1
|
Zheng Y, Yuan J, Meng S, Chen J, Gu Z. Testicular transcriptome alterations in zebrafish (Danio rerio) exposure to 17β-estradiol. CHEMOSPHERE 2019; 218:14-25. [PMID: 30465971 DOI: 10.1016/j.chemosphere.2018.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The hormone 17β-estradiol (E2) can be found in rivers, effluents, and even drinking water. Researches have demonstrated that E2 affects various metabolic pathways through gene activation and may cause reproductive toxicity in fish. Therefore, the aim of this study was to evaluate E2-induced toxicity via testicular transcriptome of zebrafish (Danio rerio) exposed to different concentrations (10 ng L-1, and 100 ng L-1) of E2. A total of >600 significant differentially expressed genes (DEGs) were enriched among the three treatments. Short time-series expression miner analysis revealed five KEGG pathways including drug metabolism, other enzymes, calcium signaling pathway, ECM-receptor interaction, gap junction, and cell adhesion molecules. Twenty genes were selected to verify the accuracy of RNA-Seq. Other reported genes related to sex differentiation, development, energy metabolism, and other processes were found. One set of genes significantly increased/decreased/fluctuated over time, especially 12 h after E2 exposure. Genes associated with ovaries (zp3c), and development (bmp15, gdf9, and sycp2l) were significantly upregulated with increasing E2 concentration. E2 and testosterone was significantly decreased by 10 (except for T) and 100 ng L-1 E2 exposure at 12 h. The current study demonstrated that sex differentiation, development, energy metabolism, immunity, and ribosome biogenesis in male zebrafish were all significantly affected by 17β-estradiol exposure through transcriptional alterations.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100039, China.
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| |
Collapse
|
2
|
Baptista RB, Souza-Castro N, Almeida-Val VMF. Acute hypoxia up-regulates HIF-1α and VEGF mRNA levels in Amazon hypoxia-tolerant Oscar (Astronotus ocellatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1307-1318. [PMID: 26994906 DOI: 10.1007/s10695-016-0219-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
Amazon fish maintain oxygen uptake through a variety of strategies considered evolutionary and adaptive responses to the low water oxygen saturation, commonly found in Amazon waters. Oscar (Astronotus ocellatus) is among the most hypoxia-tolerant fish in Amazon, considering its intriguing anaerobic capacity and ability to depress oxidative metabolism. Previous studies in hypoxia-tolerant and non-tolerant fish have shown that hypoxia-inducible factor-1α (HIF-1α) gene expression is positively regulated during low oxygen exposure, affecting vascular endothelial growth factor (VEGF) transcription and fish development or tolerance in different manners. However, whether similar isoforms exists in tolerant Amazon fish and whether they are affected similarly to others physiological responses to improve hypoxia tolerance remain unknown. Here we evaluate the hepatic HIF-1α and VEGF mRNA levels after 3 h of acute hypoxia exposure (0.5 mgO2/l) and 3 h of post-hypoxia recovery. Additionally, hematological parameters and oxidative enzyme activities of citrate synthase (CS) and malate dehydrogenase (MDH) were analyzed in muscle and liver tissues. Overall, three sets of responses were detected: (1) as expected, hematocrit, hemoglobin concentration, red blood cells, and blood glucose increased, improving oxygen carrying capacity and glycolysis potential; (2) oxidative enzymes from liver decreased, corroborating the tendency to a widespread metabolic suppression; and (3) HIF-1α and VEGF increased mRNA levels in liver, revealing their role in the oxygen homeostasis through, respectively, activation of target genes and vascularization. This is the first study to investigate a hypoxia-related transcription factor in a representative Amazon hypoxia-tolerant fish and suggests that HIF-1α and VEGF mRNA regulation have an important role in enhancing hypoxia tolerance in extreme tolerant species.
Collapse
Affiliation(s)
- R B Baptista
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazon Research, 1756 Aleixo, Manaus, AM, Brazil.
| | - N Souza-Castro
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazon Research, 1756 Aleixo, Manaus, AM, Brazil
| | - V M F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazon Research, 1756 Aleixo, Manaus, AM, Brazil
| |
Collapse
|
3
|
Luo W, Liang X, Huang S, Cao X. Molecular cloning, expression analysis and miRNA prediction of vascular endothelial growth factor A (VEGFAa and VEGFAb) in pond loach Misgurnus anguillicaudatus, an air-breathing fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:39-47. [PMID: 27513203 DOI: 10.1016/j.cbpb.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Xiao Liang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei, People's Republic of China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Development and characterization of an endothelial cell line from the bulbus arteriosus of walleye, Sander vitreus. Comp Biochem Physiol A Mol Integr Physiol 2015; 180:57-67. [DOI: 10.1016/j.cbpa.2014.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 11/15/2022]
|
5
|
Isolation, Propagation, Characterization, Cryopreservation, and Application of Novel Cardiovascular Endothelial Cell Line From Channa striatus (Bloch, 1793). Cell Biochem Biophys 2014; 71:601-16. [DOI: 10.1007/s12013-014-0240-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Huang YS, Chen YM, Liao PC, Lee YH, Gwo JC, Chen MC, Chang CF. Testosterone improves the transition of primary oocytes in artificial maturation eels (Anguilla japonica) by altering ovarian PTEN expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:777-787. [PMID: 21986810 DOI: 10.1007/s10695-011-9560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
In mammals, androgens appear to enhance the development of primary ovarian follicles, but PI3K (phosphoinositide 3-kinases) pathway is well recognized as one of the critical pathways in early follicular development. Roles of the PI3K were revealed by deletion of PTEN (phosphatase and tensin homolog on chromosome 10). PTEN is demonstrated to play an important role in the early stage of follicle development. In the Japanese eel, two forms of PTEN have been cloned, but what their functions on the development of early ovarian follicles are still not clear. The natural blockage and inducible of ovarian development was a benefit to address this question in the eel. Testosterone (T) shows to ameliorate the early ovarian development in the eel. The aims of this study were to elucidate the two forms of PTEN by cellular and physiological criteria and to study the effects of T on the ovarian PTEN production in the exogenous pituitary extracts-stimulated eel. Our results suggested that two forms of PTEN are existing in the Japanese eel, and eel ovarian development corresponded to the decrease in ovarian PTEN expression, vice versa. In addition, the supplement of T on eel early ovarian development can be attributed to its PTEN inhibitor role.
Collapse
Affiliation(s)
- Yung-Sen Huang
- Department of Life Science, National University of Kaohsiung, No. 700 Kaohsiung University Road, Nan Tzu Dist., Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
7
|
HUVECs from newborns with a strong family history of diabetes show increased apoptosis by flow cytometry with annexin V. Diabetes Metab Syndr 2010. [DOI: 10.1016/j.dsx.2010.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Huang YS, Chang CW, Chen YM, Lee YH, Chen MC, Shih NL. Investigating expression profiles of VEGF-Flk, and Angpt1 during development of gas glands in Japanese eel (Anguilla japonica). Comp Biochem Physiol A Mol Integr Physiol 2009; 155:350-60. [PMID: 19962446 DOI: 10.1016/j.cbpa.2009.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 11/29/2022]
Abstract
Angiogenesis is a highly regulated physiological process in animals. Angiopoietin-1 (Angpt1) induces the signaling pathways related to vessel maturation in late phase of angiogenesis, which recruits pericyte supplements to make compact interaction with vessel tubes. There are only few data showing Angpt1 functions in fish. By using degenerate primers, partial sequence (812 bp) of Angpt1 was cloned from Anguilla japonica, and deduced amino acids showed 80% similarity to those of zebrafish. Physiological functions of cloned eel Angpt1 were studied by in vitro and in vivo manipulations with gas glands (rete mirabile) taken as the tested target tissues. RT-PCR and immunofluorescent staining techniques were performed to examine the expression patterns of Angpt1 as well as VEGF-Flk. Experimental data showed that, in vitro, bFGF, PPAR beta agonist, and estradiol affected Angpt1 expression; while cobalt ions, a VEGF expression-inducer, did not affect Angpt1 expression. In vivo, expression levels of Angpt1 increased with body growth. Furthermore, Angpt1 expressions increased significantly in the late stage of gas glands in the stimulated eel. Successive expression patterns on VEGF-Flk, and Angpt1 on different development stages of gas glands were observed. Our results suggest that the original function of angiopoietin-1 on angiogenesis is conserved during evolution.
Collapse
Affiliation(s)
- Yung-Sen Huang
- Department of Life Science, National University of Kaohsiung No.700, Kaohsiung University Road, Nan Tzu Dist., 811 Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
9
|
Alvarado-Vásquez N, Zapata E, Alcázar-Leyva S, Massó F, Montaño LF. Reduced NO synthesis and eNOS mRNA expression in endothelial cells from newborns with a strong family history of type 2 diabetes. Diabetes Metab Res Rev 2007; 23:559-66. [PMID: 17385193 DOI: 10.1002/dmrr.743] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND A deficient synthesis of nitric oxide (NO) may play a role in the early endothelial dysfunction of healthy humans with a strong family history of type 2 diabetes (DM2). In this study, we evaluate the intracellular synthesis of NO and the expression of eNOS transcripts in human umbilical vein endothelial cells (HUVECs), exposed to high glucose concentrations, of healthy newborns with (experimental) and without (control) a strong family history of DM2. METHODS HUVECs were incubated in M-199 culture media (containing a 5 mmol/L physiological glucose concentration) or supraphysiological glucose concentrations (15 or 30 mmol/L), for 48 h. Flow cytometry, reactive of Griess and RT-PCR were used to determine intracellular NO synthesis, presence of NO metabolites, and expression of eNOS, GLUT1 or p53 transcripts. RESULTS NO synthesis in experimental HUVECs showed a progressive reduction in the presence of increasing glucose concentration (11% for 5 mmol to 8% for 30 mmol; p < 0.01), whereas control HUVECs showed an increase in NO synthesis (3% for 5 mmol to 31% for 30 mmol; p < 0.001). In experimental HUVECs, we found a diminished expression of eNOS and p53, and also an enhanced expression of GLUT1 mRNA transcripts. Control HUVECs showed an increase in eNOS, and no modifications in p53 or GLUT1 mRNA transcripts. CONCLUSIONS Our results show how HUVECs, isolated from healthy newborns with a strong family history of DM2, have an abnormal intracellular synthesis of NO and an impaired expression of eNOS, GLUT1 and p53 genes, all associated with NO synthesis.
Collapse
Affiliation(s)
- Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, México.
| | | | | | | | | |
Collapse
|