1
|
Hao X, Gu Q, Isborn C, Vasquez JR, Long MP, Ye T. Quantitative measurement of cation-mediated adhesion of DNA to anionic surfaces. SOFT MATTER 2024; 20:7147-7156. [PMID: 39194357 DOI: 10.1039/d3sm01733h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Anionic polyelectrolytes, such as DNA, are attracted to anionic surfaces in the presence of multivalent cations. A major barrier toward molecular-level understanding of these attractive interactions is the paucity of measurements of the binding strength. Here, atomic force microscopy-based single molecule force spectroscopy was used to quantify the binding free energy of double-stranded DNA to an anionic surface, with complementary density functional theory calculations of the binding energies of metal ion-ligand complexes. The results support both electrostatic attraction and ion-specific binding. Our study suggests that the correlated interactions between counterions are responsible for attraction between DNA and an anionic surface, but the strength of this attraction is modulated by the identity of the metal ion. We propose a mechanism in which the strength of metal-ligand binding, as well as the preference for particular binding sites, influence both the concentration dependence and the strength of the DNA-surface interactions.
Collapse
Affiliation(s)
- Xian Hao
- Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
- School of Public Health and Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qufei Gu
- Materials and Biomaterials Science and Engineering, School of Engineering, University of California, Merced, California 95343, USA
| | - Christine Isborn
- Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
| | - Jesus Rodriguez Vasquez
- Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
| | - Makenzie Provorse Long
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska 68178, USA.
| | - Tao Ye
- Department of Chemistry and Biochemistry, School of Natural Sciences, University of California, Merced, California 95343, USA.
- Materials and Biomaterials Science and Engineering, School of Engineering, University of California, Merced, California 95343, USA
| |
Collapse
|
2
|
Siboni H, Ruseska I, Zimmer A. Atomic Force Microscopy for the Study of Cell Mechanics in Pharmaceutics. Pharmaceutics 2024; 16:733. [PMID: 38931854 PMCID: PMC11207904 DOI: 10.3390/pharmaceutics16060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cell mechanics is gaining attraction in drug screening, but the applicable methods have not yet become part of the standardized norm. This review presents the current state of the art for atomic force microscopy, which is the most widely available method. The field is first motivated as a new way of tracking pharmaceutical effects, followed by a basic introduction targeted at pharmacists on how to measure cellular stiffness. The review then moves on to the current state of the knowledge in terms of experimental results and supplementary methods such as fluorescence microscopy that can give relevant additional information. Finally, rheological approaches as well as the theoretical interpretations are presented before ending on additional methods and outlooks.
Collapse
Affiliation(s)
- Henrik Siboni
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
- Single Molecule Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Ivana Ruseska
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| | - Andreas Zimmer
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| |
Collapse
|
3
|
Bao Y, Cui S. Single-Chain Inherent Elasticity of Macromolecules: From Concept to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3527-3536. [PMID: 36848243 DOI: 10.1021/acs.langmuir.2c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
"The Tao begets the One. One begets all things of the world." These words of wisdom from Tao Te Ching are of great inspiration to scientists in polymer materials science and engineering: The "One" means an individual polymer chain while polymer materials consist of numerous chains. The understanding of the single-chain mechanics of polymers is crucial for the bottom-up rational design of polymer materials. With a backbone and side chains, a polymer chain is more complex than a small molecule. Moreover, an individual polymer chain is usually placed in a complicated environment (such as solvent, cosolute, and solid surface), which significantly affects the behaviors of the chain. With all these factors, it is hard to fully understand the elastic behaviors of polymers. Herein, we will first introduce the concept of the single-chain inherent elasticity of polymers, which is a fundamental property determined by the polymer backbone. Then, the applications of inherent elasticity in quantifying the effects of side chains and surrounding environment will be summarized. Finally, the challenges in related fields at present and potential research directions in the future will be discussed.
Collapse
Affiliation(s)
- Yu Bao
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
4
|
Francis LW, Yao SN, Powell LC, Griffiths S, Berquand A, Piasecki T, Howe W, Gazze AS, Farach-Carson MC, Constantinou P, Carson D, Margarit L, Gonzalez D, Conlan RS. Highly glycosylated MUC1 mediates high affinity L-selectin binding at the human endometrial surface. J Nanobiotechnology 2021; 19:50. [PMID: 33596915 PMCID: PMC7890821 DOI: 10.1186/s12951-021-00793-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Background Sialyl-Lewis X/L-selectin high affinity binding interactions between transmembrane O-glycosylated mucins proteins and the embryo have been implicated in implantation processes within the human reproductive system. However, the adhesive properties of these mucins at the endometrial cell surface are difficult to resolve due to known discrepancies between in vivo models and the human reproductive system and a lack of sensitivity in current in vitro models. To overcome these limitations, an in vitro model of the human endometrial epithelial was interrogated with single molecule force spectroscopy (SMFS) to delineate the molecular configurations of mucin proteins that mediate the high affinity L-selectin binding required for human embryo implantation. Results This study reveals that MUC1 contributes to both the intrinsic and extrinsic adhesive properties of the HEC-1 cellular surface. High expression of MUC1 on the cell surface led to a significantly increased intrinsic adhesion force (148 pN vs. 271 pN, p < 0.001), whereas this adhesion force was significantly reduced (271 pN vs. 118 pN, p < 0.001) following siRNA mediated MUC1 ablation. Whilst high expression of MUC1 displaying elevated glycosylation led to strong extrinsic (> 400 pN) L-selectin binding at the cell surface, low expression of MUC1 with reduced glycosylation resulted in significantly less (≤200 pN) binding events. Conclusions An optimal level of MUC1 together with highly glycosylated decoration of the protein is critical for high affinity L-selectin binding. This study demonstrates that MUC1 contributes to cellular adhesive properties which may function to facilitate trophoblast binding to the endometrial cell surface through the L-selectin/sialyl-Lewis x adhesion system subsequent to implantation.![]()
Collapse
Affiliation(s)
- Lewis W Francis
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Seydou N Yao
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Lydia C Powell
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Sean Griffiths
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | | | - Thomas Piasecki
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - William Howe
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Andrea S Gazze
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Mary C Farach-Carson
- School of Dentistry, The University of Texas Health Science Center, Houston, 77054, Texas, USA
| | - Pamela Constantinou
- Department of Biosciences, Wiess School of Natural Science, Rice University, Houston, Texas, 77251, USA
| | - Daniel Carson
- Department of Biosciences, Wiess School of Natural Science, Rice University, Houston, Texas, 77251, USA
| | - Lavinia Margarit
- Cwm Taf Morgannwg University Health Board, Princess of Wales Hospital, Bridgend, CF31 1RQ, UK
| | - Deya Gonzalez
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - R Steven Conlan
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
5
|
Qin J, Zhang M, Guan Y, Li C, Ma X, Rankl C, Tang J. Investigation of the interaction between MeCP2 methyl-CpG binding domain and methylated DNA by single molecule force spectroscopy. Anal Chim Acta 2020; 1124:52-59. [PMID: 32534675 DOI: 10.1016/j.aca.2020.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
MeCP2 is an essential transcriptional repressor that mediates transcriptional inhibition by binding to methylated DNA. The binding specificity of MeCP2 protein to methylated DNA was considered to depend on its methyl-CpG binding domain (MBD). In this study, we used atomic force microscope based single-molecular force spectroscopy to investigate the interaction of MeCP2 MBD and methylated DNA. The specific interaction forces of the MeCP2 MBD-methylated DNA complexes were measured for the first time. The dynamics was also investigated by measuring the unbinding force of the complex at different loading rates. In addition, the distribution of unbinding forces and binding probabilities of MeCP2 MBD and different DNA were studied at the same loading rate. It was found that MeCP2 MBD had weak interaction with hemi-methylated and unmethylated DNA compared to methylated DNA. This work revealed the binding characteristics of MeCP2 MBD and methylated DNA at the single-molecule level. It provides a new idea for exploring the molecular mechanism of MeCP2 in regulating methylation signals.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Chen Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Xingxing Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Christian Rankl
- RECENDT Research Center for Non Destructive Testing GmbH, Science Park 2/2.OG, Altenberger Straße 69, 4040 Linz, Austria
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
6
|
Tiu BDB, Delparastan P, Ney MR, Gerst M, Messersmith PB. Cooperativity of Catechols and Amines in High‐Performance Dry/Wet Adhesives. Angew Chem Int Ed Engl 2020; 59:16616-16624. [DOI: 10.1002/anie.202005946] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Brylee David B. Tiu
- Bioengineering and Materials Science and Engineering University of California, Berkeley Berkeley CA 94720-1760 USA
| | - Peyman Delparastan
- Bioengineering and Materials Science and Engineering University of California, Berkeley Berkeley CA 94720-1760 USA
| | - Max R. Ney
- Bioengineering and Materials Science and Engineering University of California, Berkeley Berkeley CA 94720-1760 USA
| | - Matthias Gerst
- Polymers for Adhesives BASF SE 67056 Ludwigshafen Germany
| | - Phillip B. Messersmith
- Bioengineering and Materials Science and Engineering University of California, Berkeley Berkeley CA 94720-1760 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
7
|
Tiu BDB, Delparastan P, Ney MR, Gerst M, Messersmith PB. Cooperativity of Catechols and Amines in High‐Performance Dry/Wet Adhesives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Brylee David B. Tiu
- Bioengineering and Materials Science and EngineeringUniversity of California, Berkeley Berkeley CA 94720-1760 USA
| | - Peyman Delparastan
- Bioengineering and Materials Science and EngineeringUniversity of California, Berkeley Berkeley CA 94720-1760 USA
| | - Max R. Ney
- Bioengineering and Materials Science and EngineeringUniversity of California, Berkeley Berkeley CA 94720-1760 USA
| | - Matthias Gerst
- Polymers for AdhesivesBASF SE 67056 Ludwigshafen Germany
| | - Phillip B. Messersmith
- Bioengineering and Materials Science and EngineeringUniversity of California, Berkeley Berkeley CA 94720-1760 USA
- Materials Sciences DivisionLawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
8
|
Dragomir IS, Bucataru IC, Schiopu I, Luchian T. Unzipping Mechanism of Free and Polyarginine-Conjugated DNA-PNA Duplexes, Preconfined Inside the α-Hemolysin Nanopore. Anal Chem 2020; 92:7800-7807. [PMID: 32367708 DOI: 10.1021/acs.analchem.0c00976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, comparative studies on DNA-PNA and polyarginine-conjugated DNA-PNA duplexes unzipping inside the α-hemolysin nanopore (α-HL) are presented. We identified significant differences in the blockade currents, as the applied voltage across the nanopore facilitated the duplex capture inside the nanopore's vestibule against the constriction region, subsequent cDNA strand insertion inside the nanopore's β-barrel past the constriction site, its complete unzip from the duplex, and translocation. We observed that inside the voltage-biased nanopore, polyarginine-conjugated DNA-PNA duplexes dehybridize faster than their DNA-PNA counterparts and proposed a model to describe the duplex unzipping. This study identifies key particularities of DNA-PNA duplex unzipping as it takes place inside the nanopore and being preceded by entrapment in the vestibule domain of the α-HL. Our results are a crucial step toward understanding the nucleic acids duplexes unzipping kinetics variability, in confined, variable geometries.
Collapse
Affiliation(s)
- Isabela S Dragomir
- Interdisciplinary Research Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Ioana C Bucataru
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Irina Schiopu
- Interdisciplinary Research Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
9
|
Interaction between antifreeze protein and ice crystal facet evaluated by ice-channel electrophoretic measurements of threshold electric field strength. Anal Chim Acta 2020; 1110:122-130. [DOI: 10.1016/j.aca.2020.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/20/2022]
|
10
|
Robalinho P, Frazão O. Micro-Cantilever Displacement Detection Based in Optical Fiber Tip. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19224826. [PMID: 31698716 PMCID: PMC6891356 DOI: 10.3390/s19224826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
This work demonstrates the potential of combining a microsphere with a tip for the functionality of the contact sensor. This sensor consists of a tip aligned with the fiber core and a microsphere, which appears during tip formation. This new structure was produced using the electric arc machine. The sensor operation consists of the variation of the tip curvature, which causes a variation of the optical paths and, consequently, a change in the output signal. The study of this micro-cantilever consisted of an exploration of the contact mode. In addition, the sensor was characterized by temperature, which shows very low sensitivity and vibration. This last characterization was performed with two configurations parallel and perpendicular to the oscillating surface. The perpendicular case showed higher sensitivity and has an operating band of 0 Hz to 20 kHz. In this configuration, for frequencies up to 2 Hz, the intensity varies linearly with the frequencies and with a sensitivity of 0.032 ± 0.001 (Hz-1). For the parallel case, the operating band was from 1.5 kHz to 7 kHz.
Collapse
|
11
|
Mondarte EA, Maekawa T, Nyu T, Tahara H, Lkhamsuren G, Hayashi T. Detection of streptavidin-biotin intermediate metastable states at the single-molecule level using high temporal-resolution atomic force microscopy. RSC Adv 2019; 9:22705-22712. [PMID: 35519498 PMCID: PMC9067134 DOI: 10.1039/c9ra04106k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Although the streptavidin-biotin intermolecular bond has been extensively used in many applications due to its high binding affinity, its exact nature and interaction mechanism have not been well understood. Several reports from previous studies gave a wide range of results in terms of the system's energy potential landscape because of bypassing some short-lived states in the detection process. We employed a quasi-static process of slowly loading force onto the bond (loading rate = 20 pN s-1) to minimize the force-induced disruption and to provide a chance to explore the system in near-equilibrium. Therein, by utilizing a fast sampling rate for the detection of force by atomic force microscopy (20 μs per data point), several transient states of the system were clearly resolved in our force spectroscopy measurements. These key strategies allow the determination of the states' relative positions and free energy levels along the pulling reaction coordinate for the illustration of an energy landscape of the system.
Collapse
Affiliation(s)
- Evan Angelo Mondarte
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Tatsuhiro Maekawa
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Takashi Nyu
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Hiroyuki Tahara
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Ganchimeg Lkhamsuren
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Tomohiro Hayashi
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
- JST-PRESTO 4-1-8 Hon-cho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
12
|
Abstract
Force spectroscopy allows the manipulation of single molecules and the characterization of their properties and interactions thereby rendering it a powerful tool for biological sciences. Force spectroscopy at the level of individual molecules requires force resolution in the piconewton regime as achieved by optical tweezers (OT), magnetic tweezers (MT), and atomic force microscopy (AFM) with AFM providing the largest force range from tenth of piconewton to several micronewton. In membrane probe spectroscopy the commonly used sharp cantilever tip is replaced by a lipid-coated glass sphere. This technique expands the scope of force spectroscopy to processes at and between lipid bilayers, like the formation of coiled coils between SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) proteins as well as subsequent membrane fusion. To this end, two solid-supported membranes equipped with SNARE proteins or fusion peptides are separately deposited on a flat glassy surface and on a micrometer glass sphere attached to the end of a tipless AFM cantilever. These two membranes are rapidly brought into contact until a defined force is reached. The AFM deflection readout is used to monitor the distance between the two bilayers, which allows to observe and identify fusion processes of the two lipid membranes, while the forces needed to separate the two surfaces give insights into the formation of SNARE complexes. By changing the contact pressure one can access fusion kinetics and to some extent reconstruct the energy landscape of membrane fusion. In this chapter we describe the preparation of membrane-coated colloidal probes attached to AFM cantilevers, experimental procedures, and necessary data analysis to perform membrane probe spectroscopy in the presence of fusogenic peptides or proteins.
Collapse
|
13
|
Zhang J, Jones SM, Lykotrafitis G, Andemariam B. Valsartan impedes epinephrine-induced ICAM-4 activation on normal, sickle cell trait and sickle cell disease red blood cells. PLoS One 2019; 14:e0216467. [PMID: 31083675 PMCID: PMC6513067 DOI: 10.1371/journal.pone.0216467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Abnormal red blood cell (RBC) adhesion to endothelial αvβ3 plays a crucial role in triggering vaso-occlusive episodes in sickle cell disease (SCD). It is known that epinephrine, a β-adrenergic receptor (β-AR) stimulator, increases the RBC surface density of active intercellular adhesion molecule-4 (ICAM-4) which binds to the endothelial αvβ3. It has also been demonstrated that in human embryonic kidney 293 cells, mouse cardiomyocytes, and COS-7 cell lines, the β-adrenergic and renin-angiotensin systems are interrelated and that there is a direct interaction and cross-regulation between β-AR and angiotensin II type 1 receptor (AT1R). Selective blockade of AT1R reciprocally inhibits the downstream signaling of β-ARs, similar to the inhibition observed in the presence of a β-AR-blocker. However, it is not known if this mechanism is active in human RBCs. Here, we studied the effect of valsartan, an AT1R blocker, on the surface density of active ICAM-4 receptors in normal, sickle cell trait, and homozygous sickle RBCs. We applied single molecule force spectroscopy to detect active ICAM-4 receptors on the RBC plasma membrane with and without the presence of valsartan and epinephrine. We found that epinephrine significantly increased whereas valsartan decreased their surface density. Importantly, we found that pretreatment of RBCs with valsartan significantly impeded the activation of ICAM-4 receptors induced by epinephrine. The observed reduced expression of active ICAM-4 receptors on the RBC plasma membrane leads us to conjecture that valsartan may be used as a supporting remedy for the prevention and treatment of vaso-occlusive crisis in SCD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Sasia-Marie Jones
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut, United States of America
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (GL); (BA)
| | - Biree Andemariam
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut, United States of America
- * E-mail: (GL); (BA)
| |
Collapse
|
14
|
Abstract
B cells are essential to the adaptive immune system for providing the humoral immunity against cohorts of pathogens. The presentation of antigen to the B cell receptor (BCR) leads to the initiation of B cell activation, which is a process sensitive to the stiffness features of the substrates presenting the antigens. Mechanosensing of the B cells, potentiated through BCR signaling and the adhesion molecules, efficiently regulates B cell activation, proliferation and subsequent antibody responses. Defects in sensing of the antigen-presenting substrates can lead to the activation of autoreactive B cells in autoimmune diseases. The use of high-resolution, high-speed live-cell imaging along with the sophisticated biophysical materials, has uncovered the mechanisms underlying the initiation of B cell activation within seconds of its engagement with the antigen presenting substrates. In this chapter, we reviewed studies that have contributed to uncover the molecular mechanisms of B cell mechanosensing during the initiation of B cell activation.
Collapse
Affiliation(s)
- Samina Shaheen
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kabeer Haneef
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wang Jing
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wanli Liu
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Bergues-Pupo AE, Goktas M, Tunn I, Lopez-Garcia P, Vila Verde A, Blank KG, Valleriani A. Goodness of fit testing in dynamic single-molecule force spectroscopy. J Chem Phys 2018; 149:244120. [PMID: 30599724 DOI: 10.1063/1.5055071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dynamic single-molecule force spectroscopy (SMFS) is a powerful method to characterize the mechanical stability of biomolecules. We address the problem that the standard manner of reporting the extracted energy landscape parameters does not reveal the intrinsic statistical errors associated with them. This problem becomes particularly relevant when SMFS is used to compare two or more different molecular systems. Here, we propose two methods that allow for a straightforward test of statistical significance. We illustrate the power of the methods by applying them to the experimental results obtained for three dimeric coiled coils of different lengths. Both methods are general and may be applied to any problem involving the fit of models with two correlated parameters.
Collapse
Affiliation(s)
- Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, 14424 Potsdam, Germany
| | - Isabell Tunn
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, 14424 Potsdam, Germany
| | - Patricia Lopez-Garcia
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, 14424 Potsdam, Germany
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, 14424 Potsdam, Germany
| | - Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany
| |
Collapse
|
16
|
Ligand-Receptor Binding on Cell Membrane: Dynamic Force Spectroscopy Applications. Methods Mol Biol 2018. [PMID: 30374866 DOI: 10.1007/978-1-4939-8894-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ligand-receptor recognition on the cell membrane enables the communication of cells with the extracellular environment. Atomic force microscopy (AFM)-based single-molecule dynamic force spectroscopy represents one of the most powerful techniques available to directly investigate ligand-receptor recognition under physiological conditions without considerable disruption to cells. It provides important information for research on biological processes, disease pathogenesis, and mechanism of drugs. Here we describe an example of applying single-molecule dynamic force spectroscopy to study the binding of epidermal growth factor (EGF) to its receptor EGFR, as well as the effect of two clinical drugs, Pertuzumab and Trastuzumab, on the interaction of EGF and EGFR.
Collapse
|
17
|
Li Q, Wei G. Label-free determination of adenosine and mercury ions according to force mapping-based force-to-color variety. Analyst 2018; 143:4400-4407. [PMID: 30137104 DOI: 10.1039/c8an01043a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Single molecule force spectroscopy based on atomic force microscopy (AFM) is a simple and sensitive technique to probe molecular recognition forces. Here we demonstrate that visual color-intensity analysis of single molecule force mapping (SMFM) can be employed as a quick and convenient force-to-color detection towards the presence of various dissolved analytes in very low concentrations. To achieve this aim, analyte-specific single-strand DNA aptamers are first bound to an AFM tip. The measured forces between the functionalized tip and a suitable substrate, namely either a clean surface or a surface functionalized with the complementary DNA oligomer, change when a critical concentration of the analyte is reached. The current SMFM-based visual biosensing shows improved developments like higher sensitivity, lower detection limits, quicker detection, and much simple readout. The color of the obtained force maps reveals the force intensity, which gives a highly selective and immediate visual force-to-color response towards the presence of adenosine (above ∼0.1 nM) and Hg2+ (∼10 pM). The strategies shown in this work will be helpful to design and fabricate aptasensors for biomedical analysis as well as to understand the molecular interactions between DNA hybridization.
Collapse
Affiliation(s)
- Qing Li
- Faculty of Production Engineering and Center for Environmental Research and Sustainable Technology (UFT) University of Bremen, D-28359 Bremen, Germany.
| | - Gang Wei
- Faculty of Production Engineering and Center for Environmental Research and Sustainable Technology (UFT) University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
18
|
Marcuello C, Foulon L, Chabbert B, Molinari M, Aguié-Béghin V. Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9376-9386. [PMID: 30037232 DOI: 10.1021/acs.langmuir.8b01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) experiments with functionalized tips are currently one of the most powerful tools to locally measure adhesion forces via single-molecule force spectroscopy (SMFS) measurements. The main difficulty is to precisely control the attachment of biomolecules to the cantilever. Different chemistry procedures have been developed including the use of spacer molecules. Even if a process works well for small biomolecules such as antibodies, issues remain regarding nanoparticles or larger objects such as cellulose nanocrystals because it is difficult to precisely control their coverage and homogeneity. In this work, an original procedure based on the Langmuir-Blodgett (LB) technique was implemented for lever functionalization with cellulose nanocrystals and compared with classical chemical strategies. LB shows to be almost 6.0-fold more efficient than chemical procedure in terms of cellulose nanocrystals coverage attachment. Moreover, the LB technology provides advantage of not requiring linker molecules, which could have detrimental effects such as overestimation of the interaction force. The structural characterization and SMFS measurements of lignocellulosic polymers show that this strategy enables the precise control of the lever coverage, which improves the accuracy of the adhesion measurements. Such methodology is expected to strongly impact the AFM tip/tipless functionalization and SMFS measurements in different fields.
Collapse
Affiliation(s)
- Carlos Marcuello
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
- Laboratoire de Recherche en Nanosciences LRN EA4682 , Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Laurence Foulon
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Brigitte Chabbert
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Michael Molinari
- Laboratoire de Recherche en Nanosciences LRN EA4682 , Université de Reims Champagne-Ardenne , 51100 , Reims , France
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, 33607 , Pessac , France
| | | |
Collapse
|
19
|
Leader A, Mandler D, Reches M. The role of hydrophobic, aromatic and electrostatic interactions between amino acid residues and a titanium dioxide surface. Phys Chem Chem Phys 2018; 20:29811-29816. [DOI: 10.1039/c8cp05775c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the nature of interactions between inorganic surfaces and biomolecules, such as amino acids and peptides, can enhance the development of new materials.
Collapse
Affiliation(s)
- Avia Leader
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology
- The Hebrew University of Jerusalem
- Edmond Safra Campus
- Jerusalem 919041
- Israel
| | - Daniel Mandler
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology
- The Hebrew University of Jerusalem
- Edmond Safra Campus
- Jerusalem 919041
- Israel
| | - Meital Reches
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology
- The Hebrew University of Jerusalem
- Edmond Safra Campus
- Jerusalem 919041
- Israel
| |
Collapse
|
20
|
Chemical cleaning of ultrafiltration membranes for polymer-flooding wastewater treatment: Efficiency and molecular mechanisms. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.08.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Abstract
Wholly synthetic molecules involving both mechanical bonds and a folded secondary structure are one of the most promising architectures for the design of functional molecular machines with unprecedented properties. Here, we report dynamic single-molecule force spectroscopy experiments that explore the energetic details of donor-acceptor oligorotaxane foldamers, a class of molecular switches. The mechanical breaking of the donor-acceptor interactions responsible for the folded structure shows a high constant rupture force over a broad range of loading rates, covering three orders of magnitude. In comparison with dynamic force spectroscopy performed during the past 20 y on various (bio)molecules, the near-equilibrium regime of oligorotaxanes persists at much higher loading rates, at which biomolecules have reached their kinetic regime, illustrating the very fast dynamics and remarkable rebinding capabilities of the intramolecular donor-acceptor interactions. We focused on one single interaction at a time and probed the stochastic rupture and rebinding paths. Using the Crooks fluctuation theorem, we measured the mechanical work produced during the breaking and rebinding to determine a free-energy difference, ΔG, of 6 kcal·mol-1 between the two local conformations around a single bond.
Collapse
|
22
|
Nevzorova TA, Zhao Q, Lomakin YA, Ponomareva AA, Mukhitov AR, Purohit PK, Weisel JW, Litvinov RI. Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA. BIONANOSCIENCE 2017; 7:132-147. [PMID: 29104846 DOI: 10.1007/s12668-016-0303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Interactions of DNA with proteins are essential for key biological processes and have both a fundamental and practical significance. In particular, DNA binding to anti-DNA antibodies is a pathogenic mechanism in autoimmune pathology, such as systemic lupus erythematosus. Here we measured at the single-molecule level binding and forced unbinding of surface-attached DNA and a monoclonal anti-DNA antibody MRL4 from a lupus erythematosus mouse. In optical trap-based force spectroscopy, a microscopic antibodycoated latex bead is trapped by a focused laser beam and repeatedly brought into contact with a DNA-coated surface. After careful discrimination of non-specific interactions, we showed that the DNA-antibody rupture force spectra had two regimes, reflecting formation of weaker (20-40 pN) and stronger (>40 pN) immune complexes that implies the existence of at least two bound states with different mechanical stability. The two-dimensional force-free off-rate for the DNA-antibody complexes was ~2.2 × 10-3 s-1, the transition state distance was ~0.94 nm, the apparent on-rate was ~5.26 s-1, and the stiffness of the DNA-antibody complex was characterized by a spring constant of 0.0021 pN/nm, suggesting that the DNA-antibody complex is a relatively stable, but soft and deformable macromolecular structure. The stretching elasticity of the DNA molecules was characteristic of single-stranded DNA, suggesting preferential binding of the MRL4 antibody to one strand of DNA. Collectively, the results provide fundamental characteristics of formation and forced dissociation of DNA-antibody complexes that help to understand principles of DNA-protein interactions and shed light on the molecular basis of autoimmune diseases accompanied by formation of anti-DNA antibodies.
Collapse
Affiliation(s)
- Tatiana A Nevzorova
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA.,Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St, Kazan 420008, Russian Federation
| | - Qingze Zhao
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania School of Engineering and Applied Science, 220 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Yakov A Lomakin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Mikluho-Maklaya St, Moscow 117997, Russian Federation
| | - Anastasia A Ponomareva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St, Kazan 420008, Russian Federation.,Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, 2/31 Lobachevsky str, Kazan 420111, Russian Federation
| | - Alexander R Mukhitov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania School of Engineering and Applied Science, 220 S. 33rd Street, Philadelphia, PA 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA.,Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St, Kazan 420008, Russian Federation
| |
Collapse
|
23
|
|
24
|
Zhang J, Abiraman K, Jones SM, Lykotrafitis G, Andemariam B. Regulation of Active ICAM-4 on Normal and Sickle Cell Disease RBCs via AKAPs Is Revealed by AFM. Biophys J 2017; 112:143-152. [PMID: 28076805 DOI: 10.1016/j.bpj.2016.11.3204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 11/15/2022] Open
Abstract
Human healthy (wild-type (WT)) and homozygous sickle (SS) red blood cells (RBCs) express a large number of surface receptors that mediate cell adhesion between RBCs, and between RBCs and white blood cells, platelets, and the endothelium. In sickle cell disease (SCD), abnormal adhesion of RBCs to endothelial cells is mediated by the intercellular adhesion molecule-4 (ICAM-4), which appears on the RBC membrane and binds to the endothelial αvβ3 integrin. This is a key factor in the initiation of vaso-occlusive episodes, the hallmark of SCD. A better understanding of the mechanisms that control RBC adhesion to endothelium may lead to novel approaches to both prevention and treatment of vaso-occlusive episodes in SCD. One important mechanism of ICAM-4 activation occurs via the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA)-dependent signaling pathway. Here, we employed an in vitro technique called single-molecule force spectroscopy to study the effect of modulation of the cAMP-PKA-dependent pathway on ICAM-4 receptor activation. We quantified the frequency of active ICAM-4 receptors on WT-RBC and SS-RBC membranes, as well as the median unbinding force between ICAM-4 and αvβ3. We showed that the collective frequency of unbinding events in WT-RBCs is not significantly different from that of SS-RBCs. This result was confirmed by confocal microscopy experiments. In addition, we showed that incubation of normal RBCs and SS-RBCs with epinephrine, a catecholamine that binds to the β-adrenergic receptor and activates the cAMP-PKA-dependent pathway, caused a significant increase in the frequency of active ICAM-4 receptors in both normal RBCs and SS-RBCs. However, the unbinding force between ICAM-4 and the corresponding ligand αvβ3 remained the same. Furthermore, we demonstrated that forskolin, an adenylyl cyclase activator, significantly increased the frequency of ICAM-4 receptors in WT-RBCs and SS-RBCs, confirming that the activation of ICAM-4 is regulated by the cAMP-PKA pathway. Finally, we showed that A-kinase anchoring proteins play an essential role in ICAM-4 activation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Krithika Abiraman
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Sasia-Marie Jones
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.
| | - Biree Andemariam
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut.
| |
Collapse
|
25
|
Single-molecule force spectroscopy on polyproteins and receptor–ligand complexes: The current toolbox. J Struct Biol 2017; 197:3-12. [DOI: 10.1016/j.jsb.2016.02.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022]
|
26
|
Nash MA, Smith SP, Fontes CM, Bayer EA. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Curr Opin Struct Biol 2016; 40:89-96. [PMID: 27579515 DOI: 10.1016/j.sbi.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Cohesins and dockerins are complementary interacting protein modules that form stable and highly specific receptor-ligand complexes. They play a crucial role in the assembly of cellulose-degrading multi-enzyme complexes called cellulosomes and have potential applicability in several technology areas, including biomass conversion processes. Here, we describe several exceptional properties of cohesin-dockerin complexes, including their tenacious biochemical affinity, remarkably high mechanostability and a dual-binding mode of recognition that is contrary to the conventional lock-and-key model of receptor-ligand interactions. We focus on structural aspects of the dual mode of cohesin-dockerin binding, highlighting recent single-molecule analysis techniques for its explicit characterization.
Collapse
Affiliation(s)
- Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany; Department of Chemistry, University of Basel, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH-Zürich), 4058 Basel, Switzerland.
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Carlos Mga Fontes
- CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
27
|
Walker GC. Nanobiotechnology: Net charge of trace proteins. NATURE NANOTECHNOLOGY 2016; 11:739-740. [PMID: 27454877 DOI: 10.1038/nnano.2016.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Gilbert C Walker
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
28
|
Das P, Reches M. Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces. NANOSCALE 2016; 8:15309-15316. [PMID: 27503417 DOI: 10.1039/c6nr04550b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Catechol (1,2-dihydroxy benzene) moieties are being widely used today in new adhesive technologies. Understanding their mechanism of action is therefore of high importance for developing their applications in materials science. This paper describes a single-molecule study of the interactions between catechol-related amino acid residues and a well-defined titanium dioxide (TiO2) surface. It is the first quantified measurement of the adhesion of these residues with a well-defined TiO2 surface. Single-molecule force spectroscopy measurements with AFM determined the role of different substitutions of the catechol moiety on the aromatic ring in the adhesion to the surface. These results shed light on the nature of interactions between these residues and inorganic metal oxide surfaces. This information is important for the design and fabrication of catechol-based materials such as hydrogels, coatings, and composites. Specifically, the interaction with TiO2 is important for the development of solar cells.
Collapse
Affiliation(s)
- Priyadip Das
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
29
|
Nick TA, de Oliveira TE, Pilat DW, Spenkuch F, Butt HJ, Helm M, Netz PA, Berger R. Stability of a Split Streptomycin Binding Aptamer. J Phys Chem B 2016; 120:6479-89. [PMID: 27281393 DOI: 10.1021/acs.jpcb.6b02440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas A Nick
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Tiago E de Oliveira
- Instituto de Química, Universidade Federal do Rio Grande do Sul , Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil
| | - Dominik W Pilat
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Felix Spenkuch
- Johannes Gutenberg Universität Mainz , Institute of Pharmacy and Biochemistry, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Mark Helm
- Johannes Gutenberg Universität Mainz , Institute of Pharmacy and Biochemistry, 55128 Mainz, Germany
| | - Paulo A Netz
- Instituto de Química, Universidade Federal do Rio Grande do Sul , Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| |
Collapse
|
30
|
Abstract
Loops undergoing thermal fluctuations are prevalent in nature. Ringlike or cross-linked polymers, cyclic macromolecules, and protein-mediated DNA loops all belong to this category. Stability of these molecules are generally described in terms of free energy, an average quantity, but it may also be impacted by local fluctuating forces acting within these systems. The full distribution of these forces can thus give us insights into mechanochemistry beyond the predictive capability of thermodynamics. In this paper, we study the force exerted by an inextensible semiflexible polymer constrained in a looped state. By using a simulation method termed "phase-space sampling," we generate the equilibrium distribution of chain conformations in both position and momentum space. We compute the constraint forces between the two ends of the loop in this chain ensemble using Lagrangian mechanics, and show that the mean of these forces is equal to the thermodynamic force. By analyzing kinetic and potential contributions to the forces, we find that the mean force acts in the direction of increasing extension not because of bending stress, but in spite of it. Furthermore, we obtain a distribution of constraint forces as a function of chain length, extension, and stiffness. Notably, increasing contour length decreases the average force, but the additional freedom allows fluctuations in the constraint force to increase. The force distribution is asymmetric and falls off less sharply than a Gaussian distribution. Our work exemplifies a system where large-amplitude fluctuations occur in a way unforeseen by a purely thermodynamic framework, and offers computational tools useful for efficient, unbiased simulation of a constrained system.
Collapse
Affiliation(s)
- James T Waters
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332-0430, USA
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332-0430, USA
| |
Collapse
|
31
|
Ma CD, Acevedo-Vélez C, Wang C, Gellman SH, Abbott NL. Interaction of the Hydrophobic Tip of an Atomic Force Microscope with Oligopeptides Immobilized Using Short and Long Tethers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2985-2995. [PMID: 26895750 DOI: 10.1021/acs.langmuir.5b04618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report an investigation of the adhesive force generated between the hydrophobic tip of an atomic force microscope (AFM) and surfaces presenting oligopeptides immobilized using either short (∼1 nm) or long (∼60 nm) tethers. Specifically, we used either sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SSMCC) or 10 kDa polyethylene glycol (PEG) end-functionalized with maleimide and N-hydroxysuccinimide groups to immobilize helical oligomers of β-amino acids (β-peptides) to mixed monolayers presenting tetraethylene glycol (EG4) and amine-terminated EG4 (EG4N) groups. When SSMCC was used to immobilize the β-peptides, we measured the adhesive interaction between the AFM tip and surface to rupture through a single event with magnitude consistent with the interaction of a single β-peptide with the AFM tip. Surprisingly, this occurred even when, on average, multiple β-peptides were located within the interaction area between the AFM tip and surface. In contrast, when using the long 10 kDa PEG tether, we observed the magnitude of the adhesive interaction as well as the dynamics of the rupture events to unmask the presence of the multiple β-peptides within the interaction area. To provide insight into these observations, we formulated a simple mechanical model of the interaction of the AFM tip with the immobilized β-peptides and used the model to demonstrate that adhesion measurements performed using short tethers (but not long tethers) are dominated by the interaction of single β-peptides because (i) the mechanical properties of the short tether are highly nonlinear, thus causing one β-peptide to dominate the adhesion force at the point of rupture, and (ii) the AFM cantilever is mechanically unstable following the rupture of the adhesive interaction with a single β-peptide. Overall, our study reveals that short tethers offer the basis of an approach that facilitates measurement of adhesive interactions with single molecules presented at surfaces.
Collapse
Affiliation(s)
- C Derek Ma
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Claribel Acevedo-Vélez
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Chenxuan Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Mishra S, Lahiri H, Banerjee S, Mukhopadhyay R. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes. Nucleic Acids Res 2016; 44:3739-49. [PMID: 27025649 PMCID: PMC4856997 DOI: 10.1093/nar/gkw197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 01/29/2023] Open
Abstract
So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored.
Collapse
Affiliation(s)
- Sourav Mishra
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Hiya Lahiri
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Siddhartha Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Rupa Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| |
Collapse
|
33
|
Shan Y, Wang H. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 2016; 44:3617-38. [PMID: 25893228 DOI: 10.1039/c4cs00508b] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.
Collapse
Affiliation(s)
- Yuping Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | |
Collapse
|
34
|
Liu G, Yu S, Yang H, Hu J, Zhang Y, He B, Li L, Liu Z. Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1393-1402. [PMID: 26735590 DOI: 10.1021/acs.est.5b04098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.
Collapse
Affiliation(s)
- Guicai Liu
- School of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai, China , 200092
| | - Shuili Yu
- School of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai, China , 200092
| | - Haijun Yang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , PO Box 800-204, Shanghai 201800, P.R. China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , PO Box 800-204, Shanghai 201800, P.R. China
| | - Yi Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , PO Box 800-204, Shanghai 201800, P.R. China
| | - Bo He
- Shandong Academy of Environmental Science ; Jinan, China , 250013
| | - Lei Li
- School of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai, China , 200092
| | - Zhiyuan Liu
- School of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai, China , 200092
| |
Collapse
|
35
|
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra22841g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AFM-based force spectroscopy shows wide bio-related applications especially for bioimaging and biosensing.
Collapse
Affiliation(s)
- Qing Li
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Tong Zhang
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Yangang Pan
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Bingqian Xu
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Gang Wei
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| |
Collapse
|
36
|
Das P, Reches M. Review insights into the interactions of amino acids and peptides with inorganic materials using single molecule force spectroscopy. Biopolymers 2015; 104:480-94. [DOI: 10.1002/bip.22655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Priyadip Das
- Institute of Chemistry, The Hebrew University of Jerusalem; 91904 Jerusalem Israel
- The Center for Nanoscience and Nanotechnology; The Hebrew University of Jerusalem; 91904 Jerusalem Israel
| | | |
Collapse
|
37
|
Maity S, Zanuy D, Razvag Y, Das P, Alemán C, Reches M. Elucidating the mechanism of interaction between peptides and inorganic surfaces. Phys Chem Chem Phys 2015; 17:15305-15. [PMID: 25995084 DOI: 10.1039/c5cp00088b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the mechanism of interaction between peptides and inorganic materials is of high importance for the development of new composite materials. Here, we combined an experimental approach along with molecular simulations in order to gain insights into this binding process. Using single molecule force spectroscopy by atomic force microscopy and molecular simulations we studied the binding of a peptide towards an inorganic substrate. By performing alanine scan we examined the propensity of each amino acid in the peptide sequence to bind the substrate (mica). Our results indicate that this binding is not controlled by the specific sequence of the peptide, but rather by its conformational freedom in solution versus its freedom when it is in proximity to the substrate. When the conformational freedom of the peptide is identical in both environments, the peptide will not adhere to the substrate. However, when the conformational freedom is reduced, i.e., when the peptide is in close proximity to the substrate, binding will occur. These results shed light on the interaction between peptides and inorganic materials.
Collapse
Affiliation(s)
- Sibaprasad Maity
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
38
|
Gensler M, Eidamshaus C, Taszarek M, Reissig HU, Rabe JP. Mechanical stability of bivalent transition metal complexes analyzed by single-molecule force spectroscopy. Beilstein J Org Chem 2015; 11:817-27. [PMID: 26124883 PMCID: PMC4464087 DOI: 10.3762/bjoc.11.91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
Multivalent biomolecular interactions allow for a balanced interplay of mechanical stability and malleability, and nature makes widely use of it. For instance, systems of similar thermal stability may have very different rupture forces. Thus it is of paramount interest to study and understand the mechanical properties of multivalent systems through well-characterized model systems. We analyzed the rupture behavior of three different bivalent pyridine coordination complexes with Cu2+ in aqueous environment by single-molecule force spectroscopy. Those complexes share the same supramolecular interaction leading to similar thermal off-rates in the range of 0.09 and 0.36 s−1, compared to 1.7 s−1 for the monovalent complex. On the other hand, the backbones exhibit different flexibility, and we determined a broad range of rupture lengths between 0.3 and 1.1 nm, with higher most-probable rupture forces for the stiffer backbones. Interestingly, the medium-flexible connection has the highest rupture forces, whereas the ligands with highest and lowest rigidity seem to be prone to consecutive bond rupture. The presented approach allows separating bond and backbone effects in multivalent model systems.
Collapse
Affiliation(s)
- Manuel Gensler
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| | - Christian Eidamshaus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Maurice Taszarek
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Jürgen P Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| |
Collapse
|
39
|
Direct Determination of Chitosan–Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate–Mucin Interactions. Polymers (Basel) 2015. [DOI: 10.3390/polym7020161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
40
|
Gautier HO, Thompson AJ, Achouri S, Koser DE, Holtzmann K, Moeendarbary E, Franze K. Atomic force microscopy-based force measurements on animal cells and tissues. Methods Cell Biol 2015; 125:211-35. [DOI: 10.1016/bs.mcb.2014.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Evans DR, Tayati P, An H, Lam PK, Craig VSJ, Senden TJ. Laser actuation of cantilevers for picometre amplitude dynamic force microscopy. Sci Rep 2014; 4:5567. [PMID: 24993548 PMCID: PMC4081876 DOI: 10.1038/srep05567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/05/2014] [Indexed: 11/09/2022] Open
Abstract
As nanoscale and molecular devices become reality, the ability to probe materials on these scales is increasing in importance. To address this, we have developed a dynamic force microscopy technique where the flexure of the microcantilever is excited using an intensity modulated laser beam to achieve modulation on the picoscale. The flexure arises from thermally induced bending through differential expansion and the conservation of momentum when the photons are reflected and absorbed by the cantilever. In this study, we investigated the photothermal and photon pressure responses of monolithic and layered cantilevers using a modulated laser in air and immersed in water. The developed photon actuation technique is applied to the stretching of single polymer chains.
Collapse
Affiliation(s)
- Drew R Evans
- 1] Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 0200, Australia [2] Thin Film Coatings Group, Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ponlawat Tayati
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 0200, Australia
| | - Hongjie An
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 0200, Australia
| | - Ping Koy Lam
- Department of Quantum Science, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 0200, Australia
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 0200, Australia
| | - Tim J Senden
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
42
|
Nelson EM, Li H, Timp G. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. ACS NANO 2014; 8:5484-93. [PMID: 24840912 DOI: 10.1021/nn405331t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report direct, concurrent measurements of the forces and currents associated with the translocation of a single-stranded DNA molecule tethered to the tip of an atomic force microscope (AFM) cantilever through synthetic pores with topagraphies comparable to the DNA. These measurements were performed to gauge the signal available for sequencing and the electric force required to impel a single molecule through synthetic nanopores ranging from 1.0 to 3.5 nm in diameter in silicon nitride membranes 6-10 nm thick. The measurements revealed that a molecule can slide relatively frictionlessly through a pore, but regular fluctuations are observed intermittently in the force (and the current) every 0.35-0.72 nm, which are attributed to individual nucleotides translating through the nanopore in a turnstile-like motion.
Collapse
Affiliation(s)
- Edward M Nelson
- University of Notre Dame , Stinson-Remick Hall, Notre Dame Avenue, Notre Dame, Indiana 46556, United States
| | | | | |
Collapse
|
43
|
Lamprecht C, Hinterdorfer P, Ebner A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv 2014; 11:1237-53. [PMID: 24809228 DOI: 10.1517/17425247.2014.917078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The therapeutic effects of medicinal drugs not only depend on their properties, but also on effective transport to the target receptor. Here we highlight recent developments in this discipline and show applications of atomic force microscopy (AFM) that enable us to track the effects of drugs and the effectiveness of nanoparticle delivery at the single molecule level. AREAS COVERED Physiological AFM imaging enables visualization of topographical changes to cells as a result of drug exposure and allows observation of cellular responses that yield morphological changes. When we upgrade the regular measuring tip to a molecular biosensor, it enables investigation of functional changes at the molecular level via single molecule force spectroscopy. EXPERT OPINION Biosensing AFM techniques have generated powerful tools to monitor drug delivery in (living) cells. While technical developments in actual AFM methods have simplified measurements at relevant physiological conditions, understanding both the biological and technical background is still a crucial factor. However, due to its potential impact, we expect the number of application-based biosensing AFM techniques to further increase in the near future.
Collapse
Affiliation(s)
- Constanze Lamprecht
- University of Kiel, Institute of Materials Science Biocompatible Nanomaterials , Kaiserstr.2, 24143 Kiel , Germany
| | | | | |
Collapse
|
44
|
Wang B, Xu B. Transition model for ricin-aptamer interactions with multiple pathways and energy barriers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022720. [PMID: 25353521 DOI: 10.1103/physreve.89.022720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 06/04/2023]
Abstract
We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.
Collapse
Affiliation(s)
- Bin Wang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
45
|
Wei G, Li Q, Steckbeck S, Ciacchi LC. Direct force measurements on peeling heteropolymer ssDNA from a graphite surface using single-molecule force spectroscopy. Phys Chem Chem Phys 2014; 16:3995-4001. [DOI: 10.1039/c3cp54121e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Scholl ZN, Li Q, Marszalek PE. Single molecule mechanical manipulation for studying biological properties of proteins,
DNA
, and sugars. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:211-29. [DOI: 10.1002/wnan.1253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Zackary N. Scholl
- Department of Computational Biology and Bioinformatics Duke University Durham NC USA
| | - Qing Li
- Department of Mechanical Engineering and Materials Science Duke University Durham NC USA
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials Science, Center for Biologically Inspired Materials and Material Systems Duke University Durham NC USA
| |
Collapse
|
47
|
Pang X, Cui S. Single-chain mechanics of poly(N,N-diethylacrylamide) and poly(N-isopropylacrylamide): comparative study reveals the effect of hydrogen bond donors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12176-12182. [PMID: 24003907 DOI: 10.1021/la403132e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The single-chain mechanics of two similar thermosensitive polymers, poly(N,N-diethylacrylamide) (PDEAM) and poly(N-isopropylacrylamide) (PNIPAM), have been studied by atomic force microscopy-based single-molecule force spectroscopy (SMFS). In a typical nonpolar organic solvent, octane, both of the polymers show the same inherent elasticity, although they have different substitutional groups. However, the mechanics of the two polymers presents large differences in water. The energies needed for the rearrangement of the bound water during elongation at room temperature are estimated by the SMFS method at the single-chain level, which is ~1.13 ± 0.10 and ~5.19 ± 0.10 kJ/mol for PDEAM and PNIPAM, respectively. In addition, PNIPAM shows a temperature-dependent single-chain mechanics when the temperature is increased across the lower critical solution temperature (LCST), while PDEAM does not. These differences observed in aqueous solution originate from the different structures of the two polymers. With a hydrogen bond donor in the amide group, PNIPAM will be more hydrated when T < LCST. When T > LCST, PNIPAM will have larger changes in both conformation and hydration. These findings also suggest that PNIPAM is a good candidate for a thermo-driven single-molecule motor, while PDEAM is not.
Collapse
Affiliation(s)
- Xiangchao Pang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University , Chengdu 610031, China
| | | |
Collapse
|
48
|
Razvag Y, Gutkin V, Reches M. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10102-10109. [PMID: 23859476 DOI: 10.1021/la4015866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.
Collapse
Affiliation(s)
- Yair Razvag
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
49
|
Whited AM, Park PSH. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:56-68. [PMID: 23603221 DOI: 10.1016/j.bbamem.2013.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Membrane proteins are embedded in lipid bilayers and facilitate the communication between the external environment and the interior of the cell. This communication is often mediated by the binding of ligands to the membrane protein. Understanding the nature of the interaction between a ligand and a membrane protein is required to both understand the mechanism of action of these proteins and for the development of novel pharmacological drugs. The highly hydrophobic nature of membrane proteins and the requirement of a lipid bilayer for native function have hampered the structural and molecular characterizations of these proteins under physiologically relevant conditions. Atomic force microscopy offers a solution to studying membrane proteins and their interactions with ligands under physiologically relevant conditions and can provide novel insights about the nature of these critical molecular interactions that facilitate cellular communication. In this review, we provide an overview of the atomic force microscopy technique and discuss its application in the study of a variety of questions related to the interaction between a membrane protein and a ligand. This article is part of a Special Issue entitled: Structural and biophysical characterization of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
50
|
Wang K, Pang X, Cui S. Inherent stretching elasticity of a single polymer chain with a carbon-carbon backbone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4315-4319. [PMID: 23477592 DOI: 10.1021/la400626x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We study the single-chain elasticities of three kinds of neutral polymers with a carbon-carbon (C-C) backbone by atomic force microscopy-based single-molecule force spectroscopy in a nonpolar solvent (octane), aiming at measuring the inherent chain elasticity of this very important class of polymers. The finding that the single-chain elasticities of all three polymers in octane are virtually identical in the entire force region implies that the side chains of the polymers have no detectable effects on the single-chain elasticity. By utilizing the single-chain elasticity from quantum mechanics calculations, the freely rotating chain model can provide the best fitting curve when each C-C bond is set to be the rotating unit. Although there are some exceptions when the side chain is very huge, our work provides a general result for the inherent elasticity of single neutral flexible polymer chains with C-C backbones.
Collapse
Affiliation(s)
- Kefeng Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | | | | |
Collapse
|