1
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
2
|
Ren Y, Tian Y, Cheng B, Liu Y, Yu H. Effects of Environmental Hypoxia on Serum Hematological and Biochemical Parameters, Hypoxia-Inducible Factor ( hif) Gene Expression and HIF Pathway in Hybrid Sturgeon ( Acipenser schrenckii ♂ × Acipenser baerii ♀). Genes (Basel) 2024; 15:743. [PMID: 38927679 PMCID: PMC11203381 DOI: 10.3390/genes15060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Hypoxia is a globally pressing environmental problem in aquatic ecosystems. In the present study, a comprehensive analysis was performed to evaluate the effects of hypoxia on physiological responses (hematology, cortisol, biochemistry, hif gene expression and the HIF pathway) of hybrid sturgeons (Acipenser schrenckii ♂ × Acipenser baerii ♀). A total of 180 hybrid sturgeon adults were exposed to dissolved oxygen (DO) levels of 7.00 ± 0.2 mg/L (control, N), 3.5 ± 0.2 mg/L (moderate hypoxia, MH) or 1.00 ± 0.1 mg/L (severe hypoxia, SH) and were sampled at 1 h, 6 h and 24 h after hypoxia. The results showed that the red blood cell (RBC) counts and the hemoglobin (HGB) concentration were significantly increased 6 h and 24 h after hypoxia in the SH group. The serum cortisol concentrations gradually increased with the decrease in the DO levels. Moreover, several serum biochemical parameters (AST, AKP, HBDB, LDH, GLU, TP and T-Bil) were significantly altered at 24 h in the SH group. The HIFs are transcription activators that function as master regulators in hypoxia. In this study, a complete set of six hif genes were identified and characterized in hybrid sturgeon for the first time. After hypoxia, five out of six sturgeon hif genes were significantly differentially expressed in gills, especially hif-1α and hif-3α, with more than 20-fold changes, suggesting their important roles in adaptation to hypoxia in hybrid sturgeon. A meta-analysis indicated that the HIF pathway, a major pathway for adaptation to hypoxic environments, was activated in the liver of the hybrid sturgeon 24 h after the hypoxia challenge. Our study demonstrated that hypoxia, particularly severe hypoxia (1.00 ± 0.1 mg/L), could cause considerable stress for the hybrid sturgeon. These results shed light on their adaptive mechanisms and potential biomarkers for hypoxia tolerance, aiding in aquaculture and conservation efforts.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing 100141, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Bo Cheng
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Huanhuan Yu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China
| |
Collapse
|
3
|
Wang H, Siren J, Perttunen S, Immonen K, Chen Y, Narumanchi S, Kosonen R, Paavola J, Laine M, Tikkanen I, Lakkisto P. Deficiency of heme oxygenase 1a causes detrimental effects on cardiac function. J Cell Mol Med 2024; 28:e18243. [PMID: 38509740 PMCID: PMC10955162 DOI: 10.1111/jcmm.18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.
Collapse
Affiliation(s)
- Hong Wang
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Juuso Siren
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | | | - Yu‐Chia Chen
- Department of AnatomyUniversity of HelsinkiHelsinkiFinland
| | | | - Riikka Kosonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Jere Paavola
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mika Laine
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ilkka Tikkanen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Abdominal Centre NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Department of Clinical ChemistryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
4
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
5
|
Mandic M, Flear K, Qiu P, Pan YK, Perry SF, Gilmour KM. Aquatic surface respiration improves survival during hypoxia in zebrafish ( Danio rerio) lacking hypoxia-inducible factor 1-α. Proc Biol Sci 2022; 289:20211863. [PMID: 35016541 PMCID: PMC8753152 DOI: 10.1098/rspb.2021.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 01/14/2023] Open
Abstract
Hypoxia-inducible factor 1-α (Hif-1α), an important transcription factor regulating cellular responses to reductions in O2, previously was shown to improve hypoxia tolerance in zebrafish (Danio rerio). Here, we examined the contribution of Hif-1α to hypoxic survival, focusing on the benefit of aquatic surface respiration (ASR). Wild-type and Hif-1α knockout lines of adult zebrafish were exposed to two levels (moderate or severe) of intermittent hypoxia. Survival was significantly compromised in Hif-1α knockout zebrafish prevented from accessing the surface during severe (16 mmHg) but not moderate (23 mmHg) hypoxia. When allowed access to the surface in severe hypoxia, survival times did not differ between wild-type and Hif-1α knockouts. Performing ASR mitigated the negative effects of the loss of Hif-1α with the knockouts initiating ASR at a higher PO2 threshold and performing ASR for longer than wild-types. The loss of Hif-1α had little impact on survival in fish between 1 and 5 days post-fertilization, but as the larvae aged, their reliance on Hif-1α increased. Similar to adult fish, ASR compensated for the loss of Hif-1α on survival. Together, these results demonstrate that age, hypoxia severity and, in particular, the ability to perform ASR significantly modulate the impact of Hif-1α on survival in hypoxic zebrafish.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, Davis, CA 95616, USA
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Kaitlyn Flear
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Pearl Qiu
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Yihang K. Pan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Steve F. Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| |
Collapse
|
6
|
Does hypoxia-inducible factor 1α play a role in regulating cutaneous oxygen flux in larval zebrafish (Danio rerio)? J Comp Physiol B 2021; 191:645-655. [PMID: 33774721 DOI: 10.1007/s00360-021-01361-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/12/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Previous studies have demonstrated that hypoxia tolerance is improved in zebrafish (Danio rerio) larvae after prior exposure to lowered ambient O2 levels. Such improved hypoxia performance was attributed in part, to increased levels of hypoxia-inducible factor 1α (Hif-1α) exerting downstream effects on various physiological processes including promotion of trunk skin angiogenesis. Since O2 uptake ([Formula: see text]) in larvae is facilitated largely by O2 diffusion across the skin, enhanced cutaneous vascularization is expected to enhance [Formula: see text] during hypoxia and thus contribute to improved hypoxia tolerance. In this study, we used the scanning micro-optrode technique together with quantification of cutaneous vascularity in wild types (WT) and Hif-1α knockouts (hif1aa-/-ab-/-) to test the hypothesis that improved hypoxia tolerance after hypoxia acclimation in larvae at 4 or 7 days post-fertilization (dpf) was associated with Hif-1α-dependent increases in skin vascularity and regional cutaneous O2 fluxes (JO2). Hypoxia tolerance, as determined by measurements of critical PO2 (Pcrit), was unaltered by hypoxia pre-exposure in larvae at 4 dpf and there were no significant differences in Pcrit between WT and hif1aa-/-ab-/- larvae at this developmental stage. However, at 7 dpf there was a significant effect of genotype with WT larvae showing a lower Pcrit than hif1aa-/-ab-/- larvae, an effect that was being driven by a reduced Pcrit in the WT larvae after hypoxia pre-exposure (19.2 ± 1.9 mmHg) compared to hif1aa-/-ab-/- fish (35.5 ± 3.5 mmHg). Regardless of genotype, pre-exposure status or developmental age, JO2 decreased along the body in the anterior-to-posterior direction. Neither hypoxia pre-exposure nor genotype affected JO2 at any region along the body. The lack of any effect of hypoxia pre-exposure or genotype on JO2 was consistent with the lack of any effect on skin vascularity as measured in Tg(fli1:EGFP)yl transgenic larvae. Thus, the decreased hypoxia performance (increased Pcrit) at 7 dpf in the hif1aa-/-ab-/- larvae did not appear to be reliant on changes in trunk vascularity or cutaneous O2 diffusion.
Collapse
|
7
|
Yang X, Liang J, Wu Q, Li M, Shan W, Zeng L, Yao L, Liang Y, Wang C, Gao J, Guo Y, Liu Y, Liu R, Luo Q, Zhou Q, Qu G, Jiang G. Developmental Toxicity of Few-Layered Black Phosphorus toward Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1134-1144. [PMID: 33356192 DOI: 10.1021/acs.est.0c05724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP) has extensive applications in various fields. The release of BP into aquatic ecosystems and the potential toxic effects on aquatic organisms are becoming major concerns. Here, we investigated the developmental toxicity of few-layered BP toward the zebrafish. We found that BP could adsorb on the surface of the chorion and could subsequently penetrate within the embryo. After exposure of embryos to 10 mg/L BP, developmental malformations appeared at 96 hpf, especially heart deformities such as pericardial edema and bradycardia, accompanied by severe circulatory system failure. Using transgenic zebrafish larvae, we further characterized cardiovascular defects with cardiac enlargement and impaired cardiac vessels as indicators of damage to the cardiovascular system upon BP exposure. We performed transcriptomic analysis on zebrafish embryos treated with a lower concentration of 2 mg/L. The results showed disruption in genes associated with muscle development, oxygen involved processes, focal adhesion, and VEGF and MAPK signaling pathways. These alterations also indicated that BP carries a risk of developmental perturbation at lower concentrations. This study provides new insights into the effects of BP on aquatic organisms.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Mandic M, Best C, Perry SF. Loss of hypoxia-inducible factor 1α affects hypoxia tolerance in larval and adult zebrafish ( Danio rerio). Proc Biol Sci 2020; 287:20200798. [PMID: 32453991 DOI: 10.1098/rspb.2020.0798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The coordination of the hypoxic response is attributed, in part, to hypoxia-inducible factor 1α (Hif-1α), a regulator of hypoxia-induced transcription. After the teleost-specific genome duplication, most teleost fishes lost the duplicate copy of Hif-1α, except species in the cyprinid lineage that retained both paralogues of Hif-1α (Hif1aa and Hif1ab). Little is known about the contribution of Hif-1α, and specifically of each paralogue, to hypoxia tolerance. Here, we examined hypoxia tolerance in wild-type (Hif1aa+/+ab+/+) and Hif-1α knockout lines (Hif1aa-/-; Hif1ab-/-; Hif1aa-/-ab-/-) of zebrafish (Danio rerio). Critical O2 tension (Pcrit; the partial pressure of oxygen (PO2) at which O2 consumption can no longer be maintained) and time to loss of equilibrium (LOE), two indices of hypoxia tolerance, were assessed in larvae and adults. Knockout of both paralogues significantly increased Pcrit (decreased hypoxia tolerance) in larval fish. Prior exposure of larvae to hypoxia decreased Pcrit in wild-type fish, an effect mediated by the Hif1aa paralogue. In adults, individuals with a knockout of either paralogue exhibited significantly decreased time to LOE but no difference in Pcrit. Together, these results demonstrate that in zebrafish, tolerance to hypoxia and improved hypoxia tolerance after pre-exposure to hypoxia (pre-conditioning) are mediated, at least in part, by Hif-1α.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Carol Best
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
9
|
Physiological effects of dissolved oxygen are stage-specific in incubating Atlantic salmon (Salmo salar). J Comp Physiol B 2019; 189:109-120. [PMID: 30603847 DOI: 10.1007/s00360-018-1199-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023]
Abstract
Oxygen availability is highly variable during salmonid incubation in natural redds and also in aquaculture incubation systems. Hypoxia generally decreases growth and aerobic metabolism prior to hatching, in parallel with eliciting physiological modifications that enhance oxygen delivery. However, it is less-well known whether developmental hyperoxia can drive the opposite effect. Moreover, there is insufficient understanding of stage-specific developmental windows during which ambient oxygen availability may be of greater or lesser impact to incubating embryos. Here, we tested the effects of hypoxia (50% dissolved oxygen: DO, % air saturation) and hyperoxia (150% DO) on the growth, routine aerobic metabolism ([Formula: see text]) and hypoxia tolerance (O2crit) of Atlantic salmon (Salmo salar) during seven developmental windows throughout incubation. Embryos exposed to hyperoxia (150% DO) did not differ from the normoxic group in growth, [Formula: see text] or O2crit at any developmental window. In contrast, embryos exposed to hypoxia grew slower and had a lower [Formula: see text], but had higher hypoxia tolerance (lower O2crit) than normoxic and hyperoxic counterparts. Interestingly, these differences were only apparent when the embryos were measured prior to hatching. Larvae (alevins) incubated in hypoxia following hatching grew similarly to normoxia-incubated alevins. Our results provide evidence that Atlantic salmon embryos are most sensitive to hypoxia prior to hatching, probably due to increasing (absolute) oxygen requirements concurrent with restricted oxygen diffusion through the egg. Moreover, the similarities between normoxia- and hyperoxia-incubated salmon demonstrate that embryos are not oxygen-limited under normoxic conditions.
Collapse
|
10
|
Molecular characterization and expression of suppressor of cytokine signaling (SOCS) 1, 2 and 3 under acute hypoxia and reoxygenation in pufferfish, Takifugu fasciatus. Genes Genomics 2018; 40:1225-1235. [PMID: 30039384 DOI: 10.1007/s13258-018-0719-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/08/2018] [Indexed: 01/11/2023]
Abstract
Hypoxia seriously affects the innate immune system of fish. However, the roles of suppressor of cytokine signaling (SOCS), pivotal anti-inflammatory genes, in response to hypoxia/reoxygenation remain largely unexplored. The primary objective of this study was to elucidate the function of SOCS genes under acute hypoxia and reoxygenation in pufferfish (Takifugu fasciatus). In the present study, SOCS1, 2 and 3 were identified in T. fasciatus referred to as TfSOCS1, 2 and 3. Then, qRT-PCR and western blot analysis were employed to assess their expressions at both the mRNA and protein levels. Tissue distribution demonstrated that the three SOCS genes were predominantly distributed in gill, brain and liver. Under hypoxia challenge (1.63 ± 0.2 mg/L DO for 2, 4, 6 and 8 h), the expressions of TfSOCS1 and 3 in brain and liver at the mRNA and protein levels were significantly decreased, while their expressions showed an opposite trend in gill. Different from the expressions of TfSOCS1 and 3, the expression of TfSOCS2 was inhibited in gill, along with its increased expression in brain and liver. After normoxic recovery (7.0 ± 0.3 mg/L of DO for 4 and 12 h), most of TfSOCS genes were significantly altered at R4 (reoxygenation for 4 h) and returned to the normal level at R12 (reoxygenation for 12 h). SOCS genes played vital roles in response to hypoxia/reoxygenation challenge. Our findings greatly strengthened the relation between innate immune and hypoxia stress in T. fasciatus.
Collapse
|
11
|
The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia. Cell Metab 2018; 27:898-913.e7. [PMID: 29617647 PMCID: PMC5887987 DOI: 10.1016/j.cmet.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/29/2017] [Accepted: 02/20/2018] [Indexed: 01/16/2023]
Abstract
Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia.
Collapse
|
12
|
Wood AT, Clark TD, Andrewartha SJ, Elliott NG, Frappell PB. Developmental Hypoxia Has Negligible Effects on Long-Term Hypoxia Tolerance and Aerobic Metabolism of Atlantic Salmon (Salmo salar). Physiol Biochem Zool 2017; 90:494-501. [PMID: 28459654 DOI: 10.1086/692250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to developmental hypoxia can have long-term impacts on the physiological performance of fish because of irreversible plasticity. Wild and captive-reared Atlantic salmon (Salmo salar) can be exposed to hypoxic conditions during development and continue to experience fluctuating oxygen levels as juveniles and adults. Here, we examine whether developmental hypoxia impacts subsequent hypoxia tolerance and aerobic performance of Atlantic salmon. Individuals at 8°C were exposed to 50% (hypoxia) or 100% (normoxia) dissolved oxygen (DO) saturation (as percent of air saturation) from fertilization for ∼100 d (800 degree days) and then raised in normoxic conditions for a further 15 mo. At 18 mo after fertilization, aerobic scope was calculated in normoxia (100% DO) and acute (18 h) hypoxia (50% DO) from the difference between the minimum and maximum oxygen consumption rates ([Formula: see text] and [Formula: see text], respectively) at 10°C. Hypoxia tolerance was determined as the DO at which loss of equilibrium (LOE) occurred in a constantly decreasing DO environment. There was no difference in [Formula: see text], [Formula: see text], or aerobic scope between fish raised in hypoxia or normoxia. There was some evidence that hypoxia tolerance was lower (higher DO at LOE) in hypoxia-raised fish compared with those raised in normoxia, but the magnitude of the effect was small (12.52% DO vs. 11.73% DO at LOE). Acute hypoxia significantly reduced aerobic scope by reducing [Formula: see text], while [Formula: see text] remained unchanged. Interestingly, acute hypoxia uncovered individual-level relationships between DO at LOE and [Formula: see text], [Formula: see text], and aerobic scope. We discuss our findings in the context of developmental trajectories and the role of aerobic performance in hypoxia tolerance.
Collapse
|
13
|
Kim H, Greenald D, Vettori A, Markham E, Santhakumar K, Argenton F, van Eeden F. Zebrafish as a model for von Hippel Lindau and hypoxia-inducible factor signaling. Methods Cell Biol 2017; 138:497-523. [DOI: 10.1016/bs.mcb.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Zhang G, Mao J, Liang F, Chen J, Zhao C, Yin S, Wang L, Tang Z, Chen S. Modulated expression and enzymatic activities of Darkbarbel catfish, Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation. CHEMOSPHERE 2016; 151:271-9. [PMID: 26945243 DOI: 10.1016/j.chemosphere.2016.02.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 05/14/2023]
Abstract
Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by fish with aquatic respiration. In order to evaluate the effects of hypoxia and reoxygenation on oxidative stress in fish, the mRNA and protein expression of SODs (Cu/Zn-SOD and Mn-SOD) as well as indices (CP, LPO and MDA) and enzymatic activities (SOD, CAT, GPx, GR and GST) were analyzed in liver and brain tissues of Pelteobagrus vachelli. Predominant expression of PvSOD2 was detected in heart, brain, and liver. In contrast, PvSOD1 was highly expressed in liver. Based on the expression patterns of above parameters, we inferred that brain tissue of P. vachelli under 0.7 mg/L degree of acute hypoxia condition could experience hypometabolic states or no suffering stress, but brain tissue has effective mechanisms to minimize or prevent oxidative stress during the transition from hypoxia to reoxygenation. Our results also demonstrated an increased expression of SODs and enzymatic activities for oxidative stress in liver under hypoxic conditions, which supports the hypothesis that anticipatory preparation takes place in order to deal with the encountered oxidative stress during the recovery from hypoxia as proposed by M. Hermes-Lima. Therefore, this study will provide a clue to better understand the action mode of antioxidant genes and enzymes under oxidative stress in fish.
Collapse
Affiliation(s)
- Guosong Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jianqiang Mao
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu 210036, China
| | - Fenfei Liang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Jiawei Chen
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Cheng Zhao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Li Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Zhonglin Tang
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu 210036, China
| | - Shuqiao Chen
- Nanjing Institute of Fisheries Science, Nanjing, Jiangsu 210036, China
| |
Collapse
|
15
|
Tzaneva V, Perry SF. Evidence for a role of heme oxygenase-1 in the control of cardiac function in zebrafish (Danio rerio) larvae exposed to hypoxia. ACTA ACUST UNITED AC 2016; 219:1563-71. [PMID: 26994186 DOI: 10.1242/jeb.136853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022]
Abstract
Carbon monoxide (CO) is a gaseous neurotransmitter produced from the breakdown of heme via heme oxygenase-1 (HO-1; hypoxia-inducible isoform) and heme oxygenase-2 (HO-2; constitutively expressed isoform). In mammals, CO is involved in modulating cardiac function. The role of the HO-1/CO system in the control of heart function in fish, however, is unknown and investigating its physiological function in lower vertebrates will provide a better understanding of the evolution of this regulatory mechanism. We explored the role of the HO-1/CO system in larval zebrafish (Danio rerio) in vivo by investigating the impact of translational gene knockdown of HO-1 on cardiac function. Immunohistochemistry revealed the presence of HO-1 in the pacemaker cells of the heart at 4 days post-fertilization and thus the potential for CO production at these sites. Sham-treated zebrafish larvae (experiencing normal levels of HO-1) significantly increased heart rate (fH) when exposed to hypoxia (PwO2 =30 mmHg). Zebrafish larvae lacking HO-1 expression after morpholino knockdown (morphants) exhibited significantly higher fH under normoxic (but not hypoxic) conditions when compared with sham-treaded fish. The increased fH in HO-1 morphants was rescued (fH was restored to control levels) after treatment of larvae with a CO-releasing molecule (40 µmol l(-1) CORM). The HO-1-deficient larvae developed significantly larger ventricles and when exposed to hypoxia they displayed higher cardiac output ([Formula: see text]) and stroke volume (SV). These results suggest that under hypoxic conditions, HO-1 regulates [Formula: see text] and SV presumably via the production of CO. Overall, this study provides a better understanding of the role of the HO-1/CO system in controlling heart function in lower vertebrates. We demonstrate for the first time the ability for CO to be produced in presumptive pacemaker cells of the heart where it plays an inhibitory role in setting the resting cardiac frequency.
Collapse
Affiliation(s)
- Velislava Tzaneva
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
16
|
Rudin-Bitterli TS, Spicer JI, Rundle SD. Differences in the timing of cardio-respiratory development determine whether marine gastropod embryos survive or die in hypoxia. J Exp Biol 2016; 219:1076-85. [DOI: 10.1242/jeb.134411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/31/2016] [Indexed: 11/20/2022]
Abstract
Physiological plasticity of early developmental stages is a key way by which organisms can survive and adapt to environmental change. We investigated developmental plasticity of aspects of the cardio-respiratory physiology of encapsulated embryos of a marine, gastropod Littorina obtusata surviving exposure to moderate hypoxia (pO2=8 kPa) and compared the development of these survivors with that of individuals that died before hatching. Individuals surviving hypoxia exhibited a slower rate of development and altered ontogeny of cardio-respiratory structure and function compared with normoxic controls (pO2>20 kPa). The onset and development of the larval and adult hearts were delayed in chronological time in hypoxia, but both organs appeared earlier in developmental time and cardiac activity rates were greater. The velum, a transient, ‘larval’ organ thought to play a role in gas exchange, was larger in hypoxia but developed more slowly (in chronological time), and velar cilia-driven, rotational activity was lower. Despite these effects of hypoxia, 38% of individuals survived to hatching. Compared with those embryos that died during development, these surviving embryos had advanced expression of adult structures, i.e. a significantly earlier occurrence and greater activity of their adult heart and larger shells. In contrast, embryos that died retained larval cardio-respiratory features (the velum and larval heart) for longer in chronological time. Surviving embryos came from eggs with significantly higher albumen provisioning than those that died, suggesting an energetic component for advanced development of adult traits.
Collapse
Affiliation(s)
- T. S. Rudin-Bitterli
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - J. I. Spicer
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - S. D. Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| |
Collapse
|
17
|
Cypher AD, Ickes JR, Bagatto B. Bisphenol A alters the cardiovascular response to hypoxia in Danio rerio embryos. Comp Biochem Physiol C Toxicol Pharmacol 2015; 174-175:39-45. [PMID: 26117065 DOI: 10.1016/j.cbpc.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to determine if the cardiovascular response to hypoxia was altered by the presence of bisphenol A (BPA) in Danio rerio embryos. It was expected that BPA exposure would affect cardiovascular parameters during hypoxia more than normoxia due to an interaction between BPA and the hypoxia-inducible factor (HIF-1α) pathway. We demonstrate that BPA exposure has a minimal effect during normoxia but can severely affect the cardiovascular system during a hypoxic event. Cardiovascular response was measured in vivo using video microscopy and digital motion analysis. RBC density increased 35% in hypoxia alone but decreased 48% with addition of 0.25mg/L BPA. Tissue vascularization (% coverage) was unaffected by hypoxia alone but decreased 37% with addition of 0.25mg/L BPA. The diameter and RBC velocity of arteries were more sensitive than veins to BPA exposure during both normoxia and hypoxia. Arterial RBC velocity decreased 42% during normoxia and 52% during hypoxia with 1mg/L BPA. This decrease in velocity may in part be due to the 86% decrease in heart rate (ƒH) observed during co-exposure to hypoxia and 5mg/L BPA. While stroke volume (SV) was unaffected by treatment, cardiac output (Q) decreased by 69% with co-exposure. ƒH and Q were not affected by BPA exposure during normoxia. Development ultimately slowed by 146% and mortality rates were 95% during hypoxia when exposed to 5mg/L BPA. Our results show for the first time that BPA exposure alters the cardiovascular system during hypoxia more so than normoxia.
Collapse
Affiliation(s)
- Alysha D Cypher
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, OH, USA.
| | - Jessica R Ickes
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, OH, USA
| | - Brian Bagatto
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, OH, USA
| |
Collapse
|
18
|
Jonz MG, Buck LT, Perry SF, Schwerte T, Zaccone G. Sensing and surviving hypoxia in vertebrates. Ann N Y Acad Sci 2015; 1365:43-58. [PMID: 25959851 DOI: 10.1111/nyas.12780] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
Surviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates. We discuss the respiratory structures in fish, including the skin, gills, and air-breathing organs, and recent evidence for chemosensory neuroepithelial cells (NECs) in these tissues that initiate reflex responses to hypoxia. The use of the zebrafish as a genetic and developmental model has allowed observation of the ontogenesis of respiratory and chemosensory systems, demonstration of a putative intracellular O2 sensor in chemoreceptors that may initiate transduction of the hypoxia signal, and investigation into the effects of extreme hypoxia on cardiorespiratory development. Other organisms, such as goldfish and freshwater turtles, display a high degree of anoxia tolerance, and these models are revealing important adaptations at the cellular level, such as the regulation of glutamatergic and GABAergic neurotransmission in defense of homeostasis in central neurons.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Leslie T Buck
- Cell and Systems Biology, and Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Giacomo Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Messina, Italy
| |
Collapse
|
19
|
Kopp R, Bauer I, Ramalingam A, Egg M, Schwerte T. Prolonged hypoxia increases survival even in Zebrafish (Danio rerio) showing cardiac arrhythmia. PLoS One 2014; 9:e89099. [PMID: 24551224 PMCID: PMC3925185 DOI: 10.1371/journal.pone.0089099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/14/2014] [Indexed: 01/30/2023] Open
Abstract
Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia. Breakdance mutants (bre) are characterized by chronically reduced cardiac output. Despite an about 50% heart rate reduction, they become adults, but survival rate significantly drops to 40%. Normoxic bre animals demonstrate increased hypoxia inducible factor 1 a (Hif-1α) expression, which indicates an activated hypoxic signaling pathway. Consequently, cardiovascular acclimation, like cardiac hypertrophy and increased erythrocyte concentration, occurs. Thus, it was hypothesized, that under hypoxic conditions survival might be even more reduced. When bre mutants were exposed to hypoxic conditions, they surprisingly showed higher survival rates than under normoxic conditions and even reached wildtype values. In hypoxic wildtype zebrafish, survival yet exceeded normoxic control values. To specify physiological acclimation, cardiovascular and metabolic parameters were measured before hypoxia started (3 dpf), when the first differences in survival rate occurred (7 dpf) and when survival rate plateaued (15 dpf). Hypoxic animals expectedly demonstrated Hif-1α accumulation and consequently enhanced convective oxygen carrying capacity. Moreover, bre animals showed a significantly enhanced heart rate under hypoxic conditions, which reached normoxic wildtype values. This improvement in convective oxygen transport ensured a sufficient oxygen and nutrient supply and was also reflected in the significantly higher mitochondrial activity. The highly optimized energy metabolism observed in hypoxic zebrafish larvae might be decisive for periods of higher energy demand due to organ development, growth and increased activity. However, hypoxia increased survival only during a short period of development and starting hypoxia before or after this phase reduced survival, particularly in bre animals. Thus, the physiological plasticity, which enables zebrafish larvae to benefit from a hypoxia, occurs only within a narrow developmental window.
Collapse
Affiliation(s)
- Renate Kopp
- Institute of Zoology and Center of Molecular Biology, University of Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Ines Bauer
- Institute of Zoology and Center of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Anil Ramalingam
- Institute of Zoology and Center of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Margit Egg
- Institute of Zoology and Center of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Thorsten Schwerte
- Institute of Zoology and Center of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Abstract
The invertebrates have adopted a myriad of breathing strategies to facilitate the extraction of adequate quantities of oxygen from their surrounding environments. Their respiratory structures can take a wide variety of forms, including integumentary surfaces, lungs, gills, tracheal systems, and even parallel combinations of these same gas exchange structures. Like their vertebrate counterparts, the invertebrates have evolved elaborate control strategies to regulate their breathing activity. Our goal in this article is to present the reader with a description of what is known regarding the control of breathing in some of the specific invertebrate species that have been used as model systems to study different mechanistic aspects of the control of breathing. We will examine how several species have been used to study fundamental principles of respiratory rhythm generation, central and peripheral chemosensory modulation of breathing, and plasticity in the control of breathing. We will also present the reader with an overview of some of the behavioral and neuronal adaptability that has been extensively documented in these animals. By presenting explicit invertebrate species as model organisms, we will illustrate mechanistic principles that form the neuronal foundation of respiratory control, and moreover appear likely to be conserved across not only invertebrates, but vertebrate species as well.
Collapse
Affiliation(s)
- Harold J Bell
- Division of Pulmonary and Critical Care, Department of Medicine, Penn State University, Hershey, Pennsylvania, USA.
| | | |
Collapse
|
21
|
Rosselló RA, Chen CC, Dai R, Howard JT, Hochgeschwender U, Jarvis ED. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. eLife 2013; 2:e00036. [PMID: 24015354 PMCID: PMC3762186 DOI: 10.7554/elife.00036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/27/2013] [Indexed: 12/21/2022] Open
Abstract
Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001 Stem cells are ‘pluripotent’—in other words, they have the potential to become many other cell types. This ability makes them extremely valuable for research. They also hold substantial promise for medical applications, since they can be used to replace cells lost or damaged by disease or injury. Embryos represent a rich source of stem cells; however, obtaining these cells from human embryos raises obvious ethical and practical concerns, and they have also been difficult to isolate from many species. A recent discovery circumvented these issues for humans and several mammalian species commonly studied in the laboratory. This technique can turn cells from adult mammals into ‘induced pluripotent stem cells’, or iPSCs, by switching on four genes. Nevertheless, no analogous method has yet been established to create similar cell populations in non-mammalian organisms, which are also important models for human development and disease. Now, Rosselló et al. have shown that cells from both invertebrate and non-mammalian vertebrate species—including birds, fish and insects—can be reprogrammed into cells that closely resemble iPSCs. Intriguingly, these cells were created by switching on the same four genes that generate iPSCs in mammals, even though vertebrates and invertebrates are separated by around 550 million years of evolution. Rosselló et al. used a viral vector that carries the four stem-cell genes (from the mouse) into target cells from the different species. The genetically altered cells developed into iPSC-like cells with many of the characteristics of natural mammalian and bird stem cells. To confirm that the cells were pluripotent, Rossello et al. first showed that the cells could develop into primitive early embryos called embryoid bodies. For the vertebrate species tested, the embryoid bodies contained cells from each of the three main vertebrate embryo cell types. Secondly, iPSC-like cells from two organisms—chicks and zebrafish—formed various mature cell types when injected into developing chick or zebrafish embryos. These results have two important implications. They suggest that the genetic mechanisms by which cells can be reprogrammed into a stem-like state have been conserved through 550 million years of evolution; additionally, they demonstrate that stem-like cells can be generated from important experimental organisms, and provide an important tool for both biological and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.00036.002
Collapse
Affiliation(s)
- Ricardo Antonio Rosselló
- Department of Biochemistry , University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico ; Department of Neurobiology , Duke University Medical Center , Durham , United States ; Howard Hughes Medical Institute, Duke University Medical Center , Durham , United States
| | | | | | | | | | | |
Collapse
|
22
|
Hypoxia impairs visual acuity in snapper (Pagrus auratus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:611-7. [PMID: 23504134 DOI: 10.1007/s00359-013-0809-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
We investigated the effect of environmental hypoxia on vision in snapper (Pagrus auratus). Juvenile snapper inhabit estuarine environments where oxygen conditions fluctuate on a seasonal basis. Optomotor experiments demonstrated that visual acuity is impaired by environmental hypoxia, but not until levels approach the critical oxygen tension (P crit) of this species (around 25% air-saturated seawater). In 100, 80, and 60% air-saturated seawater, a positive optomotor response was present at a minimum separable angle (M SA) of 1°. In 40% air-saturated seawater, vision was partially impaired with positive responses at M SAs of 2° and above. However, in 25% air-saturated seawater, visual acuity was seriously impaired, with positive responses only present at M SAs of 6° and above. Snapper were found to possess a choroid rete, facilitating the maintenance of high ocular oxygen partial pressures (PO2) during normoxia and moderate hypoxia (PO2, between 269 and 290 mmHg). However, at 40 and 25% water oxygen saturation, ocular PO2 was reduced to below 175 mmHg, which is perhaps linked to impairment of visual acuity in these conditions. The ability to preserve visual function during moderate hypoxia is beneficial for the maintenance of a visual lifestyle in the fluctuating oxygen environments of estuaries.
Collapse
|
23
|
Ho DH, Burggren WW. Parental hypoxic exposure confers offspring hypoxia resistance in zebrafish (Danio rerio). J Exp Biol 2012; 215:4208-16. [DOI: 10.1242/jeb.074781] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Summary
Maternal influences are a potentially important component of transgenerational transfer of phenotype in vertebrates. This study on zebrafish (Danio rerio) examined how chronic hypoxic exposure on adults affected the phenotype of their offspring. Separate adult populations were exposed to hypoxia (13.1 kPa O2) or normoxia (21.1 kPa O2) for periods ranging from 1 to 12 weeks. Adults were then returned to normoxia and bred within experimental groups. Adult fecundity and egg characteristics (volume of egg, yolk and perivitelline fluid) were assessed. Subsequently, larval body length, time to loss of equilibrium in severe hypoxia (~4 kPa O2), and critical thermal minima (CTMin) and maxima (CTMax) were measured at 6, 9, 12, 15, 18, 21 and 60 days post fertilization (dpf). Adult fecundity was depressed by hypoxic exposure. Egg component volumes were also depressed in adults exposed to 1-2 weeks of hypoxia, but returned to control levels following longer hypoxic exposure. Adult hypoxic exposures of >1 week resulted in longer body lengths in their larval offspring. Time to loss of equilibrium in severe hypoxia (i.e. hypoxic resistance) in control larvae decreased from 6 to 12 dpf, remaining constant thereafter. Notably, hypoxic resistance from 6-18 dpf was ~15% lower in larvae whose parents were exposed to just 1 week of chronic hypoxia, but resistance was significantly increased by ~24-30% in 6-18 dpf in larvae from adults exposed to 2, 3 or 4 weeks of hypoxia. CTMin (~39.5°C) and CTMax (~10-12 °C) were unchanged by parental hypoxic exposure. This study demonstrates that parental hypoxic exposure in adult zebrafish has profound epigenetic effects on the morphological and physiological phenotype of their offspring.
Collapse
Affiliation(s)
- Dao H. Ho
- Georgia Health Sciences University, Augusta, USA; University of North Texas, Denton, USA
| | | |
Collapse
|
24
|
Jensen LD, Rouhi P, Cao Z, Länne T, Wahlberg E, Cao Y. Zebrafish models to study hypoxia-induced pathological angiogenesis in malignant and nonmalignant diseases. ACTA ACUST UNITED AC 2011; 93:182-93. [PMID: 21671357 DOI: 10.1002/bdrc.20203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most in vivo preclinical disease models are based on mouse and other mammalian systems. However, these rodent-based model systems have considerable limitations to recapitulate clinical situations in human patients. Zebrafish have been widely used to study embryonic development, behavior, tissue regeneration, and genetic defects. Additionally, zebrafish also provides an opportunity to screen chemical compounds that target a specific cell population for drug development. Owing to the availability of various genetically manipulated strains of zebrafish, immune privilege during early embryonic development, transparency of the embryos, and easy and precise setup of hypoxia equipment, we have developed several disease models in both embryonic and adult zebrafish, focusing on studying the role of angiogenesis in pathological settings. These zebrafish disease models are complementary to the existing mouse models, allowing us to study clinically relevant processes in cancer and nonmalignant diseases, which otherwise would be difficult to study in mice. For example, dissemination and invasion of single human or mouse tumor cells from the primary site in association with tumor angiogenesis can be studied under normoxia or hypoxia in zebrafish embryos. Hypoxia-induced retinopathy in the adult zebrafish recapitulates the clinical situation of retinopathy development in diabetic patients or age-related macular degeneration. These zebrafish disease models offer exciting opportunities to understand the mechanisms of disease development, progression, and development of more effective drugs for therapeutic intervention.
Collapse
Affiliation(s)
- Lasse Dahl Jensen
- Deparment of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
25
|
Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene 2011; 31:2247-57. [PMID: 21996733 DOI: 10.1038/onc.2011.442] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The von Hippel-Lindau tumor suppressor gene (VHL) has attracted intensive interest not only because its mutations predispose carriers to devastating tumors, but also because it is involved in oxygen sensing under physiological conditions. VHL loss-of-function mutations result in organ-specific tumors, such as hemangioblastoma of the central nervous system and renal cell carcinoma, both untreatable with conventional chemotherapies. The VHL protein is best known as an E3 ubiquitin ligase that targets hypoxia-inducible factor-α (HIF-α), but many diverse, non-canonical cellular functions have also been assigned to VHL, mainly based on studies in cell culture systems. As such, although the HIF-dependent role of VHL is critical, the full spectrum of pathophysiological functions of VHL is still unresolved. Such understanding requires careful cross-referencing with physiologically relevant experimental models. Studies in model systems, such as Caenorhabditis elegans, Drosophila, zebrafish and mouse have provided critical in vivo confirmation of the VHL-HIF pathway, and verification of potentially important cellular functions including microtubule stabilization and epithelial morphogenesis. More recently, animal models have also suggested systemic roles of VHL in hematopoiesis, metabolic homeostasis and inflammation. In this review, the studies performed in model organisms will be summarized and placed in context with existing clinical and in vitro data.
Collapse
|
26
|
van Rooijen E, Santhakumar K, Logister I, Voest E, Schulte-Merker S, Giles R, van Eeden F. A Zebrafish Model for VHL and Hypoxia Signaling. Methods Cell Biol 2011; 105:163-90. [DOI: 10.1016/b978-0-12-381320-6.00007-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|