1
|
Dua I, Pearson AC, Lowman RL, Peshkin L, Yampolsky LY. Post-senescence reproductive rebound in Daphnia associated with reversal of age-related transcriptional changes. GeroScience 2025; 47:2179-2198. [PMID: 39460850 PMCID: PMC11979069 DOI: 10.1007/s11357-024-01401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
A long-lived species of zooplankton microcrustaceans, Daphnia magna, sometimes exhibits late-life rebound of reproduction, briefly reversing reproductive senescence. Such events are often interpreted as terminal investments in anticipation of imminent mortality. We demonstrate that such post-senescence reproductive events (PSREs) neither cause nor anticipate increased mortality. We analyze an RNAseq experiment comparing young, old reproductively senescent, and old PSRE Daphnia females. We first show that overall age-related transcriptional changes are dominated by the increased transcription of guanidine monophosphate synthases and guanylate cyclases, as well as two groups of presumed transposon-encoded proteins, and by a drop in transcription of protein synthesis-related genes. We then focus on gene families and functional groups in which full or partial reversal of age-related transcriptional changes occur. This analysis reveals a reversal, in the PSRE individuals, of age-related up-regulation of apolipoproteins D, lysosomal lipases, and peptidases as well as several proteins related to mitochondrial and muscle functions. While it is not certain which of these changes enable reproductive rejuvenation, and which are by-products of processes that lead to it, we present some evidence that post-senescence reproductive events are associated with the reversal of age-related protein and lipid aggregates removal and apoptosis.
Collapse
Affiliation(s)
- Ishaan Dua
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - A Catherine Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Rachael L Lowman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Leonid Peshkin
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
2
|
Norambuena JA, Poblete-Grant P, Beltrán JF, De los Ríos-Escalante P, Aranzaez-Ríos C, Farías JG. Proteomic Profile of Daphnia pulex in Response to Heavy Metal Pollution in Lakes of Northern Patagonia. Int J Mol Sci 2025; 26:417. [PMID: 39796269 PMCID: PMC11720286 DOI: 10.3390/ijms26010417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on Daphnia pulex by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic). Results showed substantial differences in protein expression, with 17 proteins upregulated and 181 downregulated in Llanquihue, linked to elevated levels of copper, manganese, dissolved solids, phosphate, and nitrogen. These stressors caused metabolic damage and environmental stress in D. pulex. Our findings highlight the importance of monitoring pollution's effects on Northern Patagonian ecosystems, especially on keystone species like D. pulex, essential for ecosystem stability. This research provides fresh molecular-ecological insights into pollution's impacts, a perspective rarely addressed in this region. Understanding these effects is critical for conserving natural resources and offers pathways to study adaptive mechanisms in keystone species facing pollution. This approach also informs strategies for ecosystem management and restoration, addressing both immediate and long-term challenges in Northern Patagonian aquatic environments.
Collapse
Affiliation(s)
- Juan-Alejandro Norambuena
- Ph.D. Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.F.B.); (C.A.-R.)
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Manuel Montt, 56, P.O. Box 15-D, Temuco 4813302, Chile;
| | - Patricia Poblete-Grant
- Centre of Plants, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile;
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.F.B.); (C.A.-R.)
| | - Patricio De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Manuel Montt, 56, P.O. Box 15-D, Temuco 4813302, Chile;
- Nucleus of Environmental Studies, UC Temuco, Manuel Montt, 56, P.O. Box 15-D, Temuco 4813302, Chile
| | - Cristian Aranzaez-Ríos
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.F.B.); (C.A.-R.)
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.F.B.); (C.A.-R.)
| |
Collapse
|
3
|
Beam TC, Bright M, Pearson AC, Dua I, Smith M, Dutta AK, Bhadra SC, Salman S, Strickler CN, Anderson CE, Peshkin L, Yampolsky LY. Short lifespan is one's fate, long lifespan is one's achievement: lessons from Daphnia. GeroScience 2024; 46:6361-6381. [PMID: 38900345 PMCID: PMC11493910 DOI: 10.1007/s11357-024-01244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Studies of longevity rely on baseline life expectancy of reference genotypes measured in standardized conditions. Variation among labs, protocols, and genotypes makes longevity intervention studies difficult to compare. Furthermore, extending lifespan under suboptimal conditions or that of a short-lived genotype may be of a lesser theoretical and translational value than extending the maximal possible lifespan. Daphnia is becoming a model organism of choice for longevity research complementing data obtained on traditional models. In this study, we report longevity of several genotypes of a long-lived species D. magna under a variety of protocols, aiming to document the highest lifespan, factors reducing it, and parameters that change with age and correlate with longevity. Combining longevity data from 25 experiments across two labs, we report a strong intraspecific variation, moderate effects of group size and medium composition, and strong genotype-by-environment interactions with respect to food level. Specifically, short-lived genotypes show no caloric restriction (CR) effect, while long-lived ones expand their lifespan even further under CR. We find that the CR non-responsive clones show little correlation between longevity and two measures of lipid peroxidation. In contrast, the long-lived, CR-responsive clones show a positive correlation between longevity and lipid hydroperoxide abundance, and a negative correlation with MDA concentration. This indicates differences among genotypes in age-related accumulation and detoxification of LPO products and their effects on longevity. Our observations support the hypothesis that a long lifespan can be affected by CR and levels of oxidative damage, while genetically determined short lifespan remains short regardless.
Collapse
Affiliation(s)
- Thomas C Beam
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Mchale Bright
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Amelia C Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Ishaan Dua
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Meridith Smith
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Ashit K Dutta
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Shymal C Bhadra
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA
| | - Saad Salman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Caleb N Strickler
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
| | - Cora E Anderson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37601, USA.
| |
Collapse
|
4
|
Nigro L, Magni S, Ortenzi MA, Gazzotti S, Della Torre C, Signorini SG, Sbarberi R, Binelli A. Unveiling the multilevel impact of four water-soluble polymers on Daphnia magna: From proteome to behaviour (a case study). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134000. [PMID: 38508107 DOI: 10.1016/j.jhazmat.2024.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The ubiquitous presence of water-soluble polymers (WSPs) in freshwater environments raises concerns regarding potential threats to aquatic organisms. This study investigated, for the first time, the effects of widely used WSPs -polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid (PAA), and polyethylene glycol (PEG)- using a multi-level approach in the freshwater biological model Daphnia magna. This integrated assessment employed a suite of biomarkers, evaluation of swimming behaviour, and proteomic analysis to investigate the effects of three environmentally relevant concentrations (0.001, 0.5, and 1 mg/L) of the tested WSPs from molecular to organismal levels, assessing both acute and chronic effects. Our findings reveal that exposure to different WSPs induces specific responses at each biological level, with PEG being the only WSP inducing lethal effects at 0.5 mg/L. At the physiological level, although all WSPs impacted both swimming performance and heart rate of D. magna specimens, PAA exhibited the greatest effects on the measured behavioural parameters. Furthermore, proteomic analyses demonstrated altered protein profiles following exposure to all WSPs, with PVA emerging as the most effective.
Collapse
Affiliation(s)
- Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy.
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | | | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
5
|
Yang Y, Li Y, Du X, Liu Z, Zhu C, Mao W, Liu G, Jiang Q. Anti-Aging Effects of Quercetin in Cladocera Simocephalus vetulus Using Proteomics. ACS OMEGA 2023; 8:17609-17619. [PMID: 37251128 PMCID: PMC10210174 DOI: 10.1021/acsomega.2c08242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
Quercetin is a flavonoid widely found in food and traditional herbs. In this study, we evaluated the anti-aging effects of quercetin on Simocephalus vetulus (S. vetulus) by assessing lifespan and growth parameters and analyzed the differentially expressed proteins and crucial pathways associated with quercetin activity using proteomics. The results demonstrated that, at a concentration of 1 mg/L, quercetin significantly prolonged the average and maximal lifespans of S. vetulus and increased the net reproduction rate slightly. The proteomics-based analysis revealed 156 differently expressed proteins, with 84 being significantly upregulated and 72 significantly downregulated. The protein functions were identified as being associated with glycometabolism, energy metabolism, and sphingolipid metabolism pathways, and the key enzyme activity and related gene expression, such that of AMPK, supported the importance of these pathways in the anti-aging activity of quercetin. In addition, quercetin was found to regulate the anti-aging-related proteins Lamin A and Klotho directly. Our results increased the understanding of quercetin's anti-aging effects.
Collapse
Affiliation(s)
- Ying Yang
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiming Li
- Fishery
Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinglin Du
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiquan Liu
- School of
Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, Zhejiang, China
- School
of Engineering, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China
| | - Chenxi Zhu
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Weiping Mao
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Guoxing Liu
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
- The
Low Temperature Germplasm Bank of Important Economic Fish of Jiangsu
Provincial Science and Technology Resources (Agricultural Germplasm
Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qichen Jiang
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| |
Collapse
|
6
|
Lowman RL, Yampolsky LY. Lipofuscin, amyloids, and lipid peroxidation as potential markers of aging in Daphnia. Biogerontology 2023:10.1007/s10522-023-10036-z. [PMID: 37195481 DOI: 10.1007/s10522-023-10036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Accumulation of autofluorescent waste products, amyloids, and products of lipid peroxidation (LPO) are important hallmarks of aging. Until now, these processes have not been documented in Daphnia, a convenient model organism for longevity and senescence studies. We conducted a longitudinal cohort study of autofluorescence and Congo Red (CR) fluorescent staining for amyloids in four clones of D. magna. Additionally, we used a single time point cross-sectional common garden experiment within a single clone in which autofluorescence and BODIPY C11 fluorescence were measured. We observed a robust increase in autofluorescent spots that show diagnostic co-staining by Sudan Black indicating lipofuscin aggregates, particularly in the upper body region. There was also a significant clone-by-age interaction indicating that some genotypes accumulated lipofuscins faster than others. Contrary to predictions, CR fluorescence and lipid peroxidation did not consistently increase with age. CR fluorescence demonstrated a slight non-monotonous relationship with age, achieving the highest values at intermediate ages, possibly due to elimination of physiological heterogeneity in our genetically uniform cohorts. LPO demonstrated a significant ovary status-by-age interaction, decreasing with age when measured in Daphnia with full ovaries (late phase ovarian cycle) and showing no significant trend or slight increase with age when measured during the early phase in the ovarian cycle.
Collapse
Affiliation(s)
- R L Lowman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - L Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
7
|
Kim J, Choi J. Trans- and Multigenerational Effects of Isothiazolinone Biocide CMIT/MIT on Genotoxicity and Epigenotoxicity in Daphnia magna. TOXICS 2023; 11:388. [PMID: 37112615 PMCID: PMC10140887 DOI: 10.3390/toxics11040388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The mixture of 5-chloro-2-methylisothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one, CMIT/MIT, is an isothiazolinone biocide that is consistently detected in aquatic environments because of its broad-spectrum usage in industrial fields. Despite concerns about ecotoxicological risks and possible multigenerational exposure, toxicological information on CMIT/MIT is very limited to human health and within-generational toxicity. Furthermore, epigenetic markers altered by chemical exposure can be transmitted over generations, but the role of these changes in phenotypic responses and toxicity with respect to trans- and multigenerational effects is poorly understood. In this study, the toxicity of CMIT/MIT on Daphnia magna was evaluated by measuring various endpoints (mortality, reproduction, body size, swimming behavior, and proteomic expression), and its trans- and multigenerational effects were investigated over four consecutive generations. The genotoxicity and epigenotoxicity of CMIT/MIT were examined using a comet assay and global DNA methylation measurements. The results show deleterious effects on various endpoints and differences in response patterns according to different exposure histories. Parental effects were transgenerational or recovered after exposure termination, while multigenerational exposure led to acclimatory/defensive responses. Changes in DNA damage were closely associated with altered reproduction in daphnids, but their possible relationship with global DNA methylation was not found. Overall, this study provides ecotoxicological information on CMIT/MIT relative to multifaceted endpoints and aids in understanding multigenerational phenomena under CMIT/MIT exposure. It also emphasizes the consideration of exposure duration and multigenerational observations in evaluating ecotoxicity and the risk management of isothiazolinone biocides.
Collapse
|
8
|
Su H, Ma D, Fan J, Zhong Z, Li Y, Zhu H. Metabolism response mechanism in the gill of Oreochromis mossambicus under salinity, alkalinity and saline-alkalinity stresses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114523. [PMID: 36638565 DOI: 10.1016/j.ecoenv.2023.114523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Saline-alkalinity is one of the important ecological parameter that has an impact function on the physiological metabolism, osmoregulation, survival, growth, development and distribution of teleost fish. Oreochromis mossambicus, a species of euryhaline that can withstand a wide variety of salinities, may be used as a research model animal in environmental studies. In order to detect the metabolism responses and mechanisms of different osmotic stresses tolerance in the gills of O. mossambicus, in present study, the metabolic responses of O. mossambicus subjected to salinity (25 g/L, S_S), alkalinity (4 g/L, A_S) and saline-alkalinity stress (salinity: 25 g/L, alkalinity: 4 g/L; SA_S) with the control environment (freshwater, C_S) were investigated by LC-MS/MS-based metabolomics. The metabolism results indicated that numerous metabolites were identified between the stress groups and the control group. In addition, under three osmotic stresses, the amino acid and carbohydrate metabolism, levels of amino acids, osmolytes and energy substances, such as L-lysine, arachidonic acid, docosahexaenoic acids, creatine and taurine, were significantly affected and changed in the metabolism of the gills of O. mossambicus. The metabolism data indicated that signal transduction and regulation pathways, including FoxO signaling pathway, mTOR signaling pathway and prolactin signaling pathway, were enriched in the gill during adaptation to high salinity, alkalinity and saline-alkalinity stress. The results of this study provide more comprehensive and reliable data for the osmotic pressure regulation mechanism and biological response of euryhaline teleost, and provide reliable scientific basis for the breeding and research of high salinity tolerance population, and further promote the development and utilization of saline-alkalinity water resources.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Yaya Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China
| | - Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China.
| |
Collapse
|
9
|
Wang M, Ge J, Ma X, Su S, Tian C, Li J, Yu F, Li H, Song C, Gao J, Xu P, Tang Y, Xu G. Exploration of the regulatory mechanisms of regeneration, anti-oxidation, anti-aging and the immune response at the post-molt stage of Eriocheir sinensis. Front Physiol 2022; 13:948511. [PMID: 36237529 PMCID: PMC9552667 DOI: 10.3389/fphys.2022.948511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Eriocheir sinensis is widely appreciated by the surrounding population due to its culinary delicacy and rich nutrients. The E. sinensis breeding industry is very prosperous and molting is one of the important growth characteristics. Research on the regulation of molting in E. sinensis is still in the initial stages. There is currently no relevant information on the regulatory mechanisms of heart development following molting. Comparative transcriptome analysis was used to study developmental regulation mechanisms in the heart of E. sinensis at the post-molt and inter-molt stages. The results indicated that many regulatory pathways and genes involved in regeneration, anti-oxidation, anti-aging and the immune response were significantly upregulated after molting in E. sinensis. Aside from cardiac development, the differentially expressed genes (DEGs) were relevant to myocardial movement and neuronal signal transduction. DEGs were also related to the regulation of glutathione homeostasis and biological rhythms in regard to anti-oxidation and anti-aging, and to the regulation of immune cell development and the immune response. This study provides a theoretical framework for understanding the regulation of molting in E. sinensis and in other economically important crustaceans.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Xingkong Ma
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Can Tian
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Yongkai Tang, ; Gangchun Xu,
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Yongkai Tang, ; Gangchun Xu,
| |
Collapse
|
10
|
Liu Z, Malinowski CR, Sepúlveda MS. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. CHEMOSPHERE 2022; 291:132941. [PMID: 34793845 DOI: 10.1016/j.chemosphere.2021.132941] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle production is on the rise due to its many uses in the burgeoning nanotechnology industry. Although nanoparticles have growing applications, there is great concern over their environmental impact due to their inevitable release into the environment. With uncertainty of environmental concentration and risk to aquatic organisms, the microcrustacean Daphnia spp. has emerged as an important freshwater model organism for risk assessment of nanoparticles because of its biological properties, including parthenogenetic reproduction; small size and short generation time; wide range of endpoints for ecotoxicological studies; known genome, useful for providing mechanistic information; and high sensitivity to environmental contaminants and other stressors. In this review, we (1) highlight the advantages of using Daphnia as an experimental model organism for nanotoxicity studies, (2) summarize the impacts of nanoparticle physicochemical characteristics on toxicity in relation to Daphnia, and (3) summarize the effects of nanoparticles (including nanoplastics) on Daphnia as well as mechanisms of toxicity, and (4) highlight research uncertainties and recommend future directions necessary to develop a deeper understanding of the fate and toxicity of nanoparticles and for the development of safer and more sustainable nanotechnology.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA; School of Life Science, East China Normal University, Shanghai, 200241, China
| | | | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Liu Z, Li Y, Sepúlveda MS, Jiang Q, Jiao Y, Chen Q, Huang Y, Tian J, Zhao Y. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144249. [PMID: 33421781 DOI: 10.1016/j.scitotenv.2020.144249] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Nanoplastics are a growing environmental and public health concern. However, the toxic mechanisms of nanoplastics are poorly understood. Here, we evaluated the effects of spherical polystyrene nanoplastics on reproduction of Daphnia pulex and analyzed the proteome of whole animals followed by molecular and biochemical analyses for the development of an adverse outcome pathway (AOP) for these contaminants of emerging concern. Animals were exposed to polystyrene nanoplastics (0, 0.1, 0.5, 1 and 2 mg/L) via water for 21 days. Nanoplastics negatively impacted cumulative offspring production. A total of 327 differentially expressed proteins (DEPs) were identified in response to nanoplastics which were further validated from gene expression and enzyme activity data. Based on these results, we propose an AOP for nanoplastics, including radical oxygen species production and oxidative stress as the molecular initiating event (MIE); followed by changes in specific signaling pathways (Jak-STAT, mTOR and FoxO) and in the metabolism of glutathione, protein, lipids, and molting proteins; with an end result of growth inhibition and decrease reproductive output. This study serves as a foundation for the development of a mechanistic understanding of nanoplastic toxicity in crustaceans and perhaps other aquatic organisms.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China; Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Yiming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Yang Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qiang Chen
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yinying Huang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Jiangtao Tian
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yunlong Zhao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
12
|
Fadare OO, Wan B, Liu K, Yang Y, Zhao L, Guo LH. Eco-Corona vs Protein Corona: Effects of Humic Substances on Corona Formation and Nanoplastic Particle Toxicity in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8001-8009. [PMID: 32464058 DOI: 10.1021/acs.est.0c00615] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite many studies on the toxicity of nanoplastic particles (NPPs) to aquatic invertebrates, the effects of ecological constituents such as humic substances (HSs) are often neglected. In our study, Daphnia magna was used to evaluate the effects of three HSs, natural organic matter (NOM), fulvic acid (FA), and humic acid (HA), on NPP toxicity and corona formation. Acute toxicities of NPPs were reduced by all HSs at environmentally relevant concentrations. NPPs elicited the upregulation of all genes related to detoxification, oxidative stress, and endocrine activity after 7 days of exposure. The presence of NOM or HA resulted in the mitigation of gene expression, whereas significantly higher upregulation of all of the genes was observed with FA. The presence of FA led to increased protein adsorption on NPPs in D. magna culture medium (eco-corona, EC) and homogenates (protein corona, PC), while there was less adsorption in the presence of HA. The highly abundant proteins identified in EC are involved in immune defense, cell maintenance, and antipredator response, while those in PC are responsible for lipid transport, antioxidant effects, and estrogen mediation. Our findings revealed the key influence of HSs on the toxicity of NPPs and provide an analytical and conceptual foundation for future study.
Collapse
Affiliation(s)
- Oluniyi O Fadare
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Bin Wan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Keyang Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, People's Republic of China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310008, People's Republic of China
| |
Collapse
|
13
|
Liu Z, Jiao Y, Chen Q, Li Y, Tian J, Huang Y, Cai M, Wu D, Zhao Y. Two sigma and two mu class genes of glutathione S-transferase in the waterflea Daphnia pulex: Molecular characterization and transcriptional response to nanoplastic exposure. CHEMOSPHERE 2020; 248:126065. [PMID: 32045975 DOI: 10.1016/j.chemosphere.2020.126065] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Two isoforms of Glutathione S-Transferase (GST) genes, belonging to mu (Dp-GSTm1 and Dp-GSTm2) and sigma (Dp-GSTs1 and Dp-GSTs2) classes, were cloned and characterised in the freshwater Daphnia pulex. No signal peptide was found in any of the four GST proteins, indicating that they were cytosolic GST. A highly conserved glutathione (GSH) binding site (G-site) occurred in the N-terminal sequence, and a substrate binding site (H-site), interacting non-specifically with the second hydrophobic substrate, was present in the C-terminal. A Tyr residue, for the stabilization of GSH, was found to be conserved in the analysed sequences. The secondary and tertiary structures indicated that these genes possess the typical cytosolic GST structure, including a conserved N-terminal domain with a βαβαββα motif. The μ loop (NVGPAPDYDR and NFIGAEWDR in Dp-GSTm1 and Dp-GSTm2, respectively) was identified between the βαβ (β1α1β2) and αββα motifs (α2β3β4α3) in the N-terminal domain. The expressions of Dp-GSTs1, Dp-GSTs2, and Dp-GSTm1 were higher in other age groups compared to the newly-born neonates (1 d); however, the expression of Dp-GSTm2 first increased and then decreased with age. Gene expression was significantly reduced by high concentration (1 and 2 mg/L) of 75 nm polystyrene nanoplastic. However, nanoplastic exposure at the predicted environmental concentration (1 μg/L) had a low effect. Exposure of mothers to nanoplastic (1 μg/L) elevated the Dp-GSTs2 level in their neonates. These results improve our understanding on the response of different types of Daphnid GST to environmental contaminants, especially nanoplastic.
Collapse
Affiliation(s)
- Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yang Jiao
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qiang Chen
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yinying Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Mingqi Cai
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Donglei Wu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
Liu Z, Huang Y, Jiao Y, Chen Q, Wu D, Yu P, Li Y, Cai M, Zhao Y. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105420. [PMID: 31986404 DOI: 10.1016/j.aquatox.2020.105420] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Recently, research on the biological effects of nanoplastics has grown exponentially. However, studies on the effects of nanoplastics on freshwater organisms and the mechanisms of the biological effects of nanoplastics are limited. In this study, the content of reactive oxygen species (ROS), gene and protein expression in the MAPK-HIF-1/NFkB pathway, and antioxidant gene expressions and enzyme activities were measured in Daphnia pulex exposed to polystyrene nanoplastic. In addition, the full-length extracellular signal-regulated kinases (ERK) gene, which plays an important role in the MAPK pathway, was cloned in D. pulex, and the amino acid sequence, function domain, and phylogenetic tree were analyzed. The results show that nanoplastic caused the overproduction of ROS along with other dose-dependent effects. Low nanoplastic concentrations (0.1 and/or 0.5 mg/L) significantly increased the expressions of genes of the MAPK pathway (ERK; p38 mitogen-activated protein kinases, p38; c-Jun amino-terminal kinases, JNK; and protein kinase B, AKT), HIF-1 pathway (prolyl hydroxylasedomain, PHD; vascular endothelial growth factor, VEGF; glucose transporter, GLUT; pyruvate kinase M, PKM; hypoxia-inducible factor 1, HIF1), and CuZn superoxide dismutase (SOD) along with the activity of glutathione-S-transferase. As the nanoplastic concentration increased, these indicators were significantly suppressed. The protein expression ratio of ERK, JNK, AKT, HIF1α, and NFkBp65 (nuclear transcription factor-kB p65) as well as the phosphorylation of ERK and NFkBp65 were increased in a dose-dependent manner. The activities of other antioxidant enzymes (catalase, total SOD, and CuZn SOD) were significantly decreased upon exposure to nanoplastic. Combined with our previous work, these results suggest that polystyrene nanoplastic causes the overproduction of ROS and activates the downstream pathway, resulting in inhibited growth, development, and reproduction. The present study fosters a better understanding of the biological effects of nanoplastics on zooplankton.
Collapse
Affiliation(s)
- Zhiquan Liu
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China.
| | - Youhui Huang
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yang Jiao
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qiang Chen
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Donglei Wu
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ping Yu
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yiming Li
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Mingqi Cai
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- Laboratory of Crustacean Development Biology and Macrobenthic Ecology, School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
15
|
Wu D, Liu Z, Cai M, Jiao Y, Li Y, Chen Q, Zhao Y. Molecular characterisation of cytochrome P450 enzymes in waterflea (Daphnia pulex) and their expression regulation by polystyrene nanoplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105350. [PMID: 31730932 DOI: 10.1016/j.aquatox.2019.105350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Cytochrome P450 (CYP) enzymes are one of the largest protein families, and they metabolise a wide range of lipophilic organic endogenous and exogenous compounds. Many cytochrome P450 genes have been cloned and characterised, and they are frequently used as biomarkers in environmental toxicology studies because of their sensitivity and inducibility. In the present study, the full-length cDNAs of DpCYP370B and DpCYP4 were cloned from Daphnia pulex for the first time. The sequence of DpCYP370B consisted of an ORF of 1515 bp that encoded a 504 amino acid polypeptide, while the sequence of DpCYP4 comprised an ORF of 1527 bp that encoded a 508 amino acid polypeptide. Homologous alignments revealed the presence of a conserved cysteine haeme-iron ligand signature, FxxGxxxCxG, located in the C-terminal portion. Both the proteins contained a sequence for a transmembrane region that was deduced to be located in the endoplasmic reticulum. Subsequently, the expression levels of DpCYP370B and DpCYP4, as well as those of CYP4AN1, CYP4C33, and CYP4C34, were investigated using quantitative real-time PCR after exposure to five polystyrene nanoplastic concentrations: 0 (control), 0.1, 0.5, 1, and 2 mg/L for 21 days. Except for DpCYP4, the highest mRNA expression was observed at 0.5 mg/L nanoplastics; next, the expression of three of the enzymes (DpCYP370B, CYP4AN1, CYP4C34,) decreased to that of the control level at 1 and 2 mg/L doses of nanoplastics. The expression of DpCYP4 did not significantly change compared with that of the control group. These results indicated that CYP genes might play an important role in protecting D. pulex against nanoplastic pollutants.
Collapse
Affiliation(s)
- Donglei Wu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Mingqi Cai
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yang Jiao
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qiang Chen
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|