1
|
Giraud-Billoud M, Moreira DC, Minari M, Andreyeva A, Campos ÉG, Carvajalino-Fernández JM, Istomina A, Michaelidis B, Niu C, Niu Y, Ondei L, Prokić M, Rivera-Ingraham GA, Sahoo D, Staikou A, Storey JM, Storey KB, Vega IA, Hermes-Lima M. REVIEW: Evidence supporting the 'preparation for oxidative stress' (POS) strategy in animals in their natural environment. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111626. [PMID: 38521444 DOI: 10.1016/j.cbpa.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g. hibernation, estivation), stress-tolerant species down-regulate pathways to decrease energy expenditures until the return of less challenging conditions. However, it is with the return of these more favorable conditions and the reactivation of basal metabolic rates that a strong increase of reactive oxygen and nitrogen species (RONS) occurs, leading to oxidative stress. Over the last few decades, cases of species capable of enhancing antioxidant defenses during hypometabolic states have been reported across taxa and in response to a variety of stressors. Interpreted as an adaptive mechanism to counteract RONS formation during tissue hypometabolism and reactivation, this strategy was coined "Preparation for Oxidative Stress" (POS). Laboratory experiments have confirmed that over 100 species, spanning 9 animal phyla, apply this strategy to endure harsh environments. However, the challenge remains to confirm its occurrence in the natural environment and its wide applicability as a key survival element, through controlled experimentation in field and in natural conditions. Under such conditions, numerous confounding factors may complicate data interpretation, but this remains the only approach to provide an integrative look at the evolutionary aspects of ecophysiological adaptations. In this review, we provide an overview of representative cases where the POS strategy has been demonstrated among diverse species in natural environmental conditions, discussing the strengths and weaknesses of these results and conclusions.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis 5730, Argentina.
| | - Daniel C Moreira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil; Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marina Minari
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aleksandra Andreyeva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow 119991, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - Élida G Campos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Juan M Carvajalino-Fernández
- Laboratory of Adaptations to Extreme Environments and Global Change Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Aleksandra Istomina
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Luciana Ondei
- Universidade Estadual de Goiás, Câmpus Central, 75132-903 Anápolis, GO, Brazil
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Southport 4215, Gold Coast, Queensland. Australia; UMR9190-MARBEC, Centre National de la Recherche Scientifique (CNRS), Montpellier, 34090, France
| | - Debadas Sahoo
- Post Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odis ha-752001, India
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Janet M Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Israel A Vega
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marcelo Hermes-Lima
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
2
|
Flores-Sauceda MA, Leyva-Carrillo L, Camacho-Jiménez L, Gómez-Jiménez S, Peregrino-Uriarte AB, Yepiz-Plascencia G. Two hexokinases of the shrimp Penaeus (Litopenaeus) vannamei are differentially expressed during oxygen limited conditions. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111637. [PMID: 38583741 DOI: 10.1016/j.cbpa.2024.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The white shrimp Penaeus (Litopenaeus) vannamei is the most cultivated shrimp worldwide. Compared to other shrimp species, it has higher resistance to adverse conditions. During hypoxia, the shrimp reduces oxygen consumption and adjusts energy metabolism via anaerobic glycolysis, among other strategies. Hexokinase (HK) is the first enzyme of glycolysis and a key regulation point. In mammals and other vertebrates, there are several tissue-specific HK isoforms with differences in expression and enzyme activity. In contrast, crustacean HKs have been relatively little studied. We studied the P. vannamei HK isoforms during hypoxia and reoxygenation. We cloned two HK1 sequences named HK1-long (1455 bp) and HK1-short (1302 bp), and one HK2 (1344 bp). In normoxia, total HK1 expression is higher in hepatopancreas, while HK2 is higher in gills. Severe hypoxia (1 mg/L of DO) after 12 h exposure and 1 h of reoxygenation increased HK1 expression in both organs, but HK2 expression changed differentially. In hepatopancreas, HK2 expression increased in 6 and 12 h of hypoxia but diminished to normoxia levels after reoxygenation. In gills, HK2 expression decreased after 12 h of hypoxia. HK activity increased in hepatopancreas after 12 h hypoxia, opposite to gills. These results indicate that shrimp HK isoforms respond to hypoxia and reoxygenation in a tissue-specific manner. Intracellular glucose levels did not change in any case, showing the shrimp ability to maintain glucose homeostasis during hypoxia.
Collapse
Affiliation(s)
- Marissa A Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico
| | - Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico
| | - Silvia Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico.
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
3
|
Li Y, Ye Y, Rihan N, Zhu B, Jiang Q, Liu X, Zhao Y, Che X. Polystyrene nanoplastics exposure alters muscle amino acid composition and nutritional quality of Pacific whiteleg shrimp (Litopenaeus vannamei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168904. [PMID: 38016548 DOI: 10.1016/j.scitotenv.2023.168904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Litopenaeus vannamei were exposed to 80-nm polystyrene nanoplastics (NPs) at different concentrations (0, 0.1, 1, 5, and 10 mg/L) for 28 days to study the effects on muscle nutritional quality. Our results showed that with increasing NPs concentrations, the survival rate, specific gain rate, and protein efficiency ratio decreased but the feed conversion ratio increased. There was no significant difference in moisture, ash, and crude lipid content in the muscle, and a general decrease in crude protein content was observed. However, the total amino acid and semi-essential amino acid contents decreased. The spacing between muscle fibers and the melting morphology of muscle increased. The hardness of muscle flesh texture increased, but springiness, cohesiveness, and chewiness decreased. Regarding antioxidant enzyme activity, the activity of catalase decreased, but the total antioxidant capacity, superoxide dismutase activity, and reduced glutathione first increased and then decreased. The expression level of the growth-related genes retinoid X receptor (RXR), chitin synthase (CHS), and calmodulin A (CaM) first increased then decreased, but calcium/calmodulin-dependent protein kinase I (CaMKI), ecdysteroid receptor (EcR), chitinase 5 (CHT5), cell division cycle 2 (Cdc2), and cyclin-dependent kinase 2 (CDK2) decreased. Our results suggest that exposure to NPs can inhibit growth by inducing oxidative stress, which leads to muscle tissue damage and changes in amino acid composition. These results will provide a theoretical reference for the risk assessment of NPs and the ecological health aquaculture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
4
|
Estrada-Cárdenas P, Peregrino-Uriarte AB, Gómez-Jiménez S, Valenzuela-Soto EM, Leyva-Carrillo L, Yepiz-Plascencia G. Responses and modulation of the white shrimp Litopenaeus vannamei glutathione peroxidases 2 and 4 during hypoxia, reoxygenation and GPx4 knock-down. Biochimie 2023; 214:157-164. [PMID: 37460039 DOI: 10.1016/j.biochi.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
Glutathione peroxidases (GPxs) are important antioxidant enzymes that act at distinct levels of the antioxidant defense. In vertebrates, there are several glutathione peroxidase (GPx) isoforms with different cellular and tissue distribution, but little is known about their interrelationships. The shrimp Litopenaeus vannamei is the main crustacean cultivated worldwide. It is affected by environmental stressors, including hypoxia and reoxygenation that cause reactive oxygen species accumulation. Thus, the antioxidant response modulation is key for shrimp resilience. Recently, several GPx isoforms genes were identified in the L. vannamei genome sequence, but their functions are just beginning to be studied. As in vertebrates, shrimp GPx isoforms can present differences in their antioxidant responses. Also, there could be interrelationships among the isoforms that may influence their responses. We evaluated shrimp GPx2 and GPx4 expressions during hypoxia, reoxygenation, and GPx4 knock-down using RNAi for silencing, as well as the enzymatic activity of total GPx and GPx4. Also, glutathione content in hepatopancreas was evaluated. GPx2 and GPx4 presented similar expression patterns during hypoxia and reoxygenation. Their expressions decreased during hypoxia and were reestablished in reoxygenation at 6 h in non-silenced shrimp. GPx2 expression was down-regulated by GPx4 knock-down, suggesting that GPx4 affects GPx2 expression. Total GPx activity changed in hypoxia and reoxygenation at 6 h but not at 12 h, while GPx4 activity was not affected by any stressor. The GSH/GSSG ratio in hepatopancreas indicated that at early hours, the redox status remains well-modulated but at 12 h it is impaired by hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Paulina Estrada-Cárdenas
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - Silvia Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
5
|
Li Y, Ye Y, Li S, Feng J, Liu X, Che X, Jiang Q, Chen X. Transcriptomic analysis of the antioxidant responses and immunomodulatory effects of dietary melatonin in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109173. [PMID: 37879512 DOI: 10.1016/j.fsi.2023.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to investigate the effects of dietary melatonin (MT) levels on the antioxidant capacity, immunomodulatory, and transcriptional regulation of red swamp crayfish. Six experimental diets with different levels of MT (0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg diet) were fed to juvenile crayfish for 60 d. The transcriptome data of the control group and the group supplemented with dietary MT at 165.1 mg/kg were obtained using RNA-seq. In total, 3653 differentially expressed genes (2082 up-regulated and 1571 down-regulated) were identified. Pathways and genes related to antioxidant immune and growth performance were verified by qRT-PCR. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (165.1 mg/kg) group compared to the control group. Analysis of antioxidant immune-related enzymes in the hepatopancreas demonstrated that dietary MT (165.1 mg/kg) significantly increased activities of catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase and significantly decreased aspartate aminotransferase and alanine aminotransferase activity. At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immune and development, which included toll-like receptors, Crustin, C-type lectin, and so on. To conclude, MT could be used as a supplement in crayfish feed to increase immunity and antioxidant capacity and according to the broken line regression, the ideal MT concentration was the 159.02 mg/kg. Overall, this study demonstrates the role of melatonin in the antioxidant responses and immunomodulatory of Procambarus clarkii, laying the foundation for the development of melatonin as a feed additive in the aquaculture of this species.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Xiaolong Chen
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| |
Collapse
|
6
|
Estrada-Cárdenas P, Peregrino-Uriarte AB, Yepiz-Plascencia G. Glutathione peroxidase 4 knock-down triggers ferroptosis in Penaeus vannamei hepatopancreas during hypoxia and reoxygenation. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109201. [PMID: 39491224 DOI: 10.1016/j.fsi.2023.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
The white shrimp Penaeus vannamei during its life cycle are commonly exposed to environmental stressors including hypoxia and reoxygenation that can affect their growth and survival. Hypoxia inducible Factor-1 (HIF-1) is a very important transcription factor involved in the responses to hypoxia and participates in other processes, including ferroptosis. Glutathione peroxidase 4 (GPx4) is a key ferroptosis component. In mammals, GPx4 has important biological functions beyond its antioxidant role. We studied the changes of HIF-1α and the ferroptosis process components, heme oxygenase -1 (HO-1), acyl-CoA synthetase long chain family member 4 (ACSL4), and catalase (CAT) in GPx4 knock-down shrimp exposed to hypoxia and reoxygenation. Malondialdehyde (MDA) content and CAT activity were also evaluated. Changes in HIF-1α, CAT, ACSL4, and HO-1 expression occurred 6 and 12 h after hypoxia and reoxygenation in shrimp hepatopancreas. HIF-1α and CAT expression were reduced during hypoxia and reestablished in reoxygenation at 6 and 12 h, while HO-1 did not change at 6 h, but increased during hypoxia at 12 h. Also, ACSL4 expression decreased during hypoxia and reoxygenation at 12 h, while MDA content was not affected by hypoxia and reoxygenation. GPx4 knock-down increased ACSL4 expression, MDA content, and CAT activity indicating that the ferroptosis process is induced by the intrinsic pathway in hepatopancreas during GPx4 knock-down.
Collapse
Affiliation(s)
- Paulina Estrada-Cárdenas
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
7
|
Zhou S, Lin H, Kong L, Ma J, Long Z, Qin H, Huang Z, Lin Y, Liu L, Li Z. Effects of Mulberry Leaf Extract on the Liver Function of Juvenile Spotted Sea Bass ( Lateolabrax maculatus). AQUACULTURE NUTRITION 2023; 2023:2892463. [PMID: 37908498 PMCID: PMC10615578 DOI: 10.1155/2023/2892463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
In order to explore the effect of mulberry leaf extract (ELM) on the liver function of spotted sea bass, 360 fish with healthy constitution (average body weight 9.00 ± 0.02 g) were selected and randomly divided into six groups with three repetitions, and six groups of fish were randomly placed into 18 test tanks (200 L) with 20 fish per tank for the 52-day feeding test. Every day, the fish were fed the experimental feed with different concentrations (0, 3, 6, 9, 12, 15 g/kg) to the level of apparent satiation, with a crude protein content of 48.0% and a crude fat content of 8.6%. And the water temperature was maintained at 25-28°C with a salinity of 0.5%-1‰. After feeding, five fish were randomly selected to collect their livers and serum for detection of indicators. The results showed that, compared with the control group, ELM significantly increased the activities of lipase (LPS) and trypsin (TRS) in the liver, and reached the highest level when the amount of ELM added was 6 g/kg (P < 0.05). ELM significantly increased the activities of lactate dehydrogenase (LDH) and glutamic-oxaloacetic transaminase (GOT) involved in the metabolic process in liver tissue, and GOT activity reached the highest when ELM was added at 9 g/kg, and LDH activity reached the highest when ELM was added at 15 g/kg (P < 0.05). ELM had no significant effect on liver antioxidant enzymes (P > 0.05), but the content of malondialdehyde was significantly reduced (P < 0.05). Compared with the control group, ELM significantly increased the activities of AKP and ACP in the liver, and the AKP activity reached the highest when the ELM addition amount was 3 g/kg, and the ACP activity reached the highest when the ELM addition amount was 9 g/kg (P < 0.05). Through comparative transcriptomic analysis, it was indicated that ELM enhanced the hepatic lipids and carbohydrates metabolism ability, as manifested in the upregulation of expression of phosphatidate phosphatase, glucuronosyltransferase, inositol oxygenase, carbonic anhydrase, and cytochrome c oxidase subunit 2. ELM can also increase the expression of signal transducer and activator of transcription 1, ATP-dependent RNA helicase and C-X-C motif chemokine 9 involved in the immune process. The above results show that the ELM can enhance the digestion, metabolism, and immunity of the liver by increasing the activity of digestive enzymes, metabolic enzymes, and the expression of metabolism and immune regulation genes. This study provides a theoretical basis for the application of ELM in the cultivation of spotted sea bass by exploring the effect of ELM on the liver function of spotted sea bass.
Collapse
Affiliation(s)
- Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Zhang Y, Zhang QJ, Xu WB, Zou W, Xiang XL, Gong ZJ, Cai YJ. The Multifaceted Effects of Short-Term Acute Hypoxia Stress: Insights into the Tolerance Mechanism of Propsilocerus akamusi (Diptera: Chironomidae). INSECTS 2023; 14:800. [PMID: 37887812 PMCID: PMC10607839 DOI: 10.3390/insects14100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Plenty of freshwater species, especially macroinvertebrates that are essential to the provision of numerous ecosystem functions, encounter higher mortality due to acute hypoxia. However, within the family Chironomidae, a wide range of tolerance to hypoxia/anoxia is displayed. Propsilocerus akamusi depends on this great tolerance to become a dominant species in eutrophic lakes. To further understand how P. akamusi responds to acute hypoxic stress, we used multi-omics analysis in combination with histomorphological characteristics and physiological indicators. Thus, we set up two groups-a control group (DO 8.4 mg/L) and a hypoxic group (DO 0.39 mg/L)-to evaluate enzyme activity and the transcriptome, metabolome, and histomorphological characteristics. With blue-black chromatin, cell tightness, cell membrane invagination, and the production of apoptotic vesicles, tissue cells displayed typical apoptotic features in the hypoxic group. Although lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), catalase (CAT), and Na+/K+ -ATPase (NKA) activities were dramatically enhanced under hypoxic stress, glycogen content, and superoxide dismutase (SOD) activities were significantly reduced compared to the control group. The combined analysis of the transcriptome and metabolome, which further demonstrated, in addition to carbohydrates, including glycogen, the involvement of energy metabolism pathways, including fatty acid, protein, trehalose, and glyoxylate cycles, provided additional support for the aforementioned findings. Lactate is the end product of glycogen degradation, and HIF-1 plays an important role in promoting glycogenolysis in acute hypoxic conditions. However, we discovered that the ethanol tested under hypoxic stress likely originates from the symbiodinium of P. akamusi. These results imply that some parameters related to energy metabolism, antioxidant enzyme activities, and histomorphological features may be used as biomarkers of eutrophic lakes in Chironomus riparius larvae. The study also provides a scientific reference for assessing toxicity and favoring policies to reduce their impact on the environment.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.Z.); (W.Z.); (Z.-J.G.)
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China;
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Qing-Ji Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Wei Zou
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.Z.); (W.Z.); (Z.-J.G.)
| | - Xian-Ling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China;
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Zhi-Jun Gong
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.Z.); (W.Z.); (Z.-J.G.)
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Yong-Jiu Cai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.Z.); (W.Z.); (Z.-J.G.)
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| |
Collapse
|
9
|
Saberi MH, Bita S. Endogenous enzymatic antioxidant status of whiteleg shrimp (Litopenaeus vannamei) following exposure to sublethal concentrations of silver nanoparticles. MARINE POLLUTION BULLETIN 2023; 193:115072. [PMID: 37315417 DOI: 10.1016/j.marpolbul.2023.115072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Immunotoxicity of silver nanoparticles (AgNPs) to whiteleg shrimp (Litopenaeus vannamei) was assessed using redox-status orchestrating enzymes. To this end, the shrimp was exposed to sublethal AgNPs concentrations (0 % LC50: control; 25 % LC50: 0.97 mg/L; 50 % LC50: 1.95 mg/L; 75 % LC50: 2.92 mg/L). During the experiment, the behavior of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx) was monitored, besides total antioxidant capacity (TAC) and malondialdehyde (MDA). The hepatopancreas SOD activity reduced about 63 %-76 % at.%50 LC50 and %75 LC50 AgNPs treatments, and CAT decreased in both tissues at 50 % LC50 AgNPs. TAC exhibited a U-form response in the hepatopancreas organ against stress caused by AgNPs, and hepatopancreas MDA displayed a time-dependent increase. Taken together, AgNPs triggered severe immunotoxicity through suppression of CAT, SOD, and TAC in the hepatopancreas tissue.
Collapse
Affiliation(s)
| | - Seraj Bita
- Department of Fisheries sciences, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran.
| |
Collapse
|
10
|
Hernández-Aguirre LE, Peregrino-Uriarte AB, Duarte-Gutiérrez JL, Leyva-Carrillo L, Ezquerra-Brauer JM, Valenzuela-Soto EM, Yepiz-Plascencia G. Shrimp Glucose-6-phosphatase 2 (G6Pase 2): a second isoform of G6Pase in the Pacific white shrimp and regulation of G6Pase 1 and 2 isoforms via HIF-1 during hypoxia and reoxygenation in juveniles. J Bioenerg Biomembr 2023; 55:137-150. [PMID: 36853470 DOI: 10.1007/s10863-023-09960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Animals suffer hypoxia when their oxygen consumption is larger than the oxygen available. Hypoxia affects the white shrimp Penaeus (Litopenaeus) vannamei, both in their natural habitat and in cultivation farms. Shrimp regulates some enzymes that participate in energy production pathways as a strategy to survive during hypoxia. Glucose-6-phosphatase (G6Pase) is key to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. We previously reported a shrimp G6Pase gene (G6Pase1) and in this work, we report a second isoform that we named G6Pase2. The expression of the two isoforms was evaluated in oxygen limited conditions and during silencing of the transcription factor HIF-1. High G6Pase activity was detected in hepatopancreas followed by muscle and gills under good oxygen and feeding conditions. Gene expression of both isoforms was analyzed in normoxia, hypoxia and reoxygenation in hepatopancreas and gills, and in HIF-1-silenced shrimp. In fed shrimp with normal dissolved oxygen (DO) (5.0 mg L- 1 DO) the expression of G6Pase1 was detected in gills, but not in hepatopancreas or muscle, while G6Pase2 expression was undetectable in all three tissues. In hepatopancreas, G6Pase1 is induced at 3 and 48 h of hypoxia, while G6Pase2 is down-regulated in the same time points but in reoxygenation, both due to the knock-down of HIF-1. In gills, only G6Pase1 was detected, and was induced by the silencing of HIF-1 only after 3 h of reoxygenation. Therefore, the expression of the two isoforms appears to be regulated by HIF-1 at transcriptional level in response to oxygen deprivation and subsequent recovery of oxygen levels.
Collapse
Affiliation(s)
- Laura E Hernández-Aguirre
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Jorge L Duarte-Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Josafat M Ezquerra-Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd Luis Encinas y Rosales s/n, Hermosillo, Sonora, CP 83000, México
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C, Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, México.
| |
Collapse
|
11
|
Garcia-Rueda AL, Mascaro M, Rodriguez-Fuentes G, Caamal-Monsreal CP, Diaz F, Paschke K, Rosas C. Moderate hypoxia mitigates the physiological effects of high temperature on the tropical blue crab Callinectes sapidus. Front Physiol 2023; 13:1089164. [PMID: 36685188 PMCID: PMC9849389 DOI: 10.3389/fphys.2022.1089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dissolved oxygen (DO) and water temperature vary in coastal environments. In tropical regions, the ability of aquatic ectotherms to cope with hypoxia and high-temperature interactive effects is fundamental for their survival. The mechanisms underlying both hypoxia and thermal tolerance are known to be interconnected, therefore, the idea of cross-tolerance between both environmental stressors has been put forward. We investigated the combined role of hypoxia and temperature changes on the physiological responses of blue crab Callinectes sapidus living in the southern Gulf of Mexico. We measured oxygen consumption, plasmatic biochemical indicators, total hemocyte count (THC), and antioxidant activity biomarkers in muscle and gill tissues of blue crab acclimated to moderate hypoxia or normoxia and exposed to a thermal fluctuation or a constant temperature, the former including a temperature beyond the optimum range. Animals recovered their routine metabolic rate (RMR) after experiencing thermal stress in normoxia, reflecting physiological plasticity to temperature changes. In hypoxia, the effect of increasing temperature was modulated as reflected in the RMR and plasmatic biochemical indicators concentration, and the THC did not suggest significant alterations in the health status. In both DO, the antioxidant defense system was active against oxidative (OX) damage to lipids and proteins. However, hypoxia was associated with an increase in the amelioration of OX damage. These results show that C. sapidus can modulate its thermal response in a stringent dependency with DO, supporting the idea of local acclimatization to tropical conditions, and providing insights into its potential as invasive species.
Collapse
Affiliation(s)
- Adriana L. Garcia-Rueda
- Posgrado en Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Maite Mascaro
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico
| | - Gabriela Rodriguez-Fuentes
- Unidad de Quimica Sisal, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Sisal, Mexico,Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Mexico City, Mexico
| | - Claudia P. Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico
| | - Fernando Diaz
- Laboratorio de Ecofisiologia de Organismos Acuaticos, Departamento de Biotecnologia Marina, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile,Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Valdivia, Chile
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico,Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Mexico City, Mexico,*Correspondence: Carlos Rosas,
| |
Collapse
|
12
|
Romo Quiñonez CR, Alvarez-Ruiz P, Mejía-Ruiz CH, Bogdanchikova N, Pestryakov A, Gamez-Jimenez C, Valenzuela-Quiñonez W, Montoya-Mejía M, Nava Pérez E. Chronic toxicity of shrimp feed added with silver nanoparticles (Argovit-4®) in Litopenaeus vannamei and immune response to white spot syndrome virus infection. PeerJ 2022; 10:e14231. [PMID: 36438583 PMCID: PMC9695493 DOI: 10.7717/peerj.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the application of silver nanoparticles (AgNPs) as antibacterial compounds has been widely used in human and veterinary medicine. In this work, we investigated the effects of AgNPs (Argovit-4®) as feed additives (feed-AgNPs) on shrimp (Litopenaeus vannamei) using three different methods: 1) chronic toxicity after 28 days of feeding, 2) Effects against white spot syndrome virus (WSSV) challenged by oral route, and 3) transcriptional responses of immune-related genes (PAP, ProPO, CTL-3, Crustin, PEN3, and PEN4) following WSSV infection. The results showed that the feed-AgNPs did not interfere with the growth and survival of shrimp. Also, mild lesions in the hepatopancreas were recorded, proportional to the frequency of the feed-AgNP supply. Challenge test versus WSSV showed that feeding every 7 days with feed-AgNPs reduced mortality, reaching a survival rate of 53%, compared to the survival rates observed in groups fed every 4 days, daily and control groups of feed-AgNPs for the 30%, 10%, and 7% groups, respectively. Feed-AgNPs negatively regulated the expression of PAP, ProPO, and Crustin genes after 28 days of treatment and altered the transcriptional responses of PAP, ProPO, CTL-3, and Crustin after WSSV exposure. The results showed that weekly feeding-AgNPs could partially prevent WSSV infection in shrimp culture. However, whether or not transcriptional responses against pathogens are advantageous remains to be elucidated.
Collapse
Affiliation(s)
- Carlos R. Romo Quiñonez
- Laboratorio de Biotecnología de Organismos Marinos, Centro de investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Píndaro Alvarez-Ruiz
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | - Claudio H. Mejía-Ruiz
- Laboratorio de Biotecnología de Organismos Marinos, Centro de investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Nina Bogdanchikova
- Fisicoquímica de nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Carina Gamez-Jimenez
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | | | - Magnolia Montoya-Mejía
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | - Eusebio Nava Pérez
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| |
Collapse
|
13
|
Yan P, Lin C, He M, Zhang Z, Zhao Q, Li E. Immune regulation mediated by JAK/STAT signaling pathway in hemocytes of Pacific white shrimps, Litopenaeus vannamei stimulated by lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2022; 130:141-154. [PMID: 35932985 DOI: 10.1016/j.fsi.2022.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
To understand the regulatory mechanism of Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway on the immune system of the Pacific white shrimp, Litopenaeus vannamei, RNA interference technique was used to investigate the effects of JAK/STAT signaling pathway on the immune response of hemocyte in Litopenaeus vannamei stimulated by lipopolysaccharide (LPS). The results showed that 1) after 6 h of LPS stimulation, the expression levels of immune genes in hemocyte were significantly up-regulated (P < 0.05), the immune defense ability (hemocyte number, phagocytosis rate, hemagglutination activity, bacteriolytic activity, antibacterial activity, prophenoloxidase system activity) and the hemocyte antioxidant ability were significantly higher than the control group, especially at 12 h. 2) After 48 h of STAT gene interference, the expression levels of immune genes in hemocytes were significantly down-regulated, and the immune defense ability (hemocyte count, phagocytosis rate, plasma agglutination activity, lysozyme activity, antibacterial activity, proPO system activity) and the antioxidant ability were reduced and significantly lower than control. Concurrently, after LPS stimulation, the immune indexes were significantly up-regulated at 12 h to the maximum but was still lower the undisturbed LPS group. These results indicate that JAK/STAT signaling pathway is involved in the immune regulation mechanism of L. vannamei against LPS stimulation through positive regulation of cellular immune and humoral immune. These results provide a basis for further research on the role and status of JAK/STAT signaling pathway in the immune defense of crustaceans.
Collapse
Affiliation(s)
- Peiyu Yan
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Cheng Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Meng He
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhuofan Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
14
|
Granillo-Luna ON, Hernandez-Aguirre LE, Peregrino-Uriarte AB, Duarte-Gutierrez J, Contreras-Vergara CA, Gollas-Galvan T, Yepiz-Plascencia G. The anaplerotic pyruvate carboxylase from white shrimp Litopenaeus vannamei: Gene structure, molecular characterization, protein modelling and expression during hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111212. [PMID: 35417748 DOI: 10.1016/j.cbpa.2022.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
Hypoxic zones are spreading worldwide in marine environments affecting many organisms. Shrimp and other marine crustaceans can withstand environmental hypoxia using several strategies, including the regulation of energy producing metabolic pathways. Pyruvate carboxylase (PC) catalyzes the first reaction of gluconeogenesis to produce oxaloacetate from pyruvate. In mammals, PC also participates in lipogenesis, insulin secretion and other processes, but this enzyme has been scarcely studied in marine invertebrates. In this work, we characterized the gene encoding PC in the white shrimp Litopenaeus vannamei, modelled the protein structure and evaluated its gene expression in hepatopancreas during hypoxia, as well as glucose and lactate concentrations. The PC gene codes for a mitochondrial protein and has 21 coding exons and 4 non-coding exons that generate three transcript variants with differences only in the 5'-UTR. Total PC expression is more abundant in hepatopancreas compared to gills or muscle, indicating tissue-specific expression. Under hypoxic conditions of 1.53 mg/L dissolved oxygen, PC expression is maintained in hepatopancreas, indicating its key role even in energy-limited conditions. Finally, both glucose and lactate concentrations were maintained under hypoxia for 24-48 h in hepatopancreas.
Collapse
Affiliation(s)
- Omar N Granillo-Luna
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Laura E Hernandez-Aguirre
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Jorge Duarte-Gutierrez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Carmen A Contreras-Vergara
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Teresa Gollas-Galvan
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico.
| |
Collapse
|
15
|
p53 knock-down and hypoxia affects glutathione peroxidase 4 antioxidant response in hepatopancreas of the white shrimp Litopenaeus vannamei. Biochimie 2022; 199:1-11. [DOI: 10.1016/j.biochi.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
|
16
|
Xu Y, Lin H, Yan W, Li J, Sun M, Chen J, Xu Z. Full-Length Transcriptome of Red Swamp Crayfish Hepatopancreas Reveals Candidate Genes in Hif-1 and Antioxidant Pathways in Response to Hypoxia-Reoxygenation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:55-67. [PMID: 34997878 DOI: 10.1007/s10126-021-10086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Red swamp crayfish is particularly prone to exposure to hypoxia-reoxygenation stress on account of the respiration and rhythmic, light-dependent photosynthetic activity of the algae and aquatic grass. Up to now, the regulation mechanisms of the adverse effects of hypoxia-reoxygenation for this species were still unknown, especially the roles of the antioxidant enzymes in reducing oxidative damage during reoxygenation. To screen for vital genes or pathways upon hypoxic-reoxygenation stress, hepatopancreas gene expression profiles were investigated by using a strategy combining second and third generation sequencing. Five groups of samples, including hypoxia for 1 and 6 h with DO of 1.0 mg/L, reoxygenation for 1 and 12 h with DO of 6.8 mg/L, and the samples under normoxia condition, were used for transcriptome sequencing. Twenty Illumina cDNA libraries were prepared to screen for the differentially expressed genes (DEGs) among the 5 groups of samples. Based on the assembled reference full-length transcriptome, 389 and 533 significantly DEGs were identified in the groups under severe hypoxia treatment for 1 and 6 h, respectively. The top three enriched pathways for these DEGs were "protein processing in endoplasmic reticulum," "MAPK signaling pathway," and "endocytosis." Among these DEGs, hypoxia-inducible factor 1α (Hif-1α) and some Hif-1 downstream genes, such as Ugt-1, Egfr, Igfbp-1, Pk, and Hsp70, were significant differentially expressed when exposed to hypoxia stress. A series of antioxidant enzymes, including two types of superoxide dismutase (Cu/ZnSOD and MnSOD), catalase (CAT), and glutathione peroxidase (GPx), were identified to be differentially expressed during hypoxia-reoxygenation treatment, implying their distinct modulation roles on reoxygenation-induced oxidative stress. The full-length transcriptome and the critical genes characterized should contribute to the revelation of intrinsic molecular mechanism being associated with hypoxia/reoxygenation regulation and provide useful foundation for future genetic breeding of the red swamp crayfish.
Collapse
Affiliation(s)
- Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Hai Lin
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Weihui Yan
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiajia Li
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiaping Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China.
| |
Collapse
|
17
|
Tan J, Wang X, Wang L, Zhou X, Liu C, Ge J, Bian L, Chen S. Transcriptomic responses to air exposure stress in coelomocytes of the sea cucumber, Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100963. [PMID: 35131601 DOI: 10.1016/j.cbd.2022.100963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
During rearing in hatcheries and transportation to restocking sites, sea cucumbers are often exposed to air for several hours, which may depress their non-specific immunity and lead to mass mortality. We performed transcriptome analysis of Apostichopus japonicus coelomocytes after air exposure to identify stress-related genes and pathways. After exposure to air for 1 h, individuals were re-submerged in aerated seawater and coelomocytes were collected at 0, 1, 4, and 16 h (B, H1, H4, and H16, respectively). We identified 6148 differentially expressed genes, of which 3216 were upregulated and 2932 were downregulated. Many genes involved in the immune response, antioxidant defense, and apoptosis were highly induced in response to air exposure. Enrichment analysis of Gene Ontology terms showed that the most abundant terms in the biological process category were oxidation-reduction process, protein folding and phosphorylation, and receptor-mediated endocytosis for the comparison of H1 vs. B, H4 vs. H1, and H16 vs. H4, respectively. Kyoto Eecyclopedia of Genes and Genomes enrichment analysis showed that six pathways related to the metabolism of proteins, fats, and carbohydrates were shared among the three comparisons. These results indicated that sea cucumbers regulate the expression of genes related to the antioxidant system and energy metabolism to resist the negative effects of air exposure stress. These findings may be applied to optimize juvenile sea cucumber production, and facilitate molecular marker-assisted selective breeding of an anoxia-resistant strain.
Collapse
Affiliation(s)
- Jie Tan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xuejiang Wang
- Wuzhoufeng Agricultural Science and Technology Co., LTD, Yantai 264000, China.
| | - Liang Wang
- Yantai Marine Economic Research Institute, Yantai 264003, China.
| | - Xiaoqun Zhou
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Changlin Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jianlong Ge
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Li Bian
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Siqing Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
18
|
Hernández-Aguirre LE, Cota-Ruiz K, Peregrino-Uriarte AB, Gómez-Jiménez S, Yepiz-Plascencia G. The gluconeogenic glucose-6-phosphatase gene is expressed during oxygen-limited conditions in the white shrimp Penaeus (Litopenaeus) vannamei: Molecular cloning, membrane protein modeling and transcript modulation in gills and hepatopancreas. J Bioenerg Biomembr 2021; 53:449-461. [PMID: 34043143 DOI: 10.1007/s10863-021-09903-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/14/2021] [Indexed: 11/28/2022]
Abstract
The white shrimp Penaeus (Litopenaeus) vannamei is the most economically important crustacean species cultivated in the Western Hemisphere. This crustacean shifts its metabolism to survive under extreme environmental conditions such as hypoxia, although for a limited time. Glucose-6-phosphatase (G6Pase) is a key enzyme contributing to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. To our knowledge, there are no current detailed studies about cDNA or gene sequences of G6Pase from any crustacean reported. Herein we report the shrimp P. (L.) vannamei cDNA and gene sequences. The gene contains seven exons interrupted by six introns. The deduced amino acid sequence has 35% identity to other homolog proteins, with the catalytic amino acids conserved and phylogenetically close to the corresponding invertebrate homologs. Protein molecular modeling predicted eight transmembrane helices with the catalytic site oriented towards the lumen of the endoplasmic reticulum. G6Pase expression under normoxic conditions was evaluated in hepatopancreas, gills, and muscle and the highest transcript abundance was detected in hepatopancreas. In response to different times of hypoxia, G6Pase mRNA expression did not change in hepatopancreas and became undetectable in muscle; however, in gills, its expression increased after 3 h and 24 h of oxygen limitation, indicating its essential role to maintain glycemic control in these conditions.
Collapse
Affiliation(s)
- Laura E Hernández-Aguirre
- Biología de Organismos Acuáticos, Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Colonia La Victoria, Sonora, 83304, Hermosillo, Mexico
| | - Keni Cota-Ruiz
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Alma B Peregrino-Uriarte
- Biología de Organismos Acuáticos, Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Colonia La Victoria, Sonora, 83304, Hermosillo, Mexico
| | - Silvia Gómez-Jiménez
- Biología de Organismos Acuáticos, Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Colonia La Victoria, Sonora, 83304, Hermosillo, Mexico
| | - Gloria Yepiz-Plascencia
- Biología de Organismos Acuáticos, Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Colonia La Victoria, Sonora, 83304, Hermosillo, Mexico.
| |
Collapse
|
19
|
Calvo MM, Tzamourani A, Martínez-Alvarez O. Halophytes as a potential source of melanosis-inhibiting compounds. Mechanism of inhibition of a characterized polyphenol extract of purslane (Portulaca oleracea). Food Chem 2021; 355:129649. [PMID: 33799263 DOI: 10.1016/j.foodchem.2021.129649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
The market value of crustaceans depreciates during storage due to the appearance of melanosis caused by polyphenol oxidases. Sulfite derivatives are used as melanosis-inhibiting agents, but their unhealthy effects make it preferable to replace them with natural preservatives. In this work, a crude enzymatic extract from whiteleg shrimp (Penaeus vannamei) was characterized and used to test the diphenol oxidase-inhibiting activity of polyphenol extracts of five underutilized halophyte plants, namely crystalline ice plant, seaside arrowgrass, purslane, sea fennel, and seashore aster. The extracts inhibited diphenol oxidase activity more efficiently than sodium sulfite. The purslane extract was rich in isoorientins, isovitexin, and apigenin, and showed the highest inhibiting effect, being this classified as mixed or non-competitive. Hydroxyl groups in the phenyl B ring could be responsible for the inhibitory activity of the extract. The polyphenol extracts tested in this work could be promising melanosis-inhibiting agents of interest for seafood industries.
Collapse
Affiliation(s)
- Marta María Calvo
- Institute of Food Science, Technology and Nutrition (CSIC), 10 José Antonio Novais St, 28040 Madrid, Spain
| | - Aikaterini Tzamourani
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, Athens, GR 11855, Greece
| | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (CSIC), 10 José Antonio Novais St, 28040 Madrid, Spain.
| |
Collapse
|
20
|
Estrada-Cárdenas P, Cruz-Moreno DG, González-Ruiz R, Peregrino-Uriarte AB, Leyva-Carrillo L, Camacho-Jiménez L, Quintero-Reyes I, Yepiz-Plascencia G. Combined hypoxia and high temperature affect differentially the response of antioxidant enzymes, glutathione and hydrogen peroxide in the white shrimp Litopenaeus vannamei. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110909. [PMID: 33465469 DOI: 10.1016/j.cbpa.2021.110909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
Low oxygen concentration in water (hypoxia) and high temperature are becoming more frequent due to climate change, forcing animals to endure stress or decease. Hypoxia and high temperature stress can lead to reactive oxygen species (ROS) accumulation and oxidative damage to the organisms. The shrimp Litopenaeus vannamei is the most cultivated crustacean worldwide. The aim of this study was to evaluate the expression and enzymatic activity of glutathione peroxidase (GPx), catalase (CAT) and cytosolic manganese superoxide dismutase (cMnSOD) in gills and hepatopancreas from L. vannamei in response to two combined stressors: hypoxia and reoxygenation at control and high temperature (28 vs 35 °C, respectively). In addition, glutathione and hydrogen peroxide content were analyzed. The changes were mainly tissue-specific. In gills, cMnSOD expression and enzymatic activity increased in response to the interactions between oxygen variation and thermal stress, while GPx and CAT were maintained. More changes occurred in GPx, CAT and MnSOD in hepatopancreas than in gills, mainly due to the effect of the individual stress factors of thermal stress or oxygen variations. On the other hand, the redox state of glutathione indicated that during high temperature, changes in the GSH/GSSG ratio occurred due to the fluctuations of GSSG. Hydrogen peroxide concentration was not affected by thermal stress or oxygen variations in hepatopancreas, whereas in gills, it was not detected. Altogether, these results indicate a complex pattern of antioxidant response to hypoxia, reoxygenation, high temperature and their combinations.
Collapse
Affiliation(s)
- Paulina Estrada-Cárdenas
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Dalia G Cruz-Moreno
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Ricardo González-Ruiz
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Idania Quintero-Reyes
- Universidad de Sonora Campus Cajeme, Boulevard Bordo Nuevo, Antiguo Ejido Providencia, Cd. Obregón, Sonora 85199, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
21
|
González-Ruiz R, Granillo-Luna ON, Peregrino-Uriarte AB, Gómez-Jiménez S, Yepiz-Plascencia G. Mitochondrial manganese superoxide dismutase from the shrimp Litopenaeus vannamei: Molecular characterization and effect of high temperature, hypoxia and reoxygenation on expression and enzyme activity. J Therm Biol 2020; 88:102519. [PMID: 32125996 DOI: 10.1016/j.jtherbio.2020.102519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 01/26/2023]
Abstract
Climate warming has been increasing ocean water temperature and decreasing oxygen concentrations, exposing aquatic organisms to environmental stress conditions. The shrimp Litopenaeus vannamei manages to survive these harsh environmental conditions by enhancing their antioxidant defenses, among other strategies. In this study, we report the mitochondrial manganese superoxide dismutase (mMnSOD) nucleotide and deduced amino acid sequences and its gene expression in L. vannamei tissues. The deduced protein has 220 amino acids with a signal peptide of 20 amino acids. Expression of mMnSOD was analyzed in hepatopancreas, gills and muscle, where gills had highest expression in normoxic conditions. In addition, shrimp were subjected to high temperature, hypoxia and reoxygenation to analyze the effect on the expression of mMnSOD and SOD activity in mitochondria. High temperature and hypoxia showed a synergistic effect in the up-regulation on expression of mMnSOD in gills and hepatopancreas. Moreover, induction in SOD activity was found in the mitochondrial fraction from gills of normoxia at high temperature, probably due to an overproduction of reactive oxygen species caused by an elevated metabolic rate due to the stress temperature. These results suggest that the combined stress conditions of hypoxia and high temperature trigger molecularly the antioxidant response in L. vannamei in a higher degree than only one stressor.
Collapse
Affiliation(s)
- Ricardo González-Ruiz
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Omar Noé Granillo-Luna
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Silvia Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico.
| |
Collapse
|
22
|
Collins M, Tills O, Turner LM, Clark MS, Spicer JI, Truebano M. Moderate reductions in dissolved oxygen may compromise performance in an ecologically-important estuarine invertebrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133444. [PMID: 31362229 DOI: 10.1016/j.scitotenv.2019.07.250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/27/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Coastal ecosystems, including estuaries, are increasingly pressured by expanding hypoxic regions as a result of human activities such as increased release of nutrients and global warming. Hypoxia is often defined as oxygen concentrations below 2 mL O2 L-1. However, taxa vary markedly in their sensitivity to hypoxia and can be affected by a broad spectrum of low oxygen levels. To better understand how reduced oxygen availability impacts physiological and molecular processes in invertebrates, we investigated responses of an estuarine amphipod to an ecologically-relevant level of moderate hypoxia (~2.6 mL O2 L-1) or severe hypoxia (~1.3 mL O2 L-1). Moderate hypoxia elicited a reduction in aerobic scope, and widespread changes to gene expression, including upregulation of metabolic genes and stress proteins. Under severe hypoxia, a marked hyperventilatory response associated with maintenance of aerobic performance was accompanied by a muted transcriptional response. This included a return of metabolic genes to baseline levels of expression and downregulation of transcripts involved in protein synthesis, most of which indicate recourse to hypometabolism and/or physiological impairment. We conclude that adverse ecological effects may occur under moderate hypoxia through compromised individual performance and, therefore, even modest declines in future oxygen levels may pose a significant challenge to coastal ecosystems.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Lucy M Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
23
|
Zhang HJ, Wang ZK, Zhu WL. Metabolomics of Eothenomys miletus from five Hengduan Mountains locations in summer. Sci Rep 2019; 9:14924. [PMID: 31624370 PMCID: PMC6797714 DOI: 10.1038/s41598-019-51493-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/02/2019] [Indexed: 02/01/2023] Open
Abstract
Climatic characteristics of Hengduan Mountains region were diverse, and Eothenomys miletus was a native species throughout this region. To investigate adaptive strategies of E. miletus to environmental factors in different locations in this region, five locations were selected, including Deqin (DQ), Xianggelila (XGLL), Lijiang (LJ), Jianchuan (JC) and Ailaoshan (ALS). Then, body mass, visceral organ masses, and serum and liver metabolomes of E. miletus from each location were examined. The results showed that body mass was significantly different among these five sites. Liver mass was lower in ALS than in other locations. PLS-DA analysis, metabolite tree maps and heat maps of serum and liver metabolites showed that samples from DQ and XGLL clustered together, as did the samples from LJ, JC and ALS. Serum concentrations of lipid and amino acid metabolites, concentrations of TCA cycle intermediates, lipid metabolites and amino acid metabolites in livers from DQ and XGLL were higher than those from other three regions. However, the concentrations of glycolytic metabolites were lower in DQ and XGLL. All these results indicated that E. miletus adapts to changes in environmental temperature and altitude of this region by adjusting body mass and serum and liver metabolite concentrations.
Collapse
Affiliation(s)
- Hai-Ji Zhang
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zheng-Kun Wang
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China.,Yunnan Normal University, Engineering Research Center of Sustinable Development and Utilization of Biomass Energy Ministry of Education, Kunming, 650500, People's Republic of China.,Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, 650500, People's Republic of China
| | - Wan-Long Zhu
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China. .,Yunnan Normal University, Engineering Research Center of Sustinable Development and Utilization of Biomass Energy Ministry of Education, Kunming, 650500, People's Republic of China. .,Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
24
|
Giraud-Billoud M, Rivera-Ingraham GA, Moreira DC, Burmester T, Castro-Vazquez A, Carvajalino-Fernández JM, Dafre A, Niu C, Tremblay N, Paital B, Rosa R, Storey JM, Vega IA, Zhang W, Yepiz-Plascencia G, Zenteno-Savin T, Storey KB, Hermes-Lima M. Twenty years of the ‘Preparation for Oxidative Stress’ (POS) theory: Ecophysiological advantages and molecular strategies. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:36-49. [DOI: 10.1016/j.cbpa.2019.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
|
25
|
Mendez-Romero O, Uribe-Carvajal S, Chiquete-Felix N, Muhlia-Almazan A. Mitochondrial uncoupling proteins UCP4 and UCP5 from the Pacific white shrimp Litopenaeus vannamei. J Bioenerg Biomembr 2019; 51:103-119. [PMID: 30796582 DOI: 10.1007/s10863-019-09789-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/10/2019] [Indexed: 01/21/2023]
Abstract
Mitochondrial uncoupling proteins (UCP) transport protons from the intermembrane space to the mitochondrial matrix uncoupling oxidative phosphorylation. In mammals, these proteins have been implicated in several cellular functions ranging from thermoregulation to antioxidant defense. In contrast, their invertebrate homologs have been much less studied despite the great diversity of species. In this study, two transcripts encoding mitochondrial uncoupling proteins were, for the first time, characterized in crustaceans. The white shrimp Litopenaeus vannamei transcript LvUCP4 is expressed in all tested shrimp tissues/organs, and its cDNA includes a coding region of 954 bp long which encodes a deduced protein 318 residues long and a predicted molecular weight of 35.3 kDa. The coding region of LvUCP5 transcript is 906 bp long, encodes a protein of 302 residues with a calculated molecular weight of 33.17 kDa. Both proteins share homology with insect UCPs, their predicted structures show the conserved motifs of the mitochondrial carrier proteins and were confirmed to be located in the mitochondria through a Western blot analysis. The genic expression of LvUCP4 and LvUCP5 was evaluated in shrimp at oxidative stress conditions and results were compared to some antioxidant enzymes to infer about their antioxidant role. LvUCP4 and LvUCP5 genes expression did not change during hypoxia/re-oxygenation, and no coordinated responses were detected with antioxidant enzymes at the transcriptional level. Results confirmed UCPs as the first uncoupling mechanism reported in this species, but their role in the oxidative stress response remains to be confirmed.
Collapse
Affiliation(s)
- Ofelia Mendez-Romero
- Bioenergetics and Molecular Genetics Lab, Centro de Investigacion en Alimentacion y Desarrollo, A. C. Carretera a Ejido La Victoria Km 0.6, PO Box 1735, 83000, Hermosillo, Sonora, Mexico
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, PO Box 70-242, Mexico City, Mexico
| | - Natalia Chiquete-Felix
- Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, PO Box 70-242, Mexico City, Mexico
| | - Adriana Muhlia-Almazan
- Bioenergetics and Molecular Genetics Lab, Centro de Investigacion en Alimentacion y Desarrollo, A. C. Carretera a Ejido La Victoria Km 0.6, PO Box 1735, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
26
|
Chen YH, He JG. Effects of environmental stress on shrimp innate immunity and white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:744-755. [PMID: 30393174 DOI: 10.1016/j.fsi.2018.10.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
The shrimp aquaculture industry is plagued by disease. Due to the lack of deep understanding of the relationship between innate immune mechanism and environmental adaptation mechanism, it is difficult to prevent and control the diseases of shrimp. The shrimp innate immune system has received much recent attention, and the functions of the humoral immune response and the cellular immune response have been preliminarily characterized. The role of environmental stress in shrimp disease has also been investigated recently, attempting to clarify the interactions among the innate immune response, the environmental stress response, and disease. Both the innate immune response and the environmental stress response have a complex relationship with shrimp diseases. Although these systems are important safeguards, allowing shrimp to adapt to adverse environments and resist infection, some pathogens, such as white spot syndrome virus, hijack these host systems. As shrimp lack an adaptive immune system, immunization therapy cannot be used to prevent and control shrimp disease. However, shrimp diseases can be controlled using ecological techniques. These techniques, which are based on the innate immune response and the environmental stress response, significantly reduce the impact of shrimp diseases. The object of this review is to summarize the recent research on shrimp environmental adaptation mechanisms, innate immune response mechanisms, and the relationship between these systems. We also suggest some directions for future research.
Collapse
Affiliation(s)
- Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| |
Collapse
|
27
|
Nuñez-Hernandez DM, Camacho-Jiménez L, González-Ruiz R, Mata-Haro V, Ezquerra-Brauer JM, Yepiz-Plascencia G. Cyclin-dependent kinase 2 (Cdk-2) from the White shrimp Litopenaeus vannamei: Molecular characterization and tissue-specific expression during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2018; 230:56-63. [PMID: 30594527 DOI: 10.1016/j.cbpa.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/01/2023]
Abstract
The cell cycle comprises a series of steps necessary for cell growth until cell division. The participation of proteins responsible for cell cycle regulation, known as cyclin dependent kinases or Cdks, is necessary for cycle progression. Cyclin dependent kinase 2 (Cdk-2) is one of the most studied Cdks. This kinase regulates the passage through the G1/S phase and is involved in DNA replication in the S phase. Cdks have been extensively studied in mammals, but there is little information about these proteins in crustaceans. In the present work, the nucleotide and amino acid sequence of Cdk-2 from the white shrimp (Cdk-2) and its expression during hypoxia and reoxygenation are reported. Cdk-2 is a highly conserved protein and contains the serine/threonine catalytic domain, an ATP binding site and the PSTAIRE sequence. The predicted Cdk-2 structure showed the two-lobed structure characteristic of kinases. Expression of Cdk-2 was detected in hepatopancreas, gills and muscle, with hepatopancreas having the highest expression during normoxic conditions. Cdk-2 expression was significantly induced after hypoxia for 24 h in muscle cells, but in hypoxia exposure for 24 followed by 1 h of reoxygenation, the expression levels returned to the levels found in normoxic conditions, suggesting induction of cell cycle progression in muscular cells during hypoxia. No significant changes in expression of Cdk-2 were detected in these conditions in hepatopancreas and gills.
Collapse
Affiliation(s)
- Dahlia M Nuñez-Hernandez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosa No. 46, Col La Victoria, CP 83304 Hermosillo, Sonora, Mexico
| | - Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosa No. 46, Col La Victoria, CP 83304 Hermosillo, Sonora, Mexico
| | - Ricardo González-Ruiz
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosa No. 46, Col La Victoria, CP 83304 Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosa No. 46, Col La Victoria, CP 83304 Hermosillo, Sonora, Mexico
| | | | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosa No. 46, Col La Victoria, CP 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
28
|
Pedrosa-Gerasmio IR, Tanaka T, Sumi A, Kondo H, Hirono I. Effects of 5-Aminolevulinic Acid on Gene Expression, Immunity, and ATP Levels in Pacific White Shrimp, Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:829-843. [PMID: 30145744 DOI: 10.1007/s10126-018-9852-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
With the emergence of several infectious diseases in shrimp aquaculture, there is a growing interest in the use of feed additives to enhance shrimp immunity. Recently, the use of 5-aminolevulinic acid (5-ALA), a non-protein amino acid that plays a rate-limiting role in heme biosynthesis, has received attention for its positive effect on immunity in livestock animals. To evaluate the effect of 5-ALA in the Pacific white shrimp, Litopenaeus vannamei, we conducted microarray analysis, a Vibrio parahaemolyticus immersion challenge test, an ATP level assay, and gene expression analysis of some hemoproteins and genes associated with heme synthesis and degradation. Out of 15,745 L. vannamei putative genes on the microarray, 101 genes were differentially expressed by more than fourfold (p < 0.05) between 5-ALA-supplemented and control shrimp hepatopancreas. 5-ALA upregulated 99 of the 101 genes, 41 of which were immune- and defense-related genes based on sequence homology. Compared to the control, the 5-ALA-supplemented group had a higher survival rate in the challenge test, higher transcript levels of porphobilinogen synthase, ferrochelatase, catalase, nuclear receptor E75, and heme oxygenase-1 and higher levels of ATP. These findings suggest that dietary 5-ALA enhanced the immune response of L. vannamei to V. parahaemolyticus, upregulated immune- and defense-related genes, and enhanced aerobic energy metabolism, respectively. Further studies are needed to elucidate the extent of 5-ALA use in shrimp culture.
Collapse
Affiliation(s)
- Ivane R Pedrosa-Gerasmio
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| |
Collapse
|
29
|
Phosphoenolpyruvate carboxykinase cytosolic and mitochondrial isoforms are expressed and active during hypoxia in the white shrimp Litopenaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol 2018; 226:1-9. [DOI: 10.1016/j.cbpb.2018.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022]
|
30
|
Camacho-Jiménez L, Peregrino-Uriarte AB, Martínez-Quintana JA, Yepiz-Plascencia G. The glyceraldehyde-3-phosphate dehydrogenase of the shrimp Litopenaeus vannamei: Molecular cloning, characterization and expression during hypoxia. MARINE ENVIRONMENTAL RESEARCH 2018; 138:65-75. [PMID: 29699713 DOI: 10.1016/j.marenvres.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Some marine crustaceans like the white shrimp Litopenaeus vannamei are tolerant to environmental hypoxia. Under oxygen deprivation, shrimp tissues obtain energy by enhancing anaerobic glycolysis. In mammals, hypoxia increases the expression of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which has been shown a "moonlighting" role in cells. However, the effect of hypoxia on the GAPDH expression has not been studied in crustaceans. In the present work, we obtained a 2744 bp gene sequence with a 999 bp ORF split by a single intron. The deduced protein is 332 amino acids and corresponds to the L. vannamei GAPDH (LvGAPDH), which is highly similar in sequence and structure to other animal GAPDHs. During hypoxia, LvGAPDH expression is significantly induced in gills but not in hepatopancreas, suggesting that it may play a role in the molecular and cellular response of shrimp to hypoxia.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera a Ejido La Victoria Km. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera a Ejido La Victoria Km. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - José A Martínez-Quintana
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km. 1, Chihuahua, C.P. 33820, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera a Ejido La Victoria Km. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico.
| |
Collapse
|
31
|
Nuñez-Hernandez DM, Felix-Portillo M, Peregrino-Uriarte AB, Yepiz-Plascencia G. Cell cycle regulation and apoptosis mediated by p53 in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei. CHEMOSPHERE 2018; 190:253-259. [PMID: 28992477 DOI: 10.1016/j.chemosphere.2017.09.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Although hypoxic aquatic environments cause negative effects on shrimp, these animals can withstand somewhat hypoxia, but the cellular mechanisms underlying this capacity are still poorly understood. In humans, mild hypoxia causes the induction of many proteins to allow cell survival. In contrast, apoptosis is induced during severe hypoxia leading to cell death. p53 is a key transcription factor that determines cells fate towards cell cycle arrest or induction of apoptosis in humans. The aim of this work was to study the role of p53 in cell cycle regulation and apoptosis in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei. p53 was silenced by RNAi and afterwards the shrimp were exposed to hypoxia. Cdk-2 was used as indicator of cell cycle progression while caspase-3 expression and caspase activity were analyzed as indicators of apoptosis. p53 levels in hepatopancreas were significantly higher at 48 h after hypoxic treatment. Increased expression levels of Cdk-2 were found in p53-silenced shrimp after 24 and 48 h in the normoxic treatments as well as 48 h after hypoxia, indicating a possible role of p53 in cell cycle regulation. In response to hypoxia, unsilenced shrimp showed an increase in caspase-3 expression levels, however an increase was also observed in caspase activity at 24 h of normoxic conditions in p53-silenced shrimps. Taken together these results indicate the involvement of p53 in regulation of cell cycle and apoptosis in the white shrimp in response to hypoxia.
Collapse
Affiliation(s)
- Dahlia M Nuñez-Hernandez
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Monserrath Felix-Portillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua, Chihuahua, 33820, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
32
|
Ekambaram P, Narayanan M, Parasuraman P. Differential expression of survival proteins during decreased intracellular oxygen tension in brain endothelial cells of grey mullets. MARINE POLLUTION BULLETIN 2017; 115:421-428. [PMID: 28043644 DOI: 10.1016/j.marpolbul.2016.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The brain requires constant oxygen supply to perform its biological functions essential for survival. Because of low oxygen capacity and poor oxygen diffusibility of water, many fish species have evolved various adaptive mechanisms to cope with depleted oxygen. Endothelial cells (EC) are the primary components responsible for controlled environment of brain. Brain homeostasis largely depends on integrity of the EC. To elucidate their adaptive strategy, EC were isolated from the fish brain of Kovalam-control site and Ennore estuary-test/field hypoxic site and were subjected to low oxygen tension in laboratory. Cell viability, 4-hydroxynonenal (4HNE) and total antioxidant capacity (TAC) were analyzed to ascertain stress. Hypoxic insult, cytoprotective role of HSPs and apoptotic effect were analyzed by assessing hypoxia-inducible-factor-α (HIF1α), heat-shock-protein-70 (HSP70), heme-oxygenase 1 (HO-1), and apoptosis signal regulating kinase-1 (ASK1). This study evidenced that HSP70 and HO-1 are the key stress proteins, confer high tolerance to decreased oxygen tension mediated stress.
Collapse
Affiliation(s)
- Padmini Ekambaram
- P.G. Department of Biochemistry, Bharathi Women's College (A), Affiliated to University of Madras, Tamil Nadu, India.
| | - Meenakshi Narayanan
- P.G. Department of Biochemistry, Bharathi Women's College (A), Affiliated to University of Madras, Tamil Nadu, India
| | - Parimala Parasuraman
- P.G. Department of Biochemistry, Bharathi Women's College (A), Affiliated to University of Madras, Tamil Nadu, India
| |
Collapse
|
33
|
Felix-Portillo M, Martínez-Quintana JA, Arenas-Padilla M, Mata-Haro V, Gómez-Jiménez S, Yepiz-Plascencia G. Hypoxia drives apoptosis independently of p53 and metallothionein transcript levels in hemocytes of the whiteleg shrimp Litopenaeus vannamei. CHEMOSPHERE 2016; 161:454-462. [PMID: 27459156 DOI: 10.1016/j.chemosphere.2016.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
The cellular mechanisms used by the shrimp Litopenaeus vannamei to respond to hypoxia have been studied from the energetic metabolism and antioxidant angles. We herein investigated the participation of p53 and metallothionein (MT) in the apoptotic process in response to hypoxia in shrimp hemocytes. The Lvp53 or LvMT genes were efficiently silenced by injection of double stranded RNA for p53 or MT. The effects of silencing on apoptosis were measured as caspase-3 activity and flow cytometry in hemocytes after 24 and 48 h of hypoxia (1.5 mg DO L(-1)). Hemocytes from unsilenced animals had significantly higher apoptosis levels upon both times of hypoxia. The apoptotic levels were diminished but not suppressed in dsp53-silenced but not dsMT-silenced hemocytes after 24 h of hypoxia, indicating a contribution of Lvp53 to apoptosis. Apoptosis in normoxia was significantly higher in dsp53-and dsMT-silenced animals compared to the unsilenced controls, pointing to a possible cytoprotective role of LvMT and Lvp53 during the basal apoptotic program in normoxia. Overall, these results indicate that hypoxia augments apoptosis in shrimp hemocytes and high mRNA levels of Lvp53 and LvMT are not necessary for this response.
Collapse
Affiliation(s)
- Monserrath Felix-Portillo
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - José A Martínez-Quintana
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua, Chihuahua, 33820, Mexico
| | - Marina Arenas-Padilla
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Verónica Mata-Haro
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Silvia Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
34
|
How widespread is preparation for oxidative stress in the animal kingdom? Comp Biochem Physiol A Mol Integr Physiol 2016; 200:64-78. [DOI: 10.1016/j.cbpa.2016.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 11/19/2022]
|
35
|
Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence. J Proteomics 2016; 147:197-211. [PMID: 27288903 DOI: 10.1016/j.jprot.2016.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/20/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Ripening and senescence define the last step of fruit development, which directly affects its commercial value, and mitochondria play a crucial role in these processes. To better understand mitochondrial roles in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from peach tissues (Prunus persica. cv. Xiahui-8) stored at 4°C and 25°C, respectively, and their proteome was conducted using the method of 2-DE and MALDI-TOF/TOF. Twenty-four (24) differentially expressed proteins (2-fold, p≤0.01) were identified out of more than 300 spots and were divided into six categories by PIR and Uniprot, including oxidative stress (34%), carbon metabolism (29%), respiratory chain (17%), amino acid metabolism and protein biosynthesis (8%), heat shock protein (4%), ion channels (4%). Proteins involved in antioxidative systems, gluconeogenesis, glycolysis, ethanol fermentation were changed significantly in response to high temperature. Storage at 4°C dramatically delayed ripening and senescence processes by postponing the climacteric peak, slowing down carbon metabolism and degradation of cell structure. Besides, low temperature induced the expression of formate dehydrogenase and some amino acid metabolism proteins. Proteins classified in respiratory chain, ion channels showed high coherence with climacteric respiratory burst, and the antioxidative enzymes showed relatively important symptoms on ROS scavenging through orderly expressions. SIGNIFICANCE With the advent of proteomics and mass spectrometry (MS), it becomes possible to identify the specific functions of differentially abundant proteins in peach mitochondria. In the present study, a procedure to isolate mitochondria from peach fruits was established, and the mitochondrial proteome was systematically analyzed by 2-D gel electrophoresis procedures in combination with protein identification by mass spectrometry. Differentially expressed proteins in peach mitochondria during different stages of peach fruit ripening and senescence were characterized. Our data provide a great deal of information likely to enhance the understanding of the mitochondrial function in peach ripening and senescent process during storage.
Collapse
|
36
|
Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic Biol Med 2015; 89:1122-43. [PMID: 26408245 DOI: 10.1016/j.freeradbiomed.2015.07.156] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number of these animals present increased levels of antioxidant defenses during oxygen deprivation. These observations have puzzled researchers for more than 20 years. Initially, two predominant ideas seemed to be irreconcilable: on one hand, hypoxia would decrease reactive oxygen species (ROS) production, while on the other the induction of antioxidant enzymes would require the overproduction of ROS. This induction of antioxidant enzymes during hypoxia was viewed as a way to prepare animals for oxidative damage that may happen ultimately during reoxygenation. The term "preparation for oxidative stress" (POS) was coined in 1998 based on such premise. However, there are many cases of increased oxidative damage in several hypoxia-tolerant organisms under hypoxia. In addition, over the years, the idea of an assured decrease in ROS formation under hypoxia was challenged. Instead, several findings indicate that the production of ROS actually increases in response to hypoxia. Recently, it became possible to provide a comprehensive explanation for the induction of antioxidant enzymes under hypoxia. The supporting evidence and the limitations of the POS idea are extensively explored in this review as we discuss results from research on estivation and situations of low oxygen stress, such as hypoxia, freezing exposure, severe dehydration, and air exposure of water-breathing animals. We propose that, under some level of oxygen deprivation, ROS are overproduced and induce changes leading to hypoxic biochemical responses. These responses would occur mainly through the activation of specific transcription factors (FoxO, Nrf2, HIF-1, NF-κB, and p53) and post translational mechanisms, both mechanisms leading to enhanced antioxidant defenses. Moreover, reactive nitrogen species are candidate modulators of ROS generation in this scenario. We conclude by drawing out the future perspectives in this field of research, and how advances in the knowledge of the mechanisms involved in the POS strategy will offer new and innovative study scenarios of biological and physiological cellular responses to environmental stress.
Collapse
Affiliation(s)
- Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil.
| | - Daniel C Moreira
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| | - Georgina A Rivera-Ingraham
- Groupe Fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Maximiliano Giraud-Billoud
- Laboratorio de Fisiología (IHEM-CONICET), and Instituto de Fisiología (Facultad de Ciencias Médicas, Universidad Nacional de Cuyo), Casilla de Correo 33, 5500 Mendoza, Argentina
| | - Thiago C Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasí;lia, DF, Brazil
| | - Élida G Campos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| |
Collapse
|
37
|
Yang HT, Yang MC, Sun JJ, Guo F, Lan JF, Wang XW, Zhao XF, Wang JX. Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp. FISH & SHELLFISH IMMUNOLOGY 2015; 47:63-73. [PMID: 26314524 DOI: 10.1016/j.fsi.2015.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
Intestinal innate immune response is an important defense mechanism of animals and humans against external pathogens. The mechanism of microbiota homeostasis in host intestines has been well studied in mammals and Drosophila. The reactive oxygen species (ROS) and antimicrobial peptides have been reported to play important roles in homeostasis. However, how to maintain the microbiota homeostasis in crustacean intestine needs to be elucidated. In this study, we identified a novel catalase (MjCAT) involved in ROS elimination in kuruma shrimp, Marsupenaeus japonicus. MjCAT mRNA was widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. After the shrimp were challenged with pathogenic bacteria via oral infection, the expression level of MjCAT was upregulated, and the enzyme activity was increased in the intestine. ROS level was also increased in the intestine at early time after oral infection and recovered rapidly. When MjCAT was knocked down by RNA interference (RNAi), high ROS level maintained longer time, and the number of bacteria number was declined in the shrimp intestinal lumen than those in the control group, but the survival rate of the MjCAT-RNAi shrimp was declined. Further study demonstrated that the intestinal villi protruded from epithelial lining of the intestinal wall were damaged by the high ROS level in MjCAT-knockdown shrimp. These results suggested that MjCAT participated in the intestinal host-microbe homeostasis by regulating ROS level.
Collapse
Affiliation(s)
- Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Fang Guo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
38
|
Felix-Portillo M, Martinez-Quintana JA, Peregrino-Uriarte AB, Yepiz-Plascencia G. The metallothionein gene from the white shrimp Litopenaeus vannamei: characterization and expression in response to hypoxia. MARINE ENVIRONMENTAL RESEARCH 2014; 101:91-100. [PMID: 25299575 DOI: 10.1016/j.marenvres.2014.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Aquatic animals encounter variation in oxygen tension that leads to the accumulation of reactive oxygen species (ROS) that can harm the organisms. Under these circumstances some organisms have evolved to tolerate hypoxia. In mammals, metallothioneins (MTs) protect against hypoxia-generated ROS. Here we report the MT gene from the shrimp Litopenaeus vannamei (LvMT). LvMT is differentially expressed in hemocytes, intestine, gills, pleopods, heart, hepatopancreas and muscle, with the highest levels in hepatopancreas and heart. LvMT mRNA increases during hypoxia in hepatopancreas and gills after 3 h at 1.5 mg L(-1) dissolved oxygen (DO). This gene structure resembles the homologs from invertebrates and vertebrates possessing three exons, two introns and response elements for metal response transcription factor 1 (MTF-1), hypoxia-inducible factor 1 (HIF-1) and p53 in the promoter region. During hypoxia, HIF-1/MTF-1 might participate inducing MT to contribute towards the tolerance to ROS toxicity. MT importance in aquatic organisms may include also ROS-detoxifying processes.
Collapse
Affiliation(s)
- Monserrath Felix-Portillo
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - José A Martinez-Quintana
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
39
|
Martínez-Quintana JA, Peregrino-Uriarte AB, Gollas-Galván T, Gómez-Jiménez S, Yepiz-Plascencia G. The glucose transporter 1 -GLUT1- from the white shrimp Litopenaeus vannamei is up-regulated during hypoxia. Mol Biol Rep 2014; 41:7885-98. [PMID: 25167855 DOI: 10.1007/s11033-014-3682-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
During hypoxia the shrimp Litopenaeus vannamei accelerates anaerobic glycolysis to obtain energy; therefore, a correct supply of glucose to the cells is needed. Facilitated glucose transport across the cells is mediated by a group of membrane embedded integral proteins called GLUT; being GLUT1 the most ubiquitous form. In this work, we report the first cDNA nucleotide and deduced amino acid sequences of a glucose transporter 1 from L. vannamei. A 1619 bp sequence was obtained by RT-PCR and RACE approaches. The 5´ UTR is 161 bp and the poly A tail is exactly after the stop codon in the mRNA. The ORF is 1485 bp and codes for 485 amino acids. The deduced protein sequence has high identity to GLUT1 proteins from several species and contains all the main features of glucose transporter proteins, including twelve transmembrane domains, the conserved motives and amino acids involved in transport activity, ligands binding and membrane anchor. Therefore, we decided to name this sequence, glucose transporter 1 of L. vannamei (LvGLUT1). A partial gene sequence of 8.87 Kbp was also obtained; it contains the complete coding sequence divided in 10 exons. LvGlut1 expression was detected in hemocytes, hepatopancreas, intestine gills, muscle and pleopods. The higher relative expression was found in gills and the lower in hemocytes. This indicates that LvGlut1 is ubiquitously expressed but its levels are tissue-specific and upon short-term hypoxia, the GLUT1 transcripts increase 3.7-fold in hepatopancreas and gills. To our knowledge, this is the first evidence of expression of GLUT1 in crustaceans.
Collapse
Affiliation(s)
- José A Martínez-Quintana
- Centro de Investigación en Alimentación y Desarrollo. A.C, P.O. Box 1735, Carretera a Ejido La Victoria Km. 0.6, 83304, Hermosillo, Sonora, Mexico
| | | | | | | | | |
Collapse
|
40
|
Humic acid and moderate hypoxia alter oxidative and physiological parameters in different tissues of silver catfish (Rhamdia quelen). J Comp Physiol B 2014; 184:469-82. [DOI: 10.1007/s00360-014-0808-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 12/08/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
|
41
|
Kniffin CD, Burnett LE, Burnett KG. Recovery from hypoxia and hypercapnic hypoxia: impacts on the transcription of key antioxidants in the shrimp Litopenaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol 2014; 170:43-9. [PMID: 24509063 DOI: 10.1016/j.cbpb.2014.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Estuarine waters are prone to regular bouts of low oxygen (hypoxia) and high carbon dioxide (hypercapnia). In vertebrates, tissue hypoxia followed by reoxygenation can generate high levels of reactive oxygen species (ROS) that exceed cellular antioxidant capacity, leading to tissue damage. Here we quantified the expression of several antioxidant genes in the hepatopancreas of Pacific whiteleg shrimp, Litopenaeus vannamei, after exposure to hypoxia or hypercapnic hypoxia for 4h or 24h followed by recovery in air-saturated water (normoxia) for 0, 1, 6 or 24h, as compared to time-matched controls maintained only in normoxia. Transcripts of cytoplasmic Mn-superoxide dismutase (cMnSOD), glutathione peroxidase (GPX) and peptide-methionine (R)-S-oxide reductase (MsrB) increased after 4h exposure to either hypoxia or hypercapnic hypoxia; these elevated transcript levels persisted longer in animals recovering from hypercapnic hypoxia than hypoxia alone. cMnSOD transcripts generally increased, but GPX, MsrB, glutathione-S-transferase (GST), and thioredoxin 1 (TRX-1) decreased or did not change in most long-term (24h) treatment-recovery groups. Thus, the transcriptional responses of several antioxidant genes during recovery from tidally-driven hypoxia and hypercapnic hypoxia decrease or are muted by more persistent exposure to these conditions, leaving L. vannamei potentially vulnerable to ROS damage during recovery.
Collapse
Affiliation(s)
- Casey D Kniffin
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA; Hollings Marine Laboratory, 331 Fort Johnson, Charleston, SC 29412, USA
| | - Louis E Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA; Hollings Marine Laboratory, 331 Fort Johnson, Charleston, SC 29412, USA
| | - Karen G Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA; Hollings Marine Laboratory, 331 Fort Johnson, Charleston, SC 29412, USA.
| |
Collapse
|
42
|
Park K, Kwak IS. The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1003-1011. [PMID: 24239821 DOI: 10.1016/j.scitotenv.2013.10.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
Temperature is one of the most important environmental factors affecting the biological processes of aquatic species. To investigate the potential effects of temperature on the developmental processes of aquatic invertebrates, we analyzed biological and molecular transcriptional responses during Chironomus riparius development, including five stages spanning from embryo to adult stages. We assessed the temperature change-induced reduction of survival rate, changes in biological development including the male:female ratio in emerged adults, the success rates of pupation and emergence, and the developmental timing of pupation and emergence. The increased temperature induced expression of endocrine signaling genes, such as the ecdysone receptor, ultraspiracle (ortholog of the RXR), and the estrogen-related receptor in the fourth-instar larval and pupal stages of C. riparius development. Altered temperature also affected the activity of antioxidant genes, including catalase, peroxidase, glutathione peroxidase, and superoxide dismutase during the fourth-instar larval to adult stages of C. riparius development, as a result of altered development. Increased temperature during the fourth-instar larval stage increased oxidative stress in pupae and adults. Responses of antioxidant genes to increased temperature occurred in a developmental stage-dependent manner. However, reduced temperature did not induce the expression of antioxidant genes in a developmental stage-dependent manner, although it did induce oxidative stress during C. riparius development. Increased temperature also caused greater toxicity of di-ethylhexyl phthalate (DEHP) in fourth-instar larvae. Our findings suggest that altered temperatures may disturb the invertebrate hormone system and developmental processes by inducing oxidative stress in aquatic environments.
Collapse
Affiliation(s)
- Kiyun Park
- Department of Fisheries and Ocean Science, Chonnam National University, San 96-1, Dundeok-dong, Yeosu, Jeonnam 550-749, Republic of Korea
| | - Ihn-Sil Kwak
- Department of Fisheries and Ocean Science, Chonnam National University, San 96-1, Dundeok-dong, Yeosu, Jeonnam 550-749, Republic of Korea.
| |
Collapse
|
43
|
Li T, Brouwer M. Field study of cyclic hypoxic effects on gene expression in grass shrimp hepatopancreas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:309-16. [PMID: 24077186 DOI: 10.1016/j.cbd.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 01/03/2023]
Abstract
Grass shrimp, Palaemonetes pugio, are widely used for ecological and toxicological research. They commonly experience cyclic hypoxia in their natural habitats. The response of grass shrimp to laboratory-controlled cyclic hypoxia has been studied in detail, but little is known about how field acclimatized grass shrimp regulate the gene expression and response to cyclic hypoxia. In this study we examined morphometric parameters, relative fecundity and gene expression of grass shrimp collected from two areas in Weeks Bay (Mobile, Alabama). One is a traditionally normoxic location (WBM), and the other is a traditionally cyclic hypoxic location (WC). In the week preceding grass shrimp collection dissolved oxygen (DO) at the field sites was measured continuously. DO was <2 (mg/L DO) and between 2 and 3 (mg/L DO) for 0 and 255min at WBM, and for 285 and 1035min at WC, respectively. Weight and length of WBM grass shrimp were significantly greater than weight and length of WC shrimp. WBM shrimp had more eggs than WC shrimp, but the difference was not significant. Shrimp from WC had a significant higher number of parasites than those from WBM. A cDNA microarray was utilized to investigate the changes in gene expression in grass shrimp hepatopancreas. Five genes, previously identified as hypoxia/cyclic hypoxia-responsive genes in laboratory exposure studies, were significantly up-regulated in WC shrimp relative to WBM. A total of 5 genes were significantly down-regulated in the field study. Only one of those genes, vitellogenin, has been previously found in chronic and cyclic hypoxic studies. Up and down-regulation of 7 selected genes was confirmed by qPCR. The overall pattern of gene expression in wild shrimp from cyclic DO sites in Weeks Bay showed only weak correlations with gene expression in shrimp from chronic and cyclic hypoxic laboratory studies. It appears therefore that transcriptome profiles of laboratory acclimated animals are of limited utility for understanding responses in field acclimatized animals that are exposed to a broader array of environmental variables.
Collapse
Affiliation(s)
- Tiandao Li
- Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA; The Genome Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | | |
Collapse
|
44
|
Welker AF, Moreira DC, Campos ÉG, Hermes-Lima M. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:384-404. [PMID: 23587877 DOI: 10.1016/j.cbpa.2013.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by animals with aquatic respiration. Therefore, animals living in marine, estuarine and freshwater environments have developed efficient antioxidant defenses to minimize oxidative stress and to regulate the cellular actions of ROS. Changes in oxygen levels may lead to bursts of ROS generation that can be particularly harmful. This situation is commonly experienced by aquatic animals during abrupt transitions from periods of hypoxia/anoxia back to oxygenated conditions (e.g. intertidal cycles). The strategies developed differ significantly among aquatic species and are (i) improvement of their endogenous antioxidant system under hyperoxia (that leads to increased ROS formation) or other similar ROS-related stresses, (ii) increase in antioxidant levels when displaying higher metabolic rates, (iii) presence of constitutively high levels of antioxidants, that attenuates oxidative stress derived from fluctuations in oxygen availability, or (iv) increase in the activity of antioxidant enzymes (and/or the levels of their mRNAs) during hypometabolic states associated with anoxia/hypoxia. This enhancement of the antioxidant system - coined over a decade ago as "preparation for oxidative stress" - controls the possible harmful effects of increased ROS formation during hypoxia/reoxygenation. The present article proposes a novel explanation for the biochemical and molecular mechanisms involved in this phenomenon that could be triggered by hypoxia-induced ROS formation. We also discuss the connections among oxygen sensing, oxidative damage and regulation of the endogenous antioxidant defense apparatus in animals adapted to many natural or man-made challenges of the aquatic environment.
Collapse
Affiliation(s)
- Alexis F Welker
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900 DF, Brazil
| | | | | | | |
Collapse
|