeted therapies in recent years, the prognosis for lung cancer patients, especially those in advanced stages, remains poor. MicroRNAs (miRNAs) have been shown to modulate tumor development at multiple levels, and as such, miRNA mimics and molecules aimed at regulating miRNAs have shown promise in preclinical development. More importantly, miRNA-based therapies can also complement conventional chemoradiotherapy, immunotherapy, and targeted therapies to reverse drug resistance and increase the sensitivity of lung cancer cells. Furthermore, small interfering RNA (siRNA) and miRNA-based therapies have entered clinical trials and have shown favorable development prospects. Therefore, in this paper, we review recent advances in miRNA-based therapies in lung cancer treatment as well as adjuvant therapy and present the current state of clinical lung cancer treatment. We also discuss the challenges facing miRNA-based therapies in the clinical application of lung cancer treatment to provide new ideas for the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Han Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Yufang Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhenke Wen
- Institute of Biomedical Research, Soochow University, Soochow 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
20
|
Gong X, Huang M, Chen L, Zeng H. FXR1 promotes glioma progression by downregulating microRNA-124-3p through long noncoding RNA FGD5-AS1 upregulation. Acta Neurol Belg 2023:10.1007/s13760-023-02263-5. [PMID: 37074635 DOI: 10.1007/s13760-023-02263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE As reported, glioma progression is affected by altered FXR1, long non-coding RNA FGD5-AS1, and microRNA (miR)-124-3p. However, relationships among these genes remain unclear. Accordingly, this paper ascertains whether FXR1 manipulates glioma progression via the FGD5-AS1/miR-124-3p axis. METHODS Glioma tissues were harvested, in which FGD5-AS1 and miR-124-3p levels were examined with qRT-PCR and FXR1 level was assessed with qRT-PCR and western blot. The interaction of miR-124-3p with FGD5-AS1 was analyzed by dual-luciferase reporter, RIP, and Pearson correlation coefficient assays, and that of FXR1 with FGD5-AS1 was assessed by RIP and Pearson correlation coefficient assays. Glioma cells were obtained, followed by qRT-PCR detection of miR-124-3p expression. After gain- or loss-of-function assays, EdU, Transwell, and tubule formation assays were performed to determine cell proliferation, invasion and migration, and angiogenesis. Next, the intracranial in situ graft tumor model was established for in vivo verification. RESULTS FGD5-AS1 and FXR1 levels were high, but miR-124-3p level was low in glioma tissues. Likewise, glioma cells had downregulated miR-124-3p expression. Mechanistically, FGD5-AS1 negatively bound to miR-124-3p, and FXR1 was positively correlated and interacted with FGD5-AS1. miR-124-3p overexpression or FGD5-AS1 or FXR1 knockdown restricted cell invasion, proliferation, migration, and angiogenesis in gliomas. miR-124-3p inhibition abrogated the repressive impacts of FXR1 knockdown on the malignant progression of gliomas. Also, FXR1 constrained tumor growth and angiogenesis in mice, which was counterweighed by inhibiting miR-124-3p. CONCLUSION FXR1 might act as an oncogene in gliomas by declining miR-124-3p through FGD5-AS1.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Mengyi Huang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Huan Zeng
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, West Jiefang Road, Furong District, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
21
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
22
|
Cannavicci A, Zhang Q, Kutryk MJB. The Potential Role of MiRs-139-5p and -454-3p in Endoglin-Knockdown-Induced Angiogenic Dysfunction in HUVECs. Int J Mol Sci 2023; 24:ijms24054916. [PMID: 36902347 PMCID: PMC10003543 DOI: 10.3390/ijms24054916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease characterized by aberrant angiogenesis and vascular malformations. Mutations in the transforming growth factor beta co-receptor, endoglin (ENG), account for approximately half of known HHT cases and cause abnormal angiogenic activity in endothelial cells (ECs). To date, how ENG deficiency contributes to EC dysfunction remains to be fully understood. MicroRNAs (miRNAs) regulate virtually every cellular process. We hypothesized that ENG depletion results in miRNA dysregulation that plays an important role in mediating EC dysfunction. Our goal was to test the hypothesis by identifying dysregulated miRNAs in ENG-knockdown human umbilical vein endothelial cells (HUVECs) and characterizing their potential role in EC function. We identified 32 potentially downregulated miRNAs in ENG-knockdown HUVECs with a TaqMan miRNA microarray. MiRs-139-5p and -454-3p were found to be significantly downregulated after RT-qPCR validation. While the inhibition of miR-139-5p or miR-454-3p had no effect on HUVEC viability, proliferation or apoptosis, angiogenic capacity was significantly compromised as determined by a tube formation assay. Most notably, the overexpression of miRs-139-5p and -454-3p rescued impaired tube formation in HUVECs with ENG knockdown. To our knowledge, we are the first to demonstrate miRNA alterations after the knockdown of ENG in HUVECs. Our results indicate a potential role of miRs-139-5p and -454-3p in ENG-deficiency-induced angiogenic dysfunction in ECs. Further study to examine the involvement of miRs-139-5p and -454-3p in HHT pathogenesis is warranted.
Collapse
Affiliation(s)
- Anthony Cannavicci
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J. B. Kutryk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Correspondence: ; Tel.: +1-(416)-360-4000 (ext. 6155)
| |
Collapse
|
23
|
Sun Q, Liu X, Wang M, Fan J, Zeng H. Long noncoding RNA FGD5-AS1 alleviates childhood IgA nephropathy by targeting PTEN-mediated JNK/c-Jun signaling pathway via miR-196b-5p. Exp Cell Res 2023; 424:113481. [PMID: 36641136 DOI: 10.1016/j.yexcr.2023.113481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
This paper studied lncRNA FGD5 antisense RNA 1 (FGD5-AS1)-associated mechanisms in immunoglobulin A nephropathy (IgAN). FGD5-AS1, miR-196b-5p, and PTEN in the serum of children with IgAN were assessed. MES-13 cells were stimulated by p-IgA1 to construct an in vitro model of IgAN. After plasmid intervention, cell proliferation, cell cycle, apoptosis, and inflammatory response were correspondingly evaluated. An IgAN mouse model was established to define FGD5-AS1/miR-196b-5p/PTEN axis-mediated alternations of 24-h proteinuria, blood urea nitrogen, serum creatinine, glomerular IgA deposition, renal fibrosis, and glycogen content in renal tissue. The changes in JNK/c-Jun pathway activation in the cell model were also tested. Our results discovered that FGD5-AS1 and PTEN were down-regulated and miR-196b-5p was up-regulated in children with IgAN. Overexpression of FGD5-AS1 or silencing of miR-196b-5p impeded the proliferation and inflammatory response and induced apoptosis of p-IgA1-stimulated MES-13 cells, and improved pathological conditions in IgAN mice. Inhibition of PTEN rescued the therapeutic effects of overexpression of FGD5-AS1 or inhibition of miR-196b-5p on IgAN. FGD5-AS1/miR-196b-5p/PTEN axis inhibited the activation of the JNK/c-Jun pathway. Taken together, FGD5-AS1 attenuates IgAN by targeting PTEN-mediated JNK/c-Jun signaling via miR-196b-5p. Therefore, FGD5-AS1 may be a new therapeutic target for IgAN.
Collapse
Affiliation(s)
- Qiang Sun
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| | - Xue Liu
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Mingxu Wang
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jianfeng Fan
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Haisheng Zeng
- Department of Pediatrics, Dong Guan Children's Hospital, DongGuan City, Guangdong Province, 523325, China
| |
Collapse
|
24
|
Wang Q, Li G, Ma X, Liu L, Liu J, Yin Y, Li H, Chen Y, Zhang X, Zhang L, Sun L, Ai J, Xu S. LncRNA TINCR impairs the efficacy of immunotherapy against breast cancer by recruiting DNMT1 and downregulating MiR-199a-5p via the STAT1-TINCR-USP20-PD-L1 axis. Cell Death Dis 2023; 14:76. [PMID: 36725842 PMCID: PMC9892521 DOI: 10.1038/s41419-023-05609-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Although programmed death-ligand 1 (PD-L1) inhibitors have achieved some therapeutic success in breast cancer, their efficacy is limited by low therapeutic response rates, which is closely related to the immune escape of breast cancer cells. Tissue differentiation inducing non-protein coding RNA (TINCR), a long non-coding RNA, as an oncogenic gene associated with the progression of various malignant tumors, including breast cancer; however, the role of TINCR in tumor immunity, especially in breast cancer, remains unclear. We confirmed that TINCR upregulated PD-L1 expression in vivo and in vitro, and promoted the progression of breast cancer. Next, we revealed that TINCR knockdown can significantly improve the therapeutic effect of PD-L1 inhibitors in breast cancer in vivo. Mechanistically, TINCR recruits DNMT1 to promote the methylation of miR-199a-5p loci and inhibit its transcription. Furthermore, in the cytoplasm, TINCR potentially acts as a molecular sponge of miR-199a-5p and upregulates the stability of USP20 mRNA through a competing endogenous RNA (ceRNA) regulatory mechanism, thus promoting PD-L1 expression by decreasing its ubiquitination level. IFN-γ stimulation activates STAT1 by phosphorylation, which migrates into the nucleus to promote TINCR transcription. This is the first study to describe the regulatory role of TINCR in breast cancer tumor immunity, broadening the current paradigm of the functional diversity of TINCR in tumor biology. In addition, our study provides new research directions and potential therapeutic targets for PD-L1 inhibitors in breast cancer.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, 150086, Harbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081, Harbin, China
- Heilongjiang Academy of Medical Sciences, 157 Baojian Road, 150086, Harbin, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Liyang Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, 150086, Harbin, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, 150086, Harbin, China.
| | - Shouping Xu
- Heilongjiang Academy of Medical Sciences, 157 Baojian Road, 150086, Harbin, China.
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
25
|
Wei ZQ, Ding S, Yang YC. TYROBP-positive endothelial cell-derived TWEAK as a promoter of osteosarcoma progression: insights from single-cell omics. Front Oncol 2023; 13:1200203. [PMID: 37207157 PMCID: PMC10191230 DOI: 10.3389/fonc.2023.1200203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Endothelial cells (ECs) play a vital role in promoting the progression of malignant cells, and they exhibit heterogeneity in their phenotypic characteristics. We aimed to explore the initiating cells of ECs in osteosarcoma (OS) and investigate their potential interaction with malignant cells. Method We obtained scRNA-seq data from 6 OS patients, and datasets were batch-corrected to minimize variations among samples. Pseudotime analysis was performed to investigate the origin of differentiation of ECs. CellChat was employed to examine the potential communication between endothelial cells and malignant cells, and gene regulatory network analysis was performed to identify transcription factor activity changes during the conversion process. Importantly, we generated TYROBP-positive ECs in vitro and investigated its role in OS cell lines. Finally, we explored the prognosis of specific ECs cluster and their impact on the tumor microenvironment (TME) at the bulk transcriptome level. Results The results showed that TYROBP-positive ECs may play a crucial role in initiating the differentiation of ECs. TYROBOP-positive endothelial cells (ECs) exhibited the strongest crosstalk with malignant cells, likely mediated by TWEAK, a multifunctional cytokine. TYROBP-positive ECs exhibited significant expression of TME-related genes, unique metabolic and immunological profiles. Importantly, OS patients with low enrichment of TYROBP-positive ECs had better prognoses and a lower risk of metastasis. Finally, vitro assays confirmed that TWEAK was significantly increased in ECs-conditioned medium (ECs-CM) when TYROBP was over-expressed in EC cells, and could promote the proliferation and migration of OS cells. Conclusion We concluded that TYROBP-positive ECs may be the initiating cells and play a crucial role in the promotion of malignant cell progression. TYROBP-positive ECs have a unique metabolic and immunological profile and may interact with malignant cells through the secretion of TWEAK.
Collapse
|
26
|
Saadi W, Fatmi A, Pallardó FV, García-Giménez JL, Mena-Molla S. Long Non-Coding RNAs as Epigenetic Regulators of Immune Checkpoints in Cancer Immunity. Cancers (Basel) 2022; 15:cancers15010184. [PMID: 36612180 PMCID: PMC9819025 DOI: 10.3390/cancers15010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.
Collapse
Affiliation(s)
- Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
- Correspondence: (W.S.); (S.M.-M.)
| | - Ahlam Fatmi
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (W.S.); (S.M.-M.)
| |
Collapse
|
27
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
28
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Poornajaf Y, Taheri M, Sharifi G. Interplay between programmed death-ligand 1 and non-coding RNAs. Front Immunol 2022; 13:982902. [PMID: 36405753 PMCID: PMC9667550 DOI: 10.3389/fimmu.2022.982902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a transmembrane protein with essential roles in the suppression of adaptive immune responses. As an immune checkpoint molecule, PD-L1 can be exploited by cancer cells to evade the anti-tumor attacks initiated by the immune system. Thus, blockade of the PD1/PD-L1 axis can eliminate the suppressive signals and release the antitumor immune responses. Identification of the underlying mechanisms of modulation of the activity of the PD1/PD-L1 axis would facilitate the design of more efficacious therapeutic options and better assignment of patients for each option. Recent studies have confirmed the interactions between miRNAs/lncRNAs/circ-RNAs and the PD1/PD-L1 axis. In the current review, we give a summary of interactions between these transcripts and PD-L1 in the context of cancer. We also overview the consequences of these interactions in the determination of the response of patients to anti-cancer drugs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
29
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
30
|
Li MJ, Yan SB, Chen G, Li GS, Yang Y, Wei T, He DS, Yang Z, Cen GY, Wang J, Liu LY, Liang ZJ, Chen L, Yin BT, Xu RX, Huang ZG. Upregulation of CCNB2 and Its Perspective Mechanisms in Cerebral Ischemic Stroke and All Subtypes of Lung Cancer: A Comprehensive Study. Front Integr Neurosci 2022; 16:854540. [PMID: 35928585 PMCID: PMC9344069 DOI: 10.3389/fnint.2022.854540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclin B2 (CCNB2) belongs to type B cell cycle family protein, which is located on chromosome 15q22, and it binds to cyclin-dependent kinases (CDKs) to regulate their activities. In this study, 103 high-throughput datasets related to all subtypes of lung cancer (LC) and cerebral ischemic stroke (CIS) with the data of CCNB2 expression were collected. The analysis of standard mean deviation (SMD) and summary receiver operating characteristic (SROC) reflecting expression status demonstrated significant up-regulation of CCNB2 in LC and CIS (Lung adenocarcinoma: SMD = 1.40, 95%CI [0.98–1.83], SROC = 0.92, 95%CI [0.89–0.94]. Lung squamous cell carcinoma: SMD = 2.56, 95%CI [1.64–3.48]. SROC = 0.97, 95%CI [0.95–0.98]. Lung small cell carcinoma: SMD = 3.01, 95%CI [2.01–4.01]. SROC = 0.98, 95%CI [0.97–0.99]. CIS: SMD = 0.29, 95%CI [0.05–0.53], SROC = 0.68, 95%CI [0.63–0.71]). Simultaneously, protein-protein interaction (PPI) analysis indicated that CCNB2 is the hub molecule of crossed high-expressed genes in CIS and LC. Through Multiscale embedded gene co-expression network analysis (MEGENA), a gene module of CIS including 76 genes was obtained and function enrichment analysis of the CCNB2 module genes implied that CCNB2 may participate in the processes in the formation of CIS and tissue damage caused by CIS, such as “cell cycle,” “protein kinase activity,” and “glycosphingolipid biosynthesis.” Afterward, via single-cell RNA-seq analysis, CCNB2 was found up-regulated on GABAergic neurons in brain organoids as well as T cells expressing proliferative molecules in LUAD. Concurrently, the expression of CCNB2 distributed similarly to TOP2A as a module marker of cell proliferation in cell cluster. These findings can help in the field of the pathogenesis of LC-related CIS and neuron repair after CIS damage.
Collapse
Affiliation(s)
- Ming-Jie Li
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shi-Bai Yan
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guo-Sheng Li
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Wei
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, China
| | - De-Shen He
- The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou Gongren Hospital, Wuzhou, China
| | - Zhen Yang
- Department of Gerontology, No. 923 Hospital of Chinese People’s Liberation Army, Nanning, China
| | - Geng-Yu Cen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liu-Yu Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Jian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin-Tong Yin
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruo-Xiang Xu
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zhi-Guang Huang,
| |
Collapse
|
31
|
Tian Q, Wu T, Zhang X, Xu K, Yin X, Wang X, Shi S, Wang P, Gao L, Xu S, Liu X. Immunomodulatory functions of the circ_001678/miRNA-326/ZEB1 axis in non-small cell lung cancer via the regulation of PD-1/PD-L1 pathway. Hum Mol Genet 2022; 31:4094-4106. [PMID: 35848890 DOI: 10.1093/hmg/ddac155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
High-throughput circRNA sequencing identified circRNA_001678 (circ_001678) as an upregulated circRNA in NSCLC tissues. Hence, the current study sought to investigate the function and the underlying mechanism of circRNA_001678 in immune escape of NSCLC. Briefly, commercially purchased NSCLC cell lines were adopted for in vitro experiment to evaluate the effects of circ_001678 over-expression or knockdown on cell biological functions, including proliferation, migration, and invasive abilities. In addition, the effects of circ_001678 on the in vivo tumorigenicity ability were evaluated for verification. Accordingly, we uncovered that circ_001678 over-expression augmented NSCLC progression in vitro and enhanced tumorigenicity ability in vivo. The interaction between circ_001678 and miR-326 predicted online was verified by means of luciferase and RNA pull-down assays. Furthermore, circ_001678 could sponge miR-326 to up-regulate ZEB1. On the other hand, the tumor-promoting effects of circ_001678 could be inhibited by anti-PD-L1/PD-1 treatment. Mechanistically, circ_001678 led to the activation of the PD-1/PD-L1 pathway to promote CD8+ T cell apoptosis, thereby inducing NSCLC cell immune escape via regulation of the miR-326/ZEB1 axis. To conclude, our findings revealed that circ_001678 sponges miR-326 to up-regulate ZEB1 expression and induce the PD-1/PD-L1 pathway-dependent immune escape, thereby promoting the malignant progression of NSCLC.
Collapse
Affiliation(s)
- Qi Tian
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao 066000, P.R. China
| | - Tong Wu
- Graduate School of Zunyi Medical University, Zunyi 563006, P.R. China
| | - Xiudi Zhang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Ke Xu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Xiaobo Yin
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao 066000, P.R. China
| | - Xiaojie Wang
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao 066000, P.R. China
| | - Shanshan Shi
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao 066000, P.R. China
| | - Ping Wang
- The First Medical Center of PLA General Hospital, Beijing 100853, P.R. China
| | - Liming Gao
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao 066000, P.R. China
| | - Shufeng Xu
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao 066000, P.R. China
| | - Xinyan Liu
- Hebei Chest Hospital, Shijiazhuang 050047, P.R. China
| |
Collapse
|
32
|
Li Z, Ding XJ, Qiao X, Liu XM, Qiao X, Xie CZ, Liu RP, Xu JY. Thalidomide-based Pt(IV) prodrugs designed to exert synergistic effect of immunomodulation and chemotherapy. J Inorg Biochem 2022; 232:111842. [DOI: 10.1016/j.jinorgbio.2022.111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
|
33
|
Entezari M, Ghanbarirad M, Taheriazam A, Sadrkhanloo M, Zabolian A, Goharrizi MASB, Hushmandi K, Aref AR, Ashrafizadeh M, Zarrabi A, Nabavi N, Rabiee N, Hashemi M, Samarghandian S. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother 2022; 150:112963. [PMID: 35468579 DOI: 10.1016/j.biopha.2022.112963] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Among the different kinds of tumors threatening human life, lung cancer is one that is commonly observed in both males and females. The aggressive behavior of lung cancer and interactions occurring in tumor microenvironment enhances the malignancy of this tumor. The lung tumor cells have demonstrated capacity in developing chemo- and radio-resistance. LncRNAs are a category of non-coding RNAs that do not encode proteins, but their aberrant expression is responsible for tumor development, especially lung cancer. In the present review, we focus on both lncRNAs and exosomal lncRNAs in lung cancer, and their ability in regulating proliferation and metastasis. Cell cycle progression and molecular mechanisms related to lung cancer metastasis such as EMT and MMPs are regulated by lncRNAs. LncRNAs interact with miRNAs, STAT, Wnt, EZH2, PTEN and PI3K/Akt signaling pathways to affect progression of lung cancer cells. LncRNAs demonstrate both tumor-suppressor and tumor-promoting functions in lung cancer. They can be considered as biomarkers in lung cancer and especially exosomal lncRNAs present in body fluids are potential tools for minimally invasive diagnosis. Furthermore, we discuss regulation of lncRNAs by anti-cancer drugs and genetic tools as well as the role of these factors in therapy response of lung cancer cells.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ghanbarirad
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada V6H3Z6
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
34
|
Lin Y, Wang X. Analysis of the Role and Mechanism of ZEB1 in Regulating Cervical Carcinoma Progression via Modulating PD-1/PD-L1 Checkpoint. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1565094. [PMID: 35535226 PMCID: PMC9078811 DOI: 10.1155/2022/1565094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Background Cervical carcinoma (CC) is a common and highly malignant tumor in women. The involvement of zinc finger E-box binding homeobox 1 (ZEB1) in many kinds of tumors has been well-documented; however, its role and mechanism in CC remain to be clarified. Objective This study investigated the mechanism of ZEB1 in modulating the growth and metastasis of CC cells. Methods The expression of ZEB1 in CC tissues and adjacent normal counterparts was determined by reverse transcription-polymerase chain reaction (RT-PCR). The correlation between ZEB1 and patient clinicopathological indexes was analyzed. In vitro, gain and loss functions of ZEB1 were performed in C-33A and HeLa cell lines. The proliferation, migration, and invasion of CC cells were detected by Cell Counting Kit-8 (CCK-8) assay and transwell assay, respectively. The expression levels of apoptosis-related proteins such as BCL2-associated X (Bax), B-cell lymphoma-2 (Bcl2), and Caspase-3, as well as epithelial-mesenchymal transition (EMT)-associated proteins including E-cadherin, Vimentin, and Snail, were measured by Western blotting. In addition, the targeting relationship between ZEB1 and programmed death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) was predicted by bioinformatics and further verified by dual-luciferase reporter assay. Results ZEB1 was significantly up-regulated in CC tissues compared with normal counterparts. ZEB1 overexpression promoted the migration, proliferation, and invasion of CC cells and inhibited apoptosis, while knocking down ZEB1 contributed to the opposite effects. In addition, experiments on related mechanisms confirmed that ZEB1 targeted the 3'EUTR terminal of PD-1/PD-L1 and negatively regulated its expression. And an interaction between ZEB1 and PD-1/PD-L1 was identified. Conclusion ZEB1 can promote the proliferation and metastasis of CC cells via modulating the PD-1/PD-L1 checkpoint.
Collapse
Affiliation(s)
- Yuhong Lin
- Fuzhou First Affiliated Hospital of Fujian Medical University, Fuzhou City, 350004 Fujian Province, China
| | - Xiaoxian Wang
- Fuzhou First Affiliated Hospital of Fujian Medical University, Fuzhou City, 350004 Fujian Province, China
| |
Collapse
|
35
|
He N, Xiang L, Chen L, Tong H, Wang K, Zhao J, Song F, Yang H, Wei X, Jiao Z. The role of long non-coding RNA FGD5-AS1 in cancer. Bioengineered 2022; 13:11026-11041. [PMID: 35475392 PMCID: PMC9208527 DOI: 10.1080/21655979.2022.2067292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) refers to a class of RNAs that have at least 200 nucleotides and do not encode proteins, and the relationship between lncRNA and cancer has recently attracted considerable research attention. The lncRNA FGD5-AS1 is a newly discovered lncRNA with a length of 3772 nucleotides. Studies have found that FGD5-AS1 is abnormally highly expressed in many cancer tissues and was closely related to the lymph node metastasis, tumor invasion, survival time, and recurrence rate of various cancers. Mechanistic analyses show that FGD5-AS1 can stabilize mRNA expression by sponging miRNA, which not only induces cancer cell proliferation, metastasis, invasion, and chemoresistance in vitro, but also promotes tumor growth and metastasis in vivo. In addition, FGD5-AS1 can serve as a diagnostic or prognostic marker for a variety of cancers. This review demonstrates the clinical significance of FGD5-AS1 in human cancer and its role in tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Na He
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Linbiao Xiang
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Chen
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Haobin Tong
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Keshen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jie Zhao
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Feixue Song
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hanteng Yang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xinyuan Wei
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zuoyi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
36
|
Li Y, Lin M, Wang S, Cao B, Li C, Li G. Novel Angiogenic Regulators and Anti-Angiogenesis Drugs Targeting Angiogenesis Signaling Pathways: Perspectives for Targeting Angiogenesis in Lung Cancer. Front Oncol 2022; 12:842960. [PMID: 35372042 PMCID: PMC8965887 DOI: 10.3389/fonc.2022.842960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer growth is dependent on angiogenesis. In recent years, angiogenesis inhibitors have attracted more and more attention as potential lung cancer treatments. Current anti-angiogenic drugs targeting VEGF or receptor tyrosine kinases mainly inhibit tumor growth by reducing angiogenesis and blocking the energy supply of lung cancer cells. However, these drugs have limited efficiency, raising concerns about limited scope of action and mechanisms of patient resistance to existing drugs. Therefore, current basic research on angiogenic regulators has focused more on screening carcinogenic/anticancer genes, miRNAs, lncRNAs, proteins and other biomolecules capable of regulating the expression of specific targets in angiogenesis signaling pathways. In addition, new uses for existing drugs and new drug delivery systems have received increasing attention. In our article, we analyze the application status and research hotspots of angiogenesis inhibitors in lung cancer treatment as a reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Yingying Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Lin
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyuan Wang
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Cao
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Wang Y, Wang J. Diagnostic significance of serum FGD5-AS1 and its predictive value for the development of cardiovascular diseases in patients with type 2 diabetes. Diabetol Metab Syndr 2022; 14:20. [PMID: 35090550 PMCID: PMC8796623 DOI: 10.1186/s13098-022-00789-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND As a result of the continuous rise in the incidence of type 2 diabetes mellitus (T2DM), related cardiovascular diseases (CVDs) have been a main healthy burden worldwide. This study aimed to investigate the potential role of FGD5-AS1 as a biomarker for the diagnosis of T2DM and predicting cardiovascular complications in T2DM. METHODS Three hundred subjects were recruited in this study, including 100 T2DM patients without CVDs, 100 T2DM patients with CVDs as well as 100 healthy subjects. Plasma FGD5-AS1 level was quantified using RT-qPCR assay. The correlation of FGD5-AS1 level with other key variables was assessed using Pearson correlation analysis. ROC curve analysis was performed to evaluate the diagnostic value of FGD5-AS1 for T2DM and related CVDs. The effect of FGD5-AS1 on AC16 and HA-VSMCs was determined. RESULTS FGD5-AS1 level showed a stepwise decrease in individuals with T2DM and CVDs compared to healthy persons. FGD5-AS1 was associated with BMI, systolic blood pressure, diastolic blood pressure, fasting glucose, 2-h postprandial blood glucose, HbA1c, triglycerides, usCRP, and HDL-cholesterol. The ROC analysis indicated FGD5-AS1 had a significant overall predictive ability to diagnose T2DM, T2DM with CVDs, and the combination of both. FGD5-AS1 increases the growth but alleviates apoptosis and fibrosis of high glucose-induced AC16 cells. FGD5-AS1 attenuate the growth and calcification but induced apoptosis of high glucose-treated HA-VSMC cells. CONCLUSIONS These results suggest that FGD5-AS1 are associated with T2DM and measuring FGD5-AS1 could potentially contribute to T2DM screening and prediction for risk of cardiovascular complication.
Collapse
Affiliation(s)
- Yongdi Wang
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Huancui District, Weihai, 264200, Shandong, China.
| | - Jian Wang
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|