1
|
Babic NL, Johnstone CP, Reljić S, Sergiel A, Huber Đ, Reina RD. Evaluation of physiological stress in free-ranging bears: current knowledge and future directions. Biol Rev Camb Philos Soc 2023; 98:168-190. [PMID: 36176191 PMCID: PMC10086944 DOI: 10.1111/brv.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Stress responses, which are mediated by the neurogenic system (NS) and hypothalamic-pituitary-adrenal (HPA) axis help vertebrates maintain physiological homeostasis. Fight-or-flight responses are activated by the NS, which releases norepinephrine/noradrenaline and epinephrine/adrenaline in response to immediate stressors, whilst the HPA axis releases glucocorticoid hormones (e.g. cortisol and corticosterone) to help mitigate allostatic load. There have been many studies on stress responses of captive animals, but they are not truly reflective of typical ranges or the types of stressors encountered by free-ranging wildlife, such as responses and adaptation to environmental change, which are particularly important from a conservation perspective. As stress can influence the composition of age and sex classes of free-ranging populations both directly and indirectly, ecological research must be prioritised towards more vulnerable taxa. Generally, large predators tend to be particularly at risk of anthropogenically driven population declines because they exhibit reduced behavioural plasticity required to adapt to changing landscapes and exist in reduced geographic ranges, have small population sizes, low fecundity rates, large spatial requirements and occupy high trophic positions. As a keystone species with a long history of coexistence with humans in highly anthropogenic landscapes, there has been growing concern about how humans influence bear behaviour and physiology, via numerous short- and long-term stressors. In this review, we synthesise research on the stress response in free-ranging bear populations and evaluate the effectiveness and limitations of current methodology in measuring stress in bears to identify the most effective metrics for future research. Particularly, we integrate research that utilised haematological variables, cardiac monitors and Global Positioning System (GPS) collars, serum/plasma and faecal glucocorticoid concentrations, hair cortisol levels, and morphological metrics (primarily skulls) to investigate the stress response in ursids in both short- and long-term contexts. We found that in free-ranging bears, food availability and consumption have the greatest influence on individual stress, with mixed responses to anthropogenic influences. Effects of sex and age on stress are also mixed, likely attributable to inconsistent methods. We recommend that methodology across all stress indicators used in free-ranging bears should be standardised to improve interpretation of results and that a wider range of species should be incorporated in future studies.
Collapse
Affiliation(s)
- Natarsha L Babic
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Christopher P Johnstone
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Slaven Reljić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
| | - Agnieszka Sergiel
- Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, Krakow, 31120, Poland
| | - Đuro Huber
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia.,Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, Krakow, 31120, Poland
| | - Richard D Reina
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| |
Collapse
|
2
|
Whiteman JP, Harlow HJ, Durner GM, Regehr EV, Amstrup SC, Pagano AM, Ben‐David M. The acute physiological response of polar bears to helicopter capture. J Wildl Manage 2022; 86:e22238. [PMID: 35915725 PMCID: PMC9324155 DOI: 10.1002/jwmg.22238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
Many wildlife species are live captured, sampled, and released; for polar bears (Ursus maritimus) capture often requires chemical immobilization via helicopter darting. Polar bears reduce their activity for approximately 4 days after capture, likely reflecting stress recovery. To better understand this stress, we quantified polar bear activity (via collar-mounted accelerometers) and body temperature (via loggers in the body core [Tabd] and periphery [Tper]) during 2-6 months of natural behavior, and during helicopter recapture and immobilization. Recapture induced bouts of peak activity higher than those that occurred during natural behavior for 2 of 5 bears, greater peak Tper for 3 of 6 bears, and greater peak Tabd for 1 of 6 bears. High body temperature (>39.0°C) occurred in Tper for 3 of 6 individuals during recapture and 6 of 6 individuals during natural behavior, and in Tabd for 2 of 6 individuals during recapture and 3 of 6 individuals during natural behavior. Measurements of Tabd and Tper correlated with rectal temperatures measured after immobilization, supporting the use of rectal temperatures for monitoring bear response to capture. Using a larger dataset (n = 66 captures), modeling of blood biochemistry revealed that maximum ambient temperature during recapture was associated with a stress leukogram (7-26% decline in percent lymphocytes, 12-21% increase in percent neutrophils) and maximum duration of helicopter operations had a similar but smaller effect. We conclude that polar bear activity and body temperature during helicopter capture are similar to that which occurs during the most intense events of natural behavior; high body temperature, especially in warm capture conditions, is a key concern; additional study of stress leukograms in polar bears is needed; and additional data collection regarding capture operations would be useful.
Collapse
Affiliation(s)
- John P. Whiteman
- Department of Biological Sciences, Old Dominion UniversityHampton BoulevardNorfolkVA23529USA
| | - Henry J. Harlow
- Department of Zoology and Physiology, University of WyomingUniversity AvenueLaramieWY82071USA
| | - George M. Durner
- Alaska Science Center, US Geological SurveyUniversity DriveAnchorageAK99508USA
| | - Eric V. Regehr
- Polar Science CenterUniversity of WashingtonNE 40th StreetSeattleWA98105USA
| | | | - Anthony M. Pagano
- Alaska Science Center, US Geological SurveyUniversity DriveAnchorageAK99508USA
| | - Merav Ben‐David
- Department of Zoology and Physiology, University of WyomingUniversity AvenueLaramieWY82071USA
| |
Collapse
|
3
|
Houser DS, Derous D, Douglas A, Lusseau D. Metabolic response of dolphins to short-term fasting reveals physiological changes that differ from the traditional fasting model. J Exp Biol 2021; 224:jeb238915. [PMID: 33766933 PMCID: PMC8126448 DOI: 10.1242/jeb.238915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Bottlenose dolphins (Tursiops truncatus) typically feed on prey that are high in lipid and protein content and nearly devoid of carbohydrate, a dietary feature shared with other marine mammals. However, unlike fasted-adapted marine mammals that predictably incorporate fasting into their life history, dolphins feed intermittently throughout the day and are not believed to be fasting-adapted. To assess whether the physiological response to fasting in the dolphin shares features with or distinguishes them from those of fasting-adapted marine mammals, the plasma metabolomes of eight bottlenose dolphins were compared between post-absorptive and 24-h fasted states. Increases in most identified free fatty acids and lipid metabolites and reductions in most amino acids and their metabolites were consistent with the upregulation of lipolysis and lipid oxidation and the downregulation of protein catabolism and synthesis. Consistent with a previously hypothesized diabetic-like fasting state, fasting was associated with elevated glucose and patterns of certain metabolites (e.g. citrate, cis-aconitate, myristoleic acid) indicative of lipid synthesis and glucose cycling to protect endogenous glucose from oxidative disposal. Pathway analysis predicted an upregulation of cytokines, decreased cell growth and increased apoptosis including apoptosis of insulin-secreting β-cells. Metabolomic conditional mutual information networks were estimated for the post-absorptive and fasted states and 'topological modules' were estimated for each using the eigenvector approach to modularity network division. A dynamic network marker indicative of a physiological shift toward a negative energy state was subsequently identified that has the potential conservation application of assessing energy state balance in at-risk wild dolphins.
Collapse
Affiliation(s)
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Alex Douglas
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David Lusseau
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- National Institute of Aquatic Resources, DTU Aqua, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
4
|
Fowler NL, Spady TJ, Wang G, Leopold BD, Belant JL. Denning, metabolic suppression, and the realisation of ecological opportunities in Ursidae. Mamm Rev 2021. [DOI: 10.1111/mam.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nicholas L. Fowler
- Global Wildlife Conservation Center State University of New York College of Environmental Science and Forestry 1 Forestry Drive Syracuse NY13210USA
| | - Thomas J. Spady
- Department of Biological Sciences California State University San Marcos San Marcos CA92096USA
| | - Guiming Wang
- Department of Wildlife, Fisheries, and Aquaculture Mississippi State UniversityMississippi State Box 9690MS39762USA
| | - Bruce D. Leopold
- Department of Wildlife, Fisheries, and Aquaculture Mississippi State UniversityMississippi State Box 9690MS39762USA
| | - Jerrold L. Belant
- Global Wildlife Conservation Center State University of New York College of Environmental Science and Forestry 1 Forestry Drive Syracuse NY13210USA
| |
Collapse
|
5
|
Boonstra R, Bodner K, Bosson C, Delehanty B, Richardson ES, Lunn NJ, Derocher AE, Molnár PK. The stress of Arctic warming on polar bears. GLOBAL CHANGE BIOLOGY 2020; 26:4197-4214. [PMID: 32364624 DOI: 10.1111/gcb.15142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 05/25/2023]
Abstract
Arctic ecosystems are changing rapidly in response to climate warming. While Arctic mammals are highly evolved to these extreme environments, particularly with respect to their stress axis, some species may have limited capacity to adapt to this change. We examined changes in key components of the stress axis (cortisol and its carrier protein-corticosteroid binding globulin [CBG]) in polar bears (Ursus maritimus) from western Hudson Bay (N = 300) over a 33 year period (1983-2015) during which time the ice-free period was increasing. Changing sea ice phenology limits spring hunting opportunities and extends the period of onshore fasting. We assessed the response of polar bears to a standardized stressor (helicopter pursuit, darting, and immobilization) during their onshore fasting period (late summer-autumn) and quantified the serum levels of the maximum corticosteroid binding capacity (MCBC) of CBG, the serum protein that binds cortisol strongly, and free cortisol (FC). We quantified bear condition (age, sex, female with cubs or not, fat condition), sea ice (breakup in spring-summer, 1 year lagged freeze-up in autumn), and duration of fasting until sample collection as well as cumulative impacts of the latter environmental traits from the previous year. Data were separated into "good" years (1983-1990) when conditions were thought to be optimal and "poor" years (1991-2015) when sea ice conditions deteriorated and fasting on land was extended. MCBC explained 39.4% of the variation in the good years, but only 28.1% in the poor ones, using both biological and environmental variables. MCBC levels decreased with age. Changes in FC were complex, but more poorly explained. Counterintuitively, MCBC levels increased with increased time onshore, 1 year lag effects, and in poor ice years. We conclude that MCBC is a biomarker of stress in polar bears and that the changes we document are a consequence of climate warming.
Collapse
Affiliation(s)
- Rudy Boonstra
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Korryn Bodner
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Curtis Bosson
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Brendan Delehanty
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Evan S Richardson
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Winnipeg, MB, Canada
| | - Nicholas J Lunn
- Environment and Climate Change Canada, Biological Sciences Building, University of Alberta, Edmonton, AB, Canada
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Péter K Molnár
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Wilson AE, Michaud SA, Jackson AM, Stenhouse G, Coops NC, Janz DM. Development and validation of protein biomarkers of health in grizzly bears. CONSERVATION PHYSIOLOGY 2020; 8:coaa056. [PMID: 32607241 PMCID: PMC7311831 DOI: 10.1093/conphys/coaa056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/09/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Large carnivores play critical roles in the maintenance and function of natural ecosystems; however, the populations of many of these species are in decline across the globe. Therefore, there is an urgent need to develop novel techniques that can be used as sensitive conservation tools to detect new threats to the health of individual animals well in advance of population-level effects. Our study aimed to determine the expression of proteins related to energetics, reproduction and stress in the skin of grizzly bears (Ursus arctos) using a liquid chromatography and multiple reaction monitoring mass spectrometry assay. We hypothesized that a suite of target proteins could be measured using this technique and that the expression of these proteins would be associated with biological (sex, age, sample location on body) and environmental (geographic area, season, sample year) variables. Small skin biopsies were collected from free-ranging grizzly bears in Alberta, Canada, from 2013 to 2019 (n = 136 samples from 111 individuals). Over 700 proteins were detected in the skin of grizzly bears, 19 of which were chosen as targets because of their established roles in physiological function. Generalized linear mixed model analysis was used for each target protein. Results indicate that sample year influenced the majority of proteins, suggesting that physiological changes may be driven in part by responses to changes in the environment. Season influenced the expression of proteins related to energetics, reproduction and stress, all of which were lower during fall compared to early spring. The expression of proteins related to energetics and stress varied by geographic area, while the majority of proteins that were affected by biological attributes (age class, sex and age class by sex interaction) were related to reproduction and stress. This study provides a novel method by which scientists and managers can further assess and monitor physiological function in wildlife.
Collapse
Affiliation(s)
- Abbey E Wilson
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Sarah A Michaud
- The University of Victoria Genome BC Proteomics Centre, 4464 Markham St #3101, Victoria, British Columbia V8Z 7X8, Canada
| | - Angela M Jackson
- The University of Victoria Genome BC Proteomics Centre, 4464 Markham St #3101, Victoria, British Columbia V8Z 7X8, Canada
| | - Gordon Stenhouse
- Foothills Research Institute, Grizzly Bear Program, 1176 Switzer Drive, Hinton, Alberta T7V 1V3, Canada
| | - Nicholas C Coops
- Department of Forest Resource Management, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - David M Janz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| |
Collapse
|
7
|
Hanover AM, Husak JF, Lovern M. Corticosterone in Lizard Egg Yolk Is Reduced by Maternal Diet Restriction but Unaltered by Maternal Exercise. Physiol Biochem Zool 2019; 92:573-578. [PMID: 31584858 DOI: 10.1086/705708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
When females face adverse environmental conditions, physiological changes, such as elevated corticosterone levels, to cope with the stressors may also impact their offspring. Such maternal effects are often considered adaptive and may "prime" the offspring for the same adverse environment, but maternal corticosterone levels do not always match that of the eggs produced. We examined how diet restriction and increased locomotor activity, via exercise training, affected steroid hormone levels of female green anole lizards, as well as the hormone levels in the yolk of their eggs. Diet restriction did not affect female hormone levels, but training increased corticosterone levels. Despite this, training did not affect yolk steroid levels, but eggs from females with diet restriction had lower corticosterone levels in yolk. This suggests that two common stressors, food shortage and increased locomotor activity, impact female physiology in a way that is not translated to her offspring.
Collapse
|
8
|
Crill C, Janz DM, Kusch JM, Santymire RM, Heyer GP, Shury TK, Lane JE. Investigation of the utility of feces and hair as non-invasive measures of glucocorticoids in wild black-tailed prairie dogs (Cynomys ludovicianus). Gen Comp Endocrinol 2019; 275:15-24. [PMID: 30735671 DOI: 10.1016/j.ygcen.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Non-invasive measures of glucocorticoid (GC) hormones and their metabolites, particularly in feces and hair, are gaining popularity as wildlife management tools, but species-specific validations of these tools remain rare. We report the results of a validation on black-tailed prairie dogs (Cynomys ludovicianus), a highly social engineer of the grasslands ecosystem that has experienced recent population declines. We captured adult female prairie dogs and brought them into temporary captivity to conduct an adrenocorticotropic hormone (ACTH) stimulation test, assessing the relationship between plasma GC and fecal glucocorticoid metabolite (FGM) levels following a single injection of a low (4 IU/kg) or high dose (12 IU/kg) of ACTH, compared to a single injection of saline. We also gave repeated injections of ACTH to adult females to assess whether this would result in an increase of hair cortisol concentrations, compared with control individuals repeatedly injected with saline. A single injection of ACTH at either low or high dose peaked plasma cortisol levels after 30 min, and thereafter the cortisol levels declined until 120 min, where they returned to pre-treatment levels comparable to those of the saline injected group. Despite the significant elevation of plasma cortisol in the treatment groups following ACTH injection, the elevation of FGM levels in the treatment groups were not significantly different from those in the control group over the following 12 h. Repeated injection of a high dose of ACTH failed to increase hair cortisol concentration in treatment animals. Instead, hair cortisol levels remained comparable to the pre-treatment mean, despite an increase in post-treatment hair cortisol levels seen in the saline-injected group. The magnitude of increase in the saline control group was comparable to natural seasonal variation seen in unmanipulated individuals. These results highlight that while measurement of GCs and their metabolites in feces and hair are potentially valuable conservation tools for black-tailed prairie dogs, further validation work is required before these matrices can be to real-world conservation applications.
Collapse
Affiliation(s)
- Colleen Crill
- Department of Biology, University of Saskatchewan, Canada.
| | - David M Janz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Canada
| | | | - Rachel M Santymire
- Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, United States
| | | | | | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Canada
| |
Collapse
|
9
|
Pilfold NW, Hedman D, Stirling I, Derocher AE, Lunn NJ, Richardson E. Mass Loss Rates of Fasting Polar Bears. Physiol Biochem Zool 2016; 89:377-88. [DOI: 10.1086/687988] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Gormezano LJ, Rockwell RF. The Energetic Value of Land-Based Foods in Western Hudson Bay and Their Potential to Alleviate Energy Deficits of Starving Adult Male Polar Bears. PLoS One 2015; 10:e0128520. [PMID: 26061693 PMCID: PMC4489586 DOI: 10.1371/journal.pone.0128520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Climate change is predicted to expand the ice-free season in western Hudson Bay and when it grows to 180 days, 28–48% of adult male polar bears are projected to starve unless nutritional deficits can be offset by foods consumed on land. We updated a dynamic energy budget model developed by Molnar et al. to allow influx of additional energy from novel terrestrial foods (lesser snow geese, eggs, caribou) that polar bears currently consume as part of a mixed diet while on land. We calculated the units of each prey, alone and in combination, needed to alleviate these lethal energy deficits under conditions of resting or limited movement (2 km d-1) prior to starvation. We further considered the total energy available from each sex and age class of each animal prey over the period they would overlap land-bound polar bears and calculated the maximum number of starving adult males that could be sustained on each food during the ice-free season. Our results suggest that the net energy from land-based food, after subtracting costs of limited movement to obtain it, could eliminate all projected nutritional deficits of starving adult male polar bears and likely other demographic groups as well. The hunting tactics employed, success rates as well as behavior and abundance of each prey will determine the realized energetic values for individual polar bears. Although climate change may cause a phenological mismatch between polar bears and their historical ice-based prey, it may simultaneously yield a new match with certain land-based foods. If polar bears can transition their foraging behavior to effectively exploit these resources, predictions for starvation-related mortality may be overestimated for western Hudson Bay. We also discuss potential complications with stable-carbon isotope studies to evaluate utilization of land-based foods by polar bears including metabolic effects of capture-related stress and consuming a mixed diet.
Collapse
Affiliation(s)
- Linda J. Gormezano
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States of America
- * E-mail:
| | - Robert F. Rockwell
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States of America
| |
Collapse
|
11
|
Daley JM, Paterson G, Drouillard KG. Bioamplification as a bioaccumulation mechanism for persistent organic pollutants (POPs) in wildlife. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 227:107-155. [PMID: 24158581 DOI: 10.1007/978-3-319-01327-5_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Persistent organic pollutant bioaccumulation models have generally been formulated to predict bioconcentration and biomagnification. A third bioaccumulation process that can mediate chemical fugacity in an organism is bioamplification.Bioamplification occurs when an organism loses body weight and the chemical partitioning capacity occurs at a rate that is faster than the chemical can be eliminated.Although bioamplification has not been widely recognized as a bioaccumulation process, the potential consequences of this process are significant. Bioamplification causes an increase in chemical fugacity in the animal's tissues and results in there distribution of contaminants from inert storage sites to more toxicologically sensitive tissues. By reviewing laboratory and field studies, we have shown in this paper that bioamplification occurs across taxonomic groups that include, invertebrates,amphibians, fishes, birds, and mammals. Two case studies are presented, and constitute multi-life stage non-steady state bioaccumulation models calibrated for yellow perch and herring gulls. These case studies were used to demonstrate that bioamplification is predicted to occur under realistic scenarios of animal growth and seasonal weight loss. Bioamplification greatly enhances POP concentrations and chemical fugacities during critical physiological and behavioral events in an animal's life history, e.g., embryo development, juvenile stages, metamorphosis, reproduction, migration, overwintering, hibernation, and disease. Consequently,understanding the dynamics of bioamplification, and how different life history scenario scan alter tissue residues, may be helpful and important in assessing wildlife hazards and risks.
Collapse
Affiliation(s)
- Jennifer M Daley
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada, N9B 3P4,
| | | | | |
Collapse
|
12
|
Bechshøft TØ, Sonne C, Rigét FF, Letcher RJ, Novak MA, Henchey E, Meyer JS, Eulaers I, Jaspers VLB, Covaci A, Dietz R. Polar bear stress hormone cortisol fluctuates with the North Atlantic Oscillation climate index. Polar Biol 2013. [DOI: 10.1007/s00300-013-1364-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Macbeth BJ, Cattet MRL, Obbard ME, Middel K, Janz DM. Evaluation of hair cortisol concentration as a biomarker of long-term stress in free-ranging polar bears. WILDLIFE SOC B 2012. [DOI: 10.1002/wsb.219] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Vongraven D, Aars J, Amstrup S, Atkinson SN, Belikov S, Born EW, DeBruyn TD, Derocher AE, Durner G, Gill M, Lunn N, Obbard ME, Omelak J, Ovsyanikov N, Peacock E, Richardson E, Sahanatien V, Stirling I, Wiig Ø. A circumpolar monitoring framework for polar bears. URSUS 2012. [DOI: 10.2192/ursus-d-11-00026.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Bechshøft TØ, Rigét FF, Sonne C, Letcher RJ, Muir DCG, Novak MA, Henchey E, Meyer JS, Eulaers I, Jaspers VLB, Eens M, Covaci A, Dietz R. Measuring environmental stress in East Greenland polar bears, 1892-1927 and 1988-2009: what does hair cortisol tell us? ENVIRONMENT INTERNATIONAL 2012; 45:15-21. [PMID: 22572112 PMCID: PMC3366040 DOI: 10.1016/j.envint.2012.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/13/2012] [Accepted: 04/07/2012] [Indexed: 04/18/2024]
Abstract
Hair sampled from 96 East Greenland polar bears (Ursus maritimus) over the periods 1892-1927 and 1988-2009 was analyzed for cortisol as a proxy to investigate temporal patterns of environmental stress. Cortisol concentration was independent of sex and age, and was found at significantly higher (p<0.001) concentrations in historical hair samples (1892-1927; n=8) relative to recent ones (1988-2009; n=88). In addition, there was a linear time trend in cortisol concentration of the recent samples (p<0.01), with an annual decrease of 2.7%. The recent hair samples were also analyzed for major bioaccumulative, persistent organic pollutants (POPs). There were no obvious POP related time trends or correlations between hair cortisol and hair POP concentrations. Thus, polar bear hair appears to be a relatively poor indicator of the animal's general POP load in adipose tissue. However, further investigations are warranted to explore the reasons for the temporal decrease found in the bears' hair cortisol levels.
Collapse
Affiliation(s)
- T Ø Bechshøft
- Department of Bioscience, Aarhus University, Box 358, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bechshøft TØ, Sonne C, Dietz R, Born EW, Novak MA, Henchey E, Meyer JS. Cortisol levels in hair of East Greenland polar bears. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:831-4. [PMID: 21144554 PMCID: PMC3019279 DOI: 10.1016/j.scitotenv.2010.10.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 05/19/2023]
Abstract
To demonstrate the ability to assess long-term hypothalamic-pituitary-adrenocortical (HPA) axis activity in polar bears (Ursus maritimus), a pilot study was conducted in which cortisol concentrations was analyzed in hair from 7 female (3-19 years) and 10 male (6-19 years) East Greenland polar bears sampled in 1994-2006. The hair was chosen as matrix as it is non-invasive, seasonally harmonized, and has been validated as an index of long-term changes in cortisol levels. The samples were categorized according to contamination: eight were clean (2 females, 6 males), 5 had been contaminated with bear blood (2 F, 3 M), and 4 with bear fat (3 F, 1 M). There was no significant difference in cortisol concentration between the three categories after external contamination was removed. However, contaminated hair samples should be cleaned before cortisol determination. Average hair cortisol concentration was 8.90 pg/mg (range: 5.5 to 16.4 pg/mg). There was no significant correlation between cortisol concentration and age (p=0.81) or sampling year (p=0.11). However, females had higher mean cortisol concentration than males (females mean: 11.0 pg/mg, males: 7.3 pg/mg; p=0.01). The study showed that polar bear hair contains measurable amounts of cortisol and that cortisol in hair may be used in studies of long-term stress in polar bears.
Collapse
Affiliation(s)
- TØ Bechshøft
- Department of Arctic Environment, National Environmental Research Institute, Aarhus University, Box 358, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Corresponding author: , Tel: +45 4630 1952, Fax: +45 4630 1914
| | - C Sonne
- Department of Arctic Environment, National Environmental Research Institute, Aarhus University, Box 358, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - R Dietz
- Department of Arctic Environment, National Environmental Research Institute, Aarhus University, Box 358, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - EW Born
- Greenland Institute of Natural Resources, Box 570, 3900 Nuuk, Greenland
| | - MA Novak
- Department of Psychology, University of Massachusetts, Tobin Hall, 135 Hicks Way, Amherst, MA 01003-9298, USA
| | - E Henchey
- Department of Biochemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - JS Meyer
- Department of Psychology, University of Massachusetts, Tobin Hall, 135 Hicks Way, Amherst, MA 01003-9298, USA
| |
Collapse
|