1
|
Martino C, Savoca D, Mauro M, Byrne M, Hüffer T, Chiarelli R, Badalamenti R, Maccotta A, Arizza V, Vazzana M. Heatwave conditions increase the toxicity of phthalates in marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179479. [PMID: 40280102 DOI: 10.1016/j.scitotenv.2025.179479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Climate change- driven marine heatwaves are major risk for marine organisms already facing other anthropogenic hazards, such as chemical contamination in coastal areas. In this study we analyzed the impacts of marine heatwaves and phthalic acid esters (PAEs) pollution as single and combined stressors on development of the sea urchin Arbacia lixula. We tested whether the temperature suggested as optimal for development (24 °C) of this thermophilus species would enhance tolerance to PAEs pollution compared to that showed under ambient temperature (18 °C). Embryo-larval bioassays were conducted in exposures to two temperatures (control: 18 °C, heatwave condition: 24 °C) and ten PAEs concentrations (control: 0 mg L-1; treated: range 0.1-50 mg L-1) in all combinations. Ecotoxicological responses were investigated at three functional levels: i) exposure-response relationships, finding that heatwave exposure increased PAEs- induced toxicity and mortality rates with an EC50 lower by 76 %; ii) morphological, finding combined temperature and PAEs increased abnormality and stunted skeleton growth; iii) biochemical, showing that temperature was the main driver for the modulation of activity of stress response enzymes (alkaline phosphatase, esterase and peroxidase). We show that heatwave conditions negatively impacted sea urchin embryos facing pollution and decreased their tolerance to PAEs. Our results indicate that 24 °C is not the optimal temperature for development of A. lixula from the southwestern Mediterranean and highlight that assays based on just one biological level or single stressor can be misleading to deduce health risks to marine organisms and their thermal optimum, indicating the need for more integrative approaches.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| | - Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Maria Byrne
- School of Life and Environmental Sciences and Marine Studies Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Thorsten Hüffer
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Rosario Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Antonella Maccotta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123 Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
2
|
Davies HL, Cox KD, Murchy KA, Shafer HM, Looby A, Juanes F. Marine and Freshwater Sounds Impact Invertebrate Behavior and Physiology: A Meta-Analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17593. [PMID: 39582363 PMCID: PMC11586707 DOI: 10.1111/gcb.17593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
The diversity of biotic and abiotic sounds that fill underwater ecosystems has become polluted by anthropogenic noise in recent decades. Yet, there is still great uncertainty surrounding how different acoustic stimuli influence marine and freshwater (i.e., aquatic) communities. Despite capabilities to detect and produce sounds, aquatic invertebrates are among the most understudied taxa within the field of soundscape ecology. We conducted a meta-analysis to understand how sounds from various sources influence the behavior and physiology of aquatic invertebrates. We extracted 835 data points from 46 studies conducted in 15 countries. The resulting data included 50 species, a range of experimental conditions, and four sound categories: anthropogenic, environmental, synthetic, and music. We used meta-analytic multivariate mixed-effect models to determine how each sound category influenced aquatic invertebrates and if responses were homogeneous across taxa. Our analyses illustrate that anthropogenic noise and synthetic sounds have detrimental impacts on aquatic invertebrate behavior and physiology, and that environmental sounds have slightly beneficial effects on their behavior. Defence responses were the most impacted behaviors, while the most prominent physiological responses were related to biochemistry, genetics, and morphology. Additionally, arthropods and molluscs exhibited the most pronounced physiological responses to anthropogenic and synthetic noise. These findings support the conclusion that many invertebrate species are sensitive to changes in aquatic soundscapes, which can cause adverse or favorable consequences to individuals and populations, dependent on the sound source. This quantitative synthesis highlights the necessity of including marine and freshwater invertebrates in acoustic exposure studies, aquatic ecosystem assessments, and emerging noise pollution policies.
Collapse
Affiliation(s)
- Hailey L. Davies
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Kieran D. Cox
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Department of Biological SciencesSimon Fraser University, 8888 University Dr WBurnabyBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
| | - Kelsie A. Murchy
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Hailey M. Shafer
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Audrey Looby
- Nature Coast Biological StationInstitute of Food and Agricultural Sciences, University of FloridaCedar KeyFloridaUSA
- Fisheries and Aquatic SciencesInstitute of Food and Agricultural Sciences, University of FloridaGainesvilleFloridaUSA
| | - Francis Juanes
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
3
|
Lacouth P, Majer A, Arizza V, Vazzana M, Mauro M, Custódio MR, Queiroz V. Physiological responses of Holothuria grisea during a wound healing event: An integrated approach combining tissue, cellular and humoral evidence. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111695. [PMID: 38992416 DOI: 10.1016/j.cbpa.2024.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Due to their tissue structure similar to mammalian skin and their close evolutionary relationship with chordates, holothurians (Echinodermata: Holothuroidea) are particularly interesting for studies on wound healing. However, previous studies dealing with holothuroid wound healing have had limited approaches, being restricted to tissue repair or perivisceral immune response. In this study, we combined tissue, cellular and humoral parameters to study the wound healing process of Holothuria grisea. The immune responses of the perivisceral coelom were assessed by analyzing the number, proportion and viability of coelomocytes and the volume and protein concentration of the coelomic fluid. Additionally, the morphology of the healing tissue and number of coelomocytes in the connective tissue of different body wall layers were examined over 30 days. Our results showed that perivisceral reactions started 3 h after injury and decreased to baseline levels within 24 h. In contrast, tissue responses were delayed, beginning after 12 h and returning to baseline levels only after day 10. The number of coelomocytes in the connective tissue suggests a potential cooperation between these cells during wound healing: phagocytes and acidophilic spherulocytes act together in tissue clearance/homeostasis, whereas fibroblast-like and morula cells cooperate in tissue remodeling. Finally, our results indicate that the major phases observed in mammalian wound healing are also observed in H. grisea, despite occurring at a different timing, which might provide insights for future studies. Based on these data, we propose a model that explains the entire healing process in H. grisea.
Collapse
Affiliation(s)
- Patrícia Lacouth
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, n. 101, São Paulo (SP) CEP 05508-900, Brazil
| | - Alessandra Majer
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, CEP 05508-900 São Paulo (SP), Brazil
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Márcio Reis Custódio
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, n. 101, São Paulo (SP) CEP 05508-900, Brazil
| | - Vinicius Queiroz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, n. 101, São Paulo (SP) CEP 05508-900, Brazil.
| |
Collapse
|
4
|
Mauro M, Vazzana M, Ceraulo M, de Vita C, di Fiore V, Giacalone VM, Grammauta R, Lazzara V, Papale E, Vizzini A, Buscaino G. Effects of seismic water guns on the peristomial membrane of sea urchins (Arbacia lixula, Linnaeus 1758). MARINE POLLUTION BULLETIN 2024; 207:116892. [PMID: 39232412 DOI: 10.1016/j.marpolbul.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
The seismic water gun is widely used and plays an important role in seabed imaging acquisition; however, acoustic impacts on marine organisms are currently poorly understood. The aim of this study was to analyse the biochemical responses on the peristomial membrane (PM) of the sea urchin, Arbacia lixula, when exposed to water gun shots in open water. The PM (located around the mouth) is involved in vital functions, such as nutrition and protection. Individuals of sea urchins (n = 7 for each time slot) were sampled before, at the end, and at intervals of 3 h and 24 h after acoustic emission (duration of 20 min). Significant increases in superoxide dismutase, peroxidase, esterase and alkaline were observed immediately after water gun shots, highlighting an increase in the oxidative and inflammatory state of the tissue. Our results showed that acoustic impacts could interfere with PM vital functions, compromising the health, survival and ultimately the conservation of the species. Understanding these effects is crucial to predicting consequences on sea urchin populations and marine ecosystems.
Collapse
Affiliation(s)
- M Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - M Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - M Ceraulo
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| | - C de Vita
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy; Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| | - V di Fiore
- Institute of Heritage Science, National Research Council (CNR), Via Cardinale Guglielmo Sanfelice 8, 80134 Napoli (NA), Italy
| | - V M Giacalone
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| | - R Grammauta
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| | - V Lazzara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - E Papale
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| | - A Vizzini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - G Buscaino
- Institute of Anthropic Impact and Sustainability in the Marine Environment (IAS), National Research Council (CNR), UOS Torretta Granitola (TP) Campobello di Mazara, Trapani 91021, Italy
| |
Collapse
|
5
|
Sal Moyano MP, Mitton FM, Luppi TA, Snitman SM, Nuñez JD, Lorusso MI, Ceraulo M, Gavio MA, Buscaino G. Noise accelerates embryonic development in a key crab species: Morphological and physiological carryover effects on early life stages. MARINE POLLUTION BULLETIN 2024; 205:116564. [PMID: 38861799 DOI: 10.1016/j.marpolbul.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Anthropogenic noise is considered one important global pollutant. The impact of noise on marine invertebrates has been less assessed. The present study evaluated the chronic effect of the motorboat noise obtained from a lagoon's soundscape, the natural habitat of the key crab Neohelice granulata, on its whole embryonic development, considering morphological and physiological carryover effects on embryos and hatched larvae. Results demonstrated that embryonic development was shortened under noise exposure. The effects on advanced embryos, larvae and adult females were: increased heartbeats and non-viable eggs, and decreased fecundity. Biochemical responses showed lipid peroxidation in embryos while antioxidant enzymes were activated in larvae and adults, indicating a counteracting effect related to the life stage. The negative effects on fitness offspring may imply ecological consequences at the population level. Results are discussed in terms of the ecosystem engineer species studied and the habitat, a MAB UNESCO Reserve lagoon, suggesting the urgent need to develop mitigation plans.
Collapse
Affiliation(s)
- María Paz Sal Moyano
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina.
| | - Francesca Maria Mitton
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paseo Victoria Ocampo N°1 Escollera Norte (B7602HSA), 7600 Mar del Plata, Argentina
| | - Tomas Atilio Luppi
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Solana Morena Snitman
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Jesús Darío Nuñez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Martín Ignacio Lorusso
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Maria Ceraulo
- Institute of Anthropic Impact and Sustainability in Marine Environment (IAS)-CNR National Research Council, Via del Mare 3, 91021 Torretta Granitola, TP, Italy
| | - María Andrea Gavio
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Giuseppa Buscaino
- Institute of Anthropic Impact and Sustainability in Marine Environment (IAS)-CNR National Research Council, Via del Mare 3, 91021 Torretta Granitola, TP, Italy
| |
Collapse
|
6
|
Savoca D, Vazzana M, Arizza V, Maccotta A, Orecchio S, Longo F, Giudice V, D’Oca G, Messina S, Marrone F, Mauro M. Contamination Profiles of Selected Pollutants in Procambarus clarkii Non-Edible Portions Highlight Their Potential Exploitation Applications. J Xenobiot 2024; 14:893-906. [PMID: 39051345 PMCID: PMC11270285 DOI: 10.3390/jox14030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Properly managing aquatic organisms is crucial, including protecting endemic species and controlling invasive species. From a circular economy perspective, the sustainable use of aquatic species as a source of bioactive molecules is an area that is increasingly being explored. This includes the use of non-edible portions of seafood, which could pose considerable risks to the environment due to current methods of disposal. Therefore, it is of paramount importance to ensure that the exploitation of these resources does not result in the transfer of pollutants to the final product. This study analyzed two types of non-edible parts from the crayfish Procambarus clarkii: the abdominal portion of the exoskeleton (AbE) and the whole exoskeleton (WE), including the cephalothorax. These portions could potentially be utilized in the context of eradication activities regulated by local authorities. A screening analysis of four classes of pollutants, including pesticides, per- and polyfluoroalkyl substances (PFAS), phthalic acid esters (PAEs), and trace elements (TEs), was performed. The only analytes detected were TEs, and significant differences in the contamination profile were found between AbE and WE. Nevertheless, the levels recorded were comparable to or lower than those reported in the literature and below the maximum levels allowed in the current European legislation for food, suggesting that their potential use is legally permitted. In terms of scalability, the utilization of the entire non-edible P. clarkii portion would represent a sustainable solution for the reuse of waste products.
Collapse
Affiliation(s)
- Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Antonella Maccotta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Santino Orecchio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
| | - Francesco Longo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
| | - Vittoria Giudice
- ARPA Sicilia, Agenzia Regionale Protezione Ambiente, UOC L2, via Nairobi, 90129 Palermo, Italy; (V.G.); (G.D.); (S.M.)
| | - Gaetano D’Oca
- ARPA Sicilia, Agenzia Regionale Protezione Ambiente, UOC L2, via Nairobi, 90129 Palermo, Italy; (V.G.); (G.D.); (S.M.)
| | - Salvatore Messina
- ARPA Sicilia, Agenzia Regionale Protezione Ambiente, UOC L2, via Nairobi, 90129 Palermo, Italy; (V.G.); (G.D.); (S.M.)
| | - Federico Marrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.V.); (V.A.); (A.M.); (S.O.); (F.L.); (F.M.); (M.M.)
| |
Collapse
|
7
|
Tu Z, Tang L, Abo-Raya MH, Sun M, Shen H, Wang Y. Cloning and characterization of heat shock transcription factor 1 and its functional role for Hsp70 production in the sea slug Onchidium reevesii. Gene 2024; 893:147945. [PMID: 38381511 DOI: 10.1016/j.gene.2023.147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 02/22/2024]
Abstract
To investigate the regulatory role of heat shock transcription factor 1 of sea slug Onchidium reevesii (OrHSF1) on Hsp70 expression in the sea slug under stress , the OrHSF1 gene was cloned and bioinformatics analysis was performed, then the gene and protein expressions by RNA interference (RNAi) mediated knockdown of OrHSF1 expression were measured to clarify the regulatory relationship between OrHSF1 and Hsp70 under low-frequency noise (LFN) stress. Our study was the first to clone a 1572 bp sequence of the OrHSF1 gene, with the sequence coding for amino acids (CDS) being 729 bp, encoding 243 amino acids. O. reevesii shared a close evolutionary relationship with mollusks such as the Aplysia californica. OrHSF1 gene is widely expressed in different tissues of sea slugs, with the highest expression in the intestine and the lowest in the reproductive glands. Furthermore, we used RNA interference (RNAi) as a tool to silence the OrHSF1 gene in the central nervous system (CNS) and the results indicated that gene silencing was occurring systematically in the CNS and the suppression of OrHSF1 expression by RNAi-mediated gene silencing altered the expression of Hsp70; besides, the expression trends of OrHSF1 gene and Hsp70 were consistent in the 3 and 5-day RNAi experiment. Moreover, in sea slugs injected with siHSF1 and exposed to LFN, the mRNA expression and protein expression of Hsp70 in the CNS were significantly decreased compared to the low-frequency noise group (P < 0.05). This study demonstrated that OrHSF1 regulates Hsp70 expression in marine mollusks under low-frequency noise, and HSF1-Hsp70 axis plays a key role in stress response.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mohamed H Abo-Raya
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mengying Sun
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Cheng X, Zhang L, Gao Z, Li K, Xu J, Liu W, Ru X. Transcriptomic analysis reveals the immune response mechanisms of sea cucumber Apostichopus japonicus under noise stress from offshore wind turbine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167802. [PMID: 37838058 DOI: 10.1016/j.scitotenv.2023.167802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
As an important form of renewable energy, offshore wind power can effectively reduce dependence on traditional energy sources and decrease carbon emissions. However, operation of wind turbines can generate underwater noise that may have negative impacts on marine benthic organisms in the surrounding area. Sea cucumbers are slow-moving invertebrates that inhabit the ocean, relying on their immune system to adapt to their environment. To evaluate the frequency range of characteristic noise produced by offshore wind turbines, we conducted a field survey. Additionally, we utilized sea cucumbers in simulated experiments to assess their response to the noise produced by offshore wind turbines. We established a control group, a low-frequency noise group simulating offshore wind turbine noise at 125 Hz and 250 Hz, and a high-frequency noise group at 2500 Hz, each lasting for 7 days. Results from measuring immune enzyme activity in the coelomic fluid suggest that noise can reduce the activity of superoxide dismutase enzymes, which may make sea cucumbers more susceptible to oxidative damage caused by free radicals. Exposure to low-frequency noise can have the effect of diminishing the activity of catalase, and this decrease in catalase activity could potentially increase the susceptibility of the sea cucumber's coelom to inflammation. In order to elucidate the hypothetical mechanism of immune response, intestinal tissue was extracted for transcriptome sequencing. The results showed that under 125 Hz low-frequency noise stress, the number of differentially expressed genes was the highest, reaching 1764. Under noise stress, sea cucumber's cell apoptosis and cell motility are reduced, interfering with lipid metabolism process and membrane synthesis. This research provides theoretical support for the environmental safety assessment of offshore wind power construction.
Collapse
Affiliation(s)
- Xiaochen Cheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoming Gao
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Kehan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jialei Xu
- Zhongke Tonghe (Shandong) Ocean Technology Co., Ltd., Dongying 257200, China
| | - Weijian Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaoshang Ru
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
9
|
Effects of Sulfamethoxazole on Fertilization and Embryo Development in the Arbacia lixula Sea Urchin. Animals (Basel) 2022; 12:ani12182483. [PMID: 36139342 PMCID: PMC9495157 DOI: 10.3390/ani12182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Drugs released into the aquatic environment create serious problems for the organisms that live there. For this reason, the present study investigates the in vitro effects of the antibiotic sulfamethoxazole, widely found in wastewater, on the fertilization and development of the Arbacia lixula sea urchin. The results showed a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations, together with an increase in anomalies and delays in the development of the embryo. Therefore, the data obtained suggest urgent intervention on the release of these drugs in order to prevent important alterations in the species’ development and to preserve biodiversity. Abstract To date, drugs released into the aquatic environment are a real problem, and among antibiotics, sulfamethoxazole is the one most widely found in wastewater; thus, the evaluation of its toxicity on marine organisms is very important. This study, for the first time, investigates the in vitro effects of 4 concentrations of sulfamethoxazole (0.05 mg/L, 0.5 mg/L, 5 mg/L, 50 mg/L) on the fertilization and development of the sea urchin Arbacia lixula. The gametes were exposed to drugs in three different stages: simultaneously with, prior to, and post-fertilization. The results show a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations. Moreover, an increase in anomalies and delays in embryo development following the treatment with the drug was demonstrated. Therefore, the data suggest that this antibiotic can alter the development of marine organisms, making it urgent to act to reduce their release and to determine the concentration range with the greatest impact.
Collapse
|
10
|
Luparello C, Branni R, Abruscato G, Lazzara V, Drahos L, Arizza V, Mauro M, Di Stefano V, Vazzana M. Cytotoxic capability and the associated proteomic profile of cell-free coelomic fluid extracts from the edible sea cucumber Holothuria tubulosa on HepG2 liver cancer cells. EXCLI JOURNAL 2022; 21:722-743. [PMID: 35721581 PMCID: PMC9203982 DOI: 10.17179/excli2022-4825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive cancer histotype and one of the most common types of cancer worldwide. The identification of compounds that might intervene to restrain neoplastic cell growth appears imperative due to its elevated overall mortality. The marine environment represents a reservoir rich in bioactive compounds in terms of primary and secondary metabolites produced by aquatic animals, mainly invertebrates. In the present study, we determined whether the water-soluble cell-free extract of the coelomic fluid (CFE) of the edible sea cucumber Holothuria tubulosa could play an anti-HCC role in vitro by analyzing the viability and locomotory behavior, cell cycle distribution, apoptosis and autophagy modulation, mitochondrial function and cell redox state of HepG2 HCC cells. We showed that CFE causes an early block in the cell cycle at the G2/M phase, which is coupled to oxidative stress promotion, autophagosome depletion and mitochondrial dysfunction ultimately leading to apoptotic death. We also performed a proteomic analysis of CFE identifying a number of proteins that are seemingly responsible for anti-cancer effects. In conclusion, H. tubulosa's CFE merits further investigation to develop novel promising anti-HCC prevention and/or treatment agents and also beneficial supplements for formulation of functional foods and food packaging material.
Collapse
Affiliation(s)
- Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Rossella Branni
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Laszlo Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
11
|
Mauro M, Cammilleri G, Celi M, Cicero A, Arizza V, Ferrantelli V, Vazzana M. Effects of diclofenac on the gametes and embryonic development of Arbacia lixula. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2059582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- M. Mauro
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - G. Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - M. Celi
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - A. Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - V. Arizza
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - V. Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - M. Vazzana
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| |
Collapse
|
12
|
Mauro M, Arizza V, Arculeo M, Attanzio A, Pinto P, Chirco P, Badalamenti G, Tesoriere L, Vazzana M. Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868). Animals (Basel) 2022; 12:ani12050543. [PMID: 35268111 PMCID: PMC8908831 DOI: 10.3390/ani12050543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The spread of freshwater crustacean farms, in particular of the Australian species Cherax, has been widespread in recent years and has aroused particular interest at an economic level. Knowledge of the basic levels of some biochemical parameters becomes particularly important to understanding the health status of the animals and, therefore, for the maintenance of aquaculture facilities. In this study, the values of some biochemical parameters of two species of Cherax, Cherax destructor and Cherax quadricarinatus, reared in an Italian aquaculture plant, were evaluated for the first time. These parameters should contribute to assessing the health status of these animals on a farm and to understanding if they will be affected by stressful conditions or not. Abstract In the last few years, there has been a notable development in the breeding of freshwater shrimp (astaciculture), which involved various species and in particular, the two Australian Parastacidae species, Cherax destructor and Cherax quadricarinatus. Information about the haemolymphatic parameters of these two species is fragmentary, and filling these gaps becomes important given their importance in aquaculture. Cellular and biochemical parameters were analyzed in both species to create a reference baseline for these parameters to identify the state of welfare or suffering of these animals. The results showed that the total haemocyte count, haemocyte subpopulations, enzymatic activities and pH are similar between the two species, while total protein and osmolality are higher in C. destructor than C. quadricarinatus. Knowledge of these parameters could assist in evaluating the good health status of these species kept in aquaculture facilities.
Collapse
|
13
|
Punginelli D, Schillaci D, Mauro M, Deidun A, Barone G, Arizza V, Vazzana M. The potential of antimicrobial peptides isolated from freshwater crayfish species in new drug development: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104258. [PMID: 34530039 DOI: 10.1016/j.dci.2021.104258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The much-publicised increased resistance of pathogenic bacteria to conventional antibiotics has focused research effort on the characterization of new antimicrobial drugs. In this context, antimicrobial peptides (AMPs) extracted from animals are considered a promising alternative to conventional antibiotics. In recent years, freshwater crayfish species have emerged as an important source of bioactive compounds. In fact, these invertebrates rely on an innate immune system based on cellular responses and on the production of important effectors in the haemolymph, such as AMPs, which are produced and stored in granules in haemocytes and released after stimulation. These effectors are active against both Gram-positive and Gram-negative bacteria. In this review, we summarise the recent progress on AMPs isolated from the several species of freshwater crayfish and their prospects for future pharmaceutical applications to combat infectious agents.
Collapse
Affiliation(s)
- Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Department of Geosciences, Faculty of Science, University of Malta, Msida MSD, 2080, Malta
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| |
Collapse
|
14
|
Wale MA, Briers RA, Diele K. Marine invertebrate anthropogenic noise research - Trends in methods and future directions. MARINE POLLUTION BULLETIN 2021; 173:112958. [PMID: 34607127 DOI: 10.1016/j.marpolbul.2021.112958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Selecting the correct methods to answer one's chosen question is key to conducting rigorous, evidence-based science. A disciplines' chosen methods are constantly evolving to encompass new insights and developments. Analysing these changes can be a useful tool for identifying knowledge gaps and guiding future studies. Research on the impact of anthropogenic noise on marine invertebrates, a topic with specific methodological challenges, has undergone substantial changes since its beginning in 1982. Using this field as an example, we demonstrate the benefits of such method analysis and resulting framework which has the potential to increase conclusive power and comparability of future studies. We list taxa studied to date, use a range of descriptors to analyse the methods applied, and map changes in experimental design through time. Based upon our analysis, three research strategies are proposed as a best practice framework for investigating effects of noise on marine invertebrates and delivering policy-relevant information.
Collapse
Affiliation(s)
- M A Wale
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK.
| | - R A Briers
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - K Diele
- Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK.
| |
Collapse
|
15
|
Mauro M, Lazzara V, Arizza V, Luparello C, Ferrantelli V, Cammilleri G, Inguglia L, Vazzana M. Human Drug Pollution in the Aquatic System: The Biochemical Responses of Danio rerio Adults. BIOLOGY 2021; 10:biology10101064. [PMID: 34681162 PMCID: PMC8533377 DOI: 10.3390/biology10101064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary The release of medicinal products for human use in the aquatic environment is now a serious problem, and can be fatal for the organisms that live there. Danio rerio is a freshwater fish that provides the possibility to study the effects of these pollutants on the health of aquatic organisms. The results of the various existing scientific studies are scarce and conflicting. Here, we review the scientific studies that have analyzed these effects, highlighting that the impacts of drugs are evident in the biochemical responses of these animals. Abstract To date, drug pollution in aquatic systems is an urgent issue, and Danio rerio is a model organism to study the toxicological effects of environmental pollutants. The scientific literature has analyzed the effect of human drug pollution on the biochemical responses in the tissues of D. rerio adults. However, the information is still scarce and conflicting, making it difficult to understand its real impact. The scientific studies are not consistent with each other and, until now, no one has grouped their results to create a baseline of knowledge of the possible impacts. In this review, the analysis of literature data highlights that the effects of drugs on adult zebrafishes depend on various factors, such as the tissue analyzed, the drug concentration and the sex of the individuals. Furthermore, the most influenced biochemical responses concern enzymes (e.g., antioxidants and hydrolase enzymes) and total protein and hormonal levels. Pinpointing the situation to date would improve the understanding of the chronic effects of human drug pollution, helping both to reduce it in the aquatic systems and then to draw up regulations to control this type of pollution.
Collapse
Affiliation(s)
- Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
- Correspondence: (M.M.); (V.F.)
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
- Correspondence: (M.M.); (V.F.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
| | - Luigi Inguglia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| |
Collapse
|
16
|
Mauro M, Queiroz V, Arizza V, Campobello D, Custódio MR, Chiaramonte M, Vazzana M. Humoral responses during wound healing in Holothuria tubulosa (Gmelin, 1788). Comp Biochem Physiol B Biochem Mol Biol 2020; 253:110550. [PMID: 33359143 DOI: 10.1016/j.cbpb.2020.110550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023]
Abstract
Wounds in living organisms trigger tissue-repair mechanisms. The sea cucumber (Holoturia tubulosa) is an excellent model species for achieving a better understanding of the humoral and cellular aspects involved in such healing processes. Consequently, this study assesses data on its morphometric, physiological and humoral responses 1, 2, 6, 24 and 48h after wound induction. In particular, morphometric data on the weight, width, length and coelomic-fluid volume of the species were estimated at different times during our experiments. In addition, the humoral aspects related to the enzymatic activity of esterase, alkaline phosphatase and peroxidase, as well as the cytotoxic activity of cell lysates (CL) and cell-free coelomic fluids (CfCf) are evaluated for the first time. Our results reveal a significant decrease in body length and weight, along with time-dependent, significant changes in the esterase, alkaline phosphatase, peroxidase and cytotoxic activity in both the CL and CfCf. The data obtained lead to the pioneering finding that there is an important time-dependent involvement of morphometric (changes in weight and length) and humoral (enzymatic and cytotoxic) responses in wound healing.
Collapse
Affiliation(s)
- Manuela Mauro
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Vinicius Queiroz
- Departamento de Fisiologia, Instituto de Biociências and Centro de Biologia Marinha (NP-BioMar), Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Arizza
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Daniela Campobello
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Márcio Reis Custódio
- Departamento de Fisiologia, Instituto de Biociências and Centro de Biologia Marinha (NP-BioMar), Universidade de São Paulo, São Paulo, Brazil
| | - Marco Chiaramonte
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123 Palermo, Italy.
| |
Collapse
|
17
|
Histone Deacetylase Inhibitors from Marine Invertebrates. BIOLOGY 2020; 9:biology9120429. [PMID: 33260710 PMCID: PMC7760191 DOI: 10.3390/biology9120429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Histone deacetylases (HDACs) are key components of the epigenetic machinery controlling gene expression. They are involved in chromatin remodeling events via post-translational histone modifications but may also act on nonhistone proteins, influencing many fundamental cellular processes. Due to the key involvement of HDACs in serious human pathologies, including cancer, HDAC inhibitors (HDACis) have received increased attention in recent years. It is known that marine invertebrates produce significant amounts of secondary metabolites showing active pharmacological properties and an extensive spectrum of biomedical applications. The aim of this review is to gather selected studies that report the extraction and identification of marine invertebrate-derived compounds that possess HDACi properties, grouping the producing species according to their taxonomic hierarchy. The molecular, biochemical, and/or physiological aspects, where available, and modes of action of these naturally occurring HDACis will be recapitulated, taking into consideration their possible utilization for the future design of analogs with increased bioavailability and efficacy, less toxicity, and, also, higher isoform selectivity.
Collapse
|
18
|
Inguglia L, Chiaramonte M, Di Stefano V, Schillaci D, Cammilleri G, Pantano L, Mauro M, Vazzana M, Ferrantelli V, Nicolosi R, Arizza V. Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. PeerJ 2020; 8:e9299. [PMID: 32596043 PMCID: PMC7307567 DOI: 10.7717/peerj.9299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Fish by-products are generally used to produce fishmeal or fertilizers, with fish oil as a by-product. Despite their importance, fish wastes are still poorly explored and characterized and more studies are needed to reveal their potentiality. The goal of the present study was to qualitatively characterize and investigate the antimicrobial effects of the fish oil extracted from Salmo salar waste samples and to evaluate the potential use of these compounds for treating pathogen infections. METHODS Salmo salar waste samples were divided in two groups: heads and soft tissues. Fatty acids composition, and in particular the content in saturated (SAFAs), mono-unsaturated (MUFAs) and Polyunsaturated (PUFAs) fatty acids, was characterized through GC/MS Thermo Focus GC-DSQ II equipped with a ZB-5 fused silica capillary tubes column. The antimicrobial activity of the salmon waste oils was evaluated through the Minimum Inhibitory Concentration assay and the antibiotics contamination was determined by Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) analysis. All experiments were done at least in triplicate. RESULTS GC/MS analysis has shown the specific fatty acid composition of the salmon waste oils and their enrichment in MUFAs and PUFAs, with special reference to omega-3, -6, -7, -9 fatty acids. Furthermore, our study has highlighted the antimicrobial activity of the fish waste oil samples against two Gram+ and Gram- bacterial strains. CONCLUSIONS These data confirm that the fish waste is still quantitatively and qualitatively an important source of available biological properties that could be extracted and utilized representing an important strategy to counteract infective diseases in the context of the circular economy.
Collapse
Affiliation(s)
| | | | | | | | | | - Licia Pantano
- Istituto Zooprofilattico della Sicilia “A.Mirri”, Palermo, Italy, Italy
| | - Manuela Mauro
- STEBICEF, University of Palermo, Palermo, Italy, Italy
| | | | | | | | | |
Collapse
|
19
|
Mauro M, Pérez-Arjona I, Perez EJB, Ceraulo M, Bou-Cabo M, Benson T, Espinosa V, Beltrame F, Mazzola S, Vazzana M, Buscaino G. The effect of low frequency noise on the behaviour of juvenile Sparus aurata. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3795. [PMID: 32611157 DOI: 10.1121/10.0001255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic activities are causing increased noise levels in the marine environment. To date, few studies have been undertaken to investigate the effects of different noise frequencies on the behaviour of juvenile fish. In this study, the behavioural changes of juvenile gilthead seabream (Sparus aurata) are evaluated when exposed to white noise filtered in third-octave bands centred at 63, 125, 500, and 1000 Hz (sound pressure level, 140-150 dB re 1 μΡa) for 7 h. The group dispersion, motility, and swimming height of the fish were analysed before and during the acoustic emission. Dispersion of the fish was found to reduce immediately upon application of low frequency sound (63 and 125 Hz) with a return to control condition after 2 h (indicative of habituation), whereas at 1 kHz, dispersion increased after 2 h without any habituation. The motility decreased significantly at 63 Hz throughout the 7 h of sound exposure. The swimming height decreased significantly for all frequencies other than 125 Hz. The results of this study highlight significant variations in the behavioural responses of juvenile fish that could have consequences on their fitness and survival.
Collapse
Affiliation(s)
- Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, Palermo, 90123, Italy
| | - Isabel Pérez-Arjona
- Universitat Politècnica de València, Campus de Gandia, C/Paranimf, 1-46730, Spain
| | | | - Maria Ceraulo
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| | - Manuel Bou-Cabo
- Instituto Español de Oceanografía (IEO), C. O. Murcia, San Pedro del Pinatar (Murcia), 1-30740, Spain
| | - Thomas Benson
- HR Wallingford, Howbery Park, Wallingford, OX10 8BA, United Kingdom
| | - Victor Espinosa
- Universitat Politècnica de València, Campus de Gandia, C/Paranimf, 1-46730, Spain
| | - Francesco Beltrame
- ENR, The Italian Institution for Research and Promotion of Standardization, Via Francesco Crispi, Palermo, 248-90139, Italy
| | - Salvatore Mazzola
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, Palermo, 90123, Italy
| | - Giuseppa Buscaino
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| |
Collapse
|
20
|
Luparello C, Mauro M, Lazzara V, Vazzana M. Collective Locomotion of Human Cells, Wound Healing and Their Control by Extracts and Isolated Compounds from Marine Invertebrates. Molecules 2020; 25:E2471. [PMID: 32466475 PMCID: PMC7321354 DOI: 10.3390/molecules25112471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The collective migration of cells is a complex integrated process that represents a common theme joining morphogenesis, tissue regeneration, and tumor biology. It is known that a remarkable amount of secondary metabolites produced by aquatic invertebrates displays active pharmacological properties against a variety of diseases. The aim of this review is to pick up selected studies that report the extraction and identification of crude extracts or isolated compounds that exert a modulatory effect on collective cell locomotion and/or skin tissue reconstitution and recapitulate the molecular, biochemical, and/or physiological aspects, where available, which are associated to the substances under examination, grouping the producing species according to their taxonomic hierarchy. Taken all of the collected data into account, marine invertebrates emerge as a still poorly-exploited valuable resource of natural products that may significantly improve the process of skin regeneration and restrain tumor cell migration, as documented by in vitro and in vivo studies. Therefore, the identification of the most promising invertebrate-derived extracts/molecules for the utilization as new targets for biomedical translation merits further and more detailed investigations.
Collapse
Affiliation(s)
- Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.M.); (V.L.); (M.V.)
| | | | | | | |
Collapse
|
21
|
Vazzana M, Ceraulo M, Mauro M, Papale E, Dioguardi M, Mazzola S, Arizza V, Chiaramonte M, Buscaino G. Effects of acoustic stimulation on biochemical parameters in the digestive gland of Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2414. [PMID: 32359276 DOI: 10.1121/10.0001034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Underwater sounds generated by anthropogenic activity can cause behavior changes, temporary loss of hearing, damage to parts of the body, or death in a number of marine organisms and can also affect healing and survival. In this study, the authors examined the effects of high-frequency acoustic stimulations on a number of biochemical parameters in the Mediterranean mussel, Mytilus galloprovincialis. During the experiment, animals were placed in a test tank and exposed to acoustic signals [a linear sweep ranging from 100 to 200 kHz and lasting 1 s, with a sound pressure level range of between 145 and 160 dBrms (re 1μParms)] for 3 h. Total haemocyte count was assessed and glucose levels, cytotoxic activity and enzyme activity (alkaline phosphatase, esterase and peroxidase) in the digestive gland were measured. For the first time, this study suggests that high-frequency noise pollution has a negative impact on biochemical parameters in the digestive gland.
Collapse
Affiliation(s)
- Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 18 Archirafi Street, Palermo 90123, Italy
| | - Maria Ceraulo
- Bioacoustics Lab, National Research Council, UOS of Capo Granitola, 3 Mare Street Torretta Granitola 91021, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 18 Archirafi Street, Palermo 90123, Italy
| | - Elena Papale
- Bioacoustics Lab, National Research Council, UOS of Capo Granitola, 3 Mare Street Torretta Granitola 91021, Italy
| | - Maria Dioguardi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 18 Archirafi Street, Palermo 90123, Italy
| | - Salvatore Mazzola
- Bioacoustics Lab, National Research Council, UOS of Capo Granitola, 3 Mare Street Torretta Granitola 91021, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 18 Archirafi Street, Palermo 90123, Italy
| | - Marco Chiaramonte
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 18 Archirafi Street, Palermo 90123, Italy
| | - Giuseppa Buscaino
- Bioacoustics Lab, National Research Council, UOS of Capo Granitola, 3 Mare Street Torretta Granitola 91021, Italy
| |
Collapse
|
22
|
Changes in the proteome of sea urchin Paracentrotus lividus coelomocytes in response to LPS injection into the body cavity. PLoS One 2020; 15:e0228893. [PMID: 32074628 PMCID: PMC7030939 DOI: 10.1371/journal.pone.0228893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background The immune system of echinoderm sea urchins is characterised by a high degree of complexity that is not completely understood. The Mediterranean sea urchin Paracentrotus lividus coelomocytes mediate immune responses through phagocytosis, encapsulation of non-self particles, and production of diffusible factors including antimicrobial molecules. Details of these processes, and molecular pathways driving these mechanisms, are still to be fully elucidated. Principal findings In the present study we treated the sea urchin P. lividus with the bacterial lipopolysaccharide (LPS) and collected coelomocytes at different time-points (1, 3, 6 and 24 hours). We have shown, using label-free quantitative mass spectrometry, how LPS is able to modulate the coelomocyte proteome and to effect cellular pathways, such as endocytosis and phagocytosis, as soon as the immunomodulating agent is injected. The present study has also shown that treatment can modulate various cellular processes such as cytoskeleton reorganisation, and stress and energetic homeostasis. Conclusions Our data demonstrates, through mass spectrometry and the following functional annotation bioinformatics analysis, how the bacterial wall constituent is sufficient to set off an immune response inducing cytoskeleton reorganisation, the appearance of clusters of heat shock proteins (Hsp) and histone proteins and the activation of the endocytic and phagocytic pathways. Data are available via ProteomeXchange with identifier PXD008439.
Collapse
|