1
|
Abstract
In all vertebrates, the thyroid axis is an endocrine feedback system that affects growth, differentiation, and reproduction, by sensing and translating central and peripheral signals to maintain homeostasis and a proper thyroidal set-point. Fish, the most diverse group of vertebrates, rely on this system for somatic growth, metamorphosis, reproductive events, and the ability to tolerate changing environments. The vast majority of the research on the thyroid axis pertains to mammals, in particular rodents, and although some progress has been made to understand the role of this endocrine axis in non-mammalian vertebrates, including amphibians and teleost fish, major gaps in our knowledge remain regarding other groups, such as elasmobranchs and cyclostomes. In this review, we discuss the roles of the thyroid axis in fish and its contributions to growth and development, metamorphosis, reproduction, osmoregulation, as well as feeding and nutrient metabolism. We also discuss how thyroid hormones have been/can be used in aquaculture, and potential threats to the thyroid system in this regard.
Collapse
|
2
|
Yao J, Chen P, Apraku A, Zhang G, Huang Z, Hua X. Hydrolysable Tannin Supplementation Alters Digestibility and Utilization of Dietary Protein, Lipid, and Carbohydrate in Grass Carp ( Ctenopharyngodon idellus). Front Nutr 2019; 6:183. [PMID: 31921876 PMCID: PMC6928198 DOI: 10.3389/fnut.2019.00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022] Open
Abstract
Tannin, an antinutritional component of plant proteins was fed to grass carp (Ctenopharyngodon idellus, 8. 18 ± 0.81 g) for 8 weeks to investigate their tolerance levels. Semi-purified diets (T0, T1, T2, and T3) with varying levels of hydrolysable tannin (0, 0.75, 1.25, and 1.75% respectively) were used. No significant difference was obtained in weight gain, while feed conversion ratio of T0 was significantly lower than T2. Muscle protein content of T0 and T3 were significantly higher than T2, while lipid content of T0 was significantly higher than other groups. Muscle and hepatic glycogen in T0 were significantly lower than other groups. Muscle saturated fatty acids in T3 were significantly higher than T0, and lowest in T1 and T2, while the poly-unsaturated fatty acids in T1 and T2 were higher than T0 and lowest in T3. Significant increases were obtained in trypsin and amylase activities as tannin levels increased, the lipase activity of T0 and T1 was significantly higher than T2 and T3. Activities of hepatic alanine aminotransferase and aspartate aminotransferase decreased with increasing tannin level. The total protein in serum of T2 was significantly higher than T0 and T1 and lowest in T3, whereas globulin of T2 was significantly higher than T0 and T3 and lowest in T1, while albumin of T1 was significantly higher than other groups. Urea nitrogen of T0 was significantly higher than other groups, triglyceride and total cholesterol significantly increased with tannin level and decreased in T3, significant decreases were obtained in low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in T3. mRNA expression of intestinal TOR was significantly upregulated as dietary tannin increased. In hepatopancreas, the expression of glucokinase in T1 was significantly higher than T2, and lowest in T0 and T3, pyruvate kinase in T2 was significantly higher than T0 and T1 and lowest T3. The expression of lipoprotein lipase upregulated as tannin level and downregulated in T3, and fatty acid synthase downregulated as tannin level. In conclusion, grass carp could tolerate 1.75% dietary tannin without influencing growth. However, 1.25% tannin impaired digestion and metabolism of protein, decreased the deposition of lipid and promoted utilization of carbohydrate.
Collapse
Affiliation(s)
- Jingting Yao
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Chen
- Editorial Office, Journal of Shanghai Ocean University, Shanghai Ocean University, Shanghai, China
| | - Andrews Apraku
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Gaigai Zhang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhongyuan Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xueming Hua
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Lawrence MJ, Eliason EJ, Zolderdo AJ, Lapointe D, Best C, Gilmour KM, Cooke SJ. Cortisol modulates metabolism and energy mobilization in wild-caught pumpkinseed (Lepomis gibbosus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1813-1828. [PMID: 31300974 DOI: 10.1007/s10695-019-00680-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Acute elevation of cortisol via activation of the hypothalamic-pituitary-interrenal (HPI) axis aids the fish in dealing with a stressor. However, chronic elevation of cortisol has detrimental effects and has been studied extensively in lab settings. However, data pertaining to wild teleosts are lacking. Here, we characterized the metabolic consequences of prolonged cortisol elevation (96 h) in wild-caught pumpkinseed (Lepomis gibbosus). Pumpkinseed were implanted with cocoa butter alone (sham) or containing cortisol (25 mg kg-1 body weight), and at 24, 48, 72, and 96 h, tissue samples were collected, whole-body ammonia excretion was determined, and whole-organism metabolism was assessed using intermittent flow respirometry. Cortisol-treated pumpkinseed exhibited the highest plasma cortisol concentration at 24 h post-implantation, with levels decreasing over the subsequent time points although remaining higher than in sham-treated fish. Cortisol-treated fish exhibited higher standard and maximal metabolic rates than sham-treated fish, but the effect of cortisol treatment on aerobic scope was negligible. Indices of energy synthesis/mobilization, including blood glucose concentrations, hepatosomatic index, hepatic glycogen concentrations, and ammonia excretion rates, were higher in cortisol-treated fish compared with controls. Our work suggests that although aerobic scope was not diminished by prolonged elevation of cortisol levels, higher metabolic expenditures may be of detriment to the animal's performance in the longer term.
Collapse
Affiliation(s)
- Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93117, USA
| | - Aaron J Zolderdo
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
- Queen's University Biological Station, Queen's University, Elgin, ON, K0G 1E0, Canada
| | - Dominique Lapointe
- St. Lawrence River Institute of Environmental Sciences, Cornwall, ON, K6H 4Z1, Canada
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
4
|
Modulation of Pituitary Response by Dietary Lipids and Throughout a Temperature Fluctuation Challenge in Gilthead Sea Bream. FISHES 2019. [DOI: 10.3390/fishes4040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low temperatures provoke drastic reductions in gilthead sea bream (Sparus aurata) activity and nourishment, leading to growth arrest and a halt in production. However, scarce data exist concerning the implications of central core control during the cold season. The aim of this work was to study the effects of low temperature and recovery from such exposure on the pituitary activity of sea bream juveniles fed 18% or 14% dietary lipid. A controlled indoor trial was performed to simulate natural temperature fluctuation (22 °C to 14 °C to 22 °C). Meanwhile, we determined the regulatory role of the pituitary by analyzing the gene expression of some pituitary hormones and hormone receptors via qPCR, as well as plasma levels of thyroidal hormones. In response to higher dietary lipids, hormone pituitary expressions were up-regulated. Induced low temperatures and lower ingesta modulated pituitary function up-regulating GH and TSH and thyroid and glucocorticoid receptors. All these findings demonstrate the capacity of the pituitary to recognize both external conditions and to modulate its response accordingly. However, growth, peripheral tissues and metabolism were not linked or connected to pituitary function at low temperatures, which opens an interesting field of study to interpret the hypothalamus–pituitary–target axis during temperature fluctuations in fish.
Collapse
|
5
|
Aedo JE, Ruiz-Jarabo I, Martínez-Rodríguez G, Boltaña S, Molina A, Valdés JA, Mancera JM. Contribution of Non-canonical Cortisol Actions in the Early Modulation of Glucose Metabolism of Gilthead Sea Bream ( Sparus aurata). Front Endocrinol (Lausanne) 2019; 10:779. [PMID: 31798534 PMCID: PMC6863068 DOI: 10.3389/fendo.2019.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022] Open
Abstract
Teleost fish are exposed to diverse stressors in farming and wildlife conditions during their lifespan. Cortisol is the main glucocorticoid hormone involved in the regulation of their metabolic acclimation under physiological stressful conditions. In this context, increased plasma cortisol is associated with energy substrate mobilization from metabolic tissues, such as liver and skeletal muscle, to rapidly obtain energy and cope with stress. The metabolic actions of cortisol have primarily been attributed to its genomic/classic action mechanism involving the interaction with intracellular receptors, and regulation of stress-responsive genes. However, cortisol can also interact with membrane components to activate rapid signaling pathways. In this work, using the teleost fish gilthead sea bream (Sparus aurata) as a model, we evaluated the effects of membrane-initiated cortisol actions on the early modulation of glucose metabolism. For this purpose, S. aurata juveniles were intraperitoneally administrated with cortisol and with its membrane impermeable analog, cortisol-BSA. After 1 and 6 h of each treatment, plasma cortisol levels were measured, together with glucose, glycogen and lactate in plasma, liver and skeletal muscle. Transcript levels of corticosteroids receptors (gr1, gr2, and mr) and key gluconeogenesis (g6pc and pepck)- and glycolysis (pgam1 and aldo) related genes in the liver were also measured. Cortisol and cortisol-BSA administration increased plasma cortisol levels in S. aurata 1 h after administration. Plasma glucose levels enhanced 6 h after each treatment. Hepatic glycogen content decreased in the liver at 1 h of both cortisol and cortisol-BSA administration, while increased at 6 h due to cortisol but not in response to cortisol-BSA. Expression of gr1, g6pc, pgam1, and aldo were preferentially increased by cortisol-BSA in the liver. Taking all these results in consideration, we suggest that non-canonical cortisol mechanisms contribute to the regulation of the early glucose metabolism responses to stress in S. aurata.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Ignacio Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, Spain
| | - Sebastián Boltaña
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Juan A. Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- *Correspondence: Juan A. Valdés
| | - Juan M. Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| |
Collapse
|
6
|
Chronic stress of high dietary carbohydrate level causes inflammation and influences glucose transport through SOCS3 in Japanese flounder Paralichthys olivaceus. Sci Rep 2018; 8:7415. [PMID: 29743495 PMCID: PMC5943576 DOI: 10.1038/s41598-018-25412-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Carnivorous fish is thought to be high-glucose intolerance. But the reasons were still unclear. The aim of the present study is to investigate the effects of high level of dietary carbohydrate on the survival, growth and immune responses of Paralichthys olivaceus, and the underlying molecular mechanism related to the immune and glucose metabolism. P. olivaceus were fed with 8%, 16% and 24% of dietary carbohydrate for 10 weeks, respectively. After that, a glucose tolerance test (GTT) was conducted. Results showed that excessive (24%) dietary carbohydrate significantly decreased the growth and glucose tolerance ability according to the GTT. It significantly increased hepatic NADPH oxidase activity and malondialdehyde content and serum contents of IL-6 and advanced glycation end products. The expressions of glucose transport-relevant genes in liver and the content of related hormones in serum were analyzed. In conclusion, it was confirmed that IL-6 increased the expression of suppressor of cytokine signaling 3 (SOCS3) and regulated the downstream targets of PI3K-AKT mediated signal transduction, and then downregulated the glucose transporter 2 activity in liver of P. olivaceus fed diet with excessive carbohydrate level. It was suggested that SOCS3 served as a bridge between immune response and glucose metabolism in P. olivaceus.
Collapse
|
7
|
Wang H, Liu Z, Huang M, Wang S, Cui D, Dong S, Li S, Qi Z, Liu Y. Effects of Long-Term Mineral Block Supplementation on Antioxidants, Immunity, and Health of Tibetan Sheep. Biol Trace Elem Res 2016; 172:326-335. [PMID: 26689930 DOI: 10.1007/s12011-015-0593-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022]
Abstract
Tibetan sheep have been observed with mineral deficiencies and marginal deficiencies in Qinghai-Tibetan Plateau. Adequate amounts of essential minerals are critical to maximize the productivity and health of livestock. The objectives of this study were to evaluate the effects of 6 months of mineral block supplementation on the antioxidants, immunity, and health of Tibetan sheep. The study was conducted in Qinghai-Tibetan Plateau. The consumed values of mineral blocks were measured. Blood samples were collected at the end of the experiment to evaluate the trace elements, malondialdehyde (MDA) and glutathione (GSH) activities, and antioxidant enzyme activities. Additionally, levels of IgA, IgG, IgM, IL-2, IL-12, tumor necrosis factor-α (TNF-α), triiodothyronine (T3), tyroxine (T4), and insulin-like growth factor-1 (IGF-1) were determined. The toxic effects of the mineral block were also monitored. For Tibetan sheep, the average consumed value of mineral block was 13.09 g per day per sheep. Mineral block supplementation significantly increased the serum levels of Mn, Fe, and Se (P < 0.01), decreased the level of MDA (P < 0.05), and increased GSH activity (P < 0.05). Additionally, the mineral block-treated sheep blood had greater total antioxidative capacity (T-AOC) and total superoxide dismutase (T-SOD) activities (P < 0.01 or P < 0.05) than control sheep. Moreover, the mineral block supplementation improved the levels IgA, IgM, and IGF-1 (P < 0.01 or P < 0.05). Additionally, there were no significant histopathological changes in the organs of Tibetan sheep after long-term treatment with the mineral block. The results demonstrated that the mineral block was non-toxic and safe; the protective effects of the mineral block might be caused by an increase in the antioxidant defense system, as well as an increase in the benefits from immunity-related parameters.
Collapse
Affiliation(s)
- Hui Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Zhiqi Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Meizhou Huang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China
| | - Shengyi Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China
| | - Dongan Cui
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China
| | - Shuwei Dong
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China
| | - Shengkun Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China
| | - Zhiming Qi
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China
| | - Yongming Liu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
8
|
|
9
|
Wang Y, Wang H, Li M, Gao Z, Zhang S. Identification, expression and regulation of amphioxus G6Pase gene with an emphasis on origin of liver. Gen Comp Endocrinol 2015; 214:9-16. [PMID: 25745818 DOI: 10.1016/j.ygcen.2014.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/25/2014] [Accepted: 12/28/2014] [Indexed: 10/23/2022]
Abstract
Vertebrate glucose-6-phosphatase (G6Pase) consists of three isozymes: G6Pase-I, G6Pase-II and G6Pase-III. Despite extensive study on G6Pases in vertebrates, information regarding expression and regulation of G6Pase genes is rather limited in invertebrates. Here we report the identification of G6Pase gene in amphioxus Branchiostoma japonicum, which is abundantly expressed in the digestive diverticulum and ovary in a tissue-specific manner. The phylogenetic and genomic structure analyses reveal that amphioxus G6Pase bears close resemblance to vertebrate G6Pase-III and represents the archetype of vertebrate G6Pase from which the vertebrate G6Pase isoforms may be originated by 2 rounds of genome duplication during vertebrate evolution. We also demonstrate that GH treatment induces a closely similar expression pattern and trend of g6pases in both zebrafish and amphioxus, and that G6Pase activity in amphioxus digestive diverticulum is subjected to regulation of feeding and fasting as observed in vertebrates. Collectively, all these provide functional evidences supporting the notion that the digestive diverticulum is the liver homologue playing a key role in maintaining the glucose homeostasis in amphioxus.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Hui Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengyang Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Zhuo MQ, Luo Z, Wu K, Zhu QL, Zheng JL, Zhang LH, Chen QL. Regulation of insulin on lipid metabolism in freshly isolated hepatocytes from yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol B Biochem Mol Biol 2014; 177-178:21-8. [DOI: 10.1016/j.cbpb.2014.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 12/12/2022]
|
11
|
Qiang J, He J, Yang H, Wang H, Kpundeh M, Xu P, Zhu Z. Temperature modulates hepatic carbohydrate metabolic enzyme activity and gene expression in juvenile GIFT tilapia (Oreochromis niloticus) fed a carbohydrate-enriched diet. J Therm Biol 2014; 40:25-31. [DOI: 10.1016/j.jtherbio.2013.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/25/2013] [Accepted: 12/22/2013] [Indexed: 11/16/2022]
|
12
|
Gilmour KM, Kirkpatrick S, Massarsky A, Pearce B, Saliba S, Stephany CÉ, Moon TW. The Influence of Social Status on Hepatic Glucose Metabolism in Rainbow Trout Oncorhynchus mykiss. Physiol Biochem Zool 2012; 85:309-20. [DOI: 10.1086/666497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Leung LY, Woo NYS. Influence of dietary carbohydrate level on endocrine status and hepatic carbohydrate metabolism in the marine fish Sparus sarba. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:543-554. [PMID: 21701819 DOI: 10.1007/s10695-011-9534-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 06/16/2011] [Indexed: 05/31/2023]
Abstract
Silver sea bream, Sparus sarba, were fed two diets of different carbohydrate levels (2 and 20% dextrin) for 4 weeks, and the effects on organ indices, liver composition, serum metabolite and hormone levels and gene expression profile of key enzymes of carbohydrate metabolism in the liver were investigated. By using real-time PCR, mRNA expression levels of carbohydrate metabolic enzymes including glucokinase (GK, glycolysis), glucose-6-phosphatase (G6Pase, gluconeogenesis), glycogen synthase (GS, glycogenesis), glycogen phosphorylase (GP, glycogenolysis) and glucose-6-phosphate dehydrogenase (G6PDH, pentose phosphate pathway) in liver of sea bream have been examined, and it was found that high dietary carbohydrate level increased mRNA level of GK but decreased mRNA levels of G6Pase and GP. However, mRNA levels of GS and G6PDH were not significantly influenced by dietary carbohydrate. Silver sea bream fed high dietary carbohydrate had higher hepatosomatic index (HSI), liver glycogen and protein, but there were no significant changes in gonadosomatic index (GSI), serum glucose and protein level, as well as liver lipid and moisture level. Pituitary growth hormone (GH) and hepatic insulin-like growth factor I (IGF-I) transcript abundance were assayed by real-time PCR, and it was found that both parameters remained unchanged in fish fed different dietary carbohydrate levels. Serum triiodothyronine (T(3)) and thyroxine (T(4)) were not significantly affected by dietary carbohydrate levels, but lower serum cortisol level was found in fish fed high dietary carbohydrate level. These results suggest that silver sea bream is able to adapt to a diet with high carbohydrate content (up to 20% dextrin), the consumption of which would lead to fundamental re-organization of carbohydrate metabolism resulting in hepatic glycogen deposition.
Collapse
Affiliation(s)
- L Y Leung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | |
Collapse
|
14
|
Schmidt F, Schnurr S, Wolf R, Braunbeck T. Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:47-58. [PMID: 22204988 DOI: 10.1016/j.aquatox.2011.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 05/31/2023]
Abstract
The increasing pollution of aquatic habitats with anthropogenic compounds has led to various test strategies to detect hazardous chemicals. However, information on effects of pollutants in the thyroid system in fish, which is essential for growth, development and parts of reproduction, is still scarce. Other vertebrate groups such as amphibians or mammals are well-studied; so the need for further knowledge especially in fish as a favored vertebrate model test organism is evident. Modified early life-stage tests were carried out with zebrafish exposed to the known thyroid inhibitor potassium perchlorate (0, 62.5, 125, 250, 500 and 5000 μg/L) to identify adverse effects on the hypothalamic-pituitary-thyroid axis. Especially higher perchlorate concentrations led to conspicuous alterations in thyroidal tissue architecture and to effects in the pituitary. In the thyroid, severe hyperplasia at concentrations ≥ 500 μg/L together with an increase in follicle number could be detected. The most sensitive endpoint was the colloid, which showed alterations at ≥ 250 μg/L. The tinctorial properties and the texture of the colloid changed dramatically. Interestingly, effects on epithelial cell height were minor. The pituitary revealed significant proliferations of TSH-producing cells resulting in alterations in the ratio of adeno- to neurohypophysis. The liver as the main site of T4 deiodination showed severe glycogen depletion at concentrations ≥ 250 μg/L. In summary, the thyroid system in zebrafish showed effects by perchlorate from concentrations ≥ 250 μg/L, thus documenting a high sensitivity of the zebrafish thyroid gland for goitrogens. In the future, such distinct alterations could lead to a better understanding and identification of potential thyroid-disrupting chemicals.
Collapse
Affiliation(s)
- Florian Schmidt
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|