1
|
Su H, Ma D, Fan J, Zhong Z, Li Y, Zhu H. Metabolism response mechanism in the gill of Oreochromis mossambicus under salinity, alkalinity and saline-alkalinity stresses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114523. [PMID: 36638565 DOI: 10.1016/j.ecoenv.2023.114523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Saline-alkalinity is one of the important ecological parameter that has an impact function on the physiological metabolism, osmoregulation, survival, growth, development and distribution of teleost fish. Oreochromis mossambicus, a species of euryhaline that can withstand a wide variety of salinities, may be used as a research model animal in environmental studies. In order to detect the metabolism responses and mechanisms of different osmotic stresses tolerance in the gills of O. mossambicus, in present study, the metabolic responses of O. mossambicus subjected to salinity (25 g/L, S_S), alkalinity (4 g/L, A_S) and saline-alkalinity stress (salinity: 25 g/L, alkalinity: 4 g/L; SA_S) with the control environment (freshwater, C_S) were investigated by LC-MS/MS-based metabolomics. The metabolism results indicated that numerous metabolites were identified between the stress groups and the control group. In addition, under three osmotic stresses, the amino acid and carbohydrate metabolism, levels of amino acids, osmolytes and energy substances, such as L-lysine, arachidonic acid, docosahexaenoic acids, creatine and taurine, were significantly affected and changed in the metabolism of the gills of O. mossambicus. The metabolism data indicated that signal transduction and regulation pathways, including FoxO signaling pathway, mTOR signaling pathway and prolactin signaling pathway, were enriched in the gill during adaptation to high salinity, alkalinity and saline-alkalinity stress. The results of this study provide more comprehensive and reliable data for the osmotic pressure regulation mechanism and biological response of euryhaline teleost, and provide reliable scientific basis for the breeding and research of high salinity tolerance population, and further promote the development and utilization of saline-alkalinity water resources.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Yaya Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China
| | - Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China.
| |
Collapse
|
2
|
Deposition and metabolism of dietary n-3 very-long-chain PUFA in different organs of rat, mouse and Atlantic salmon. Br J Nutr 2021; 127:35-54. [PMID: 33750483 DOI: 10.1017/s0007114521000817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is limited knowledge about the metabolism and function of n-3 very-long-chain PUFA (n-3 VLC-PUFA) with chain lengths ≥ 24. They are known to be produced endogenously in certain tissues from EPA and DHA and not considered to originate directly from dietary sources. The aim of this study was to investigate whether n-3 VLC-PUFA from dietary sources are bio-available and deposited in tissues of rat, fish and mouse. Rats were fed diets supplemented with a natural fish oil (FO) as a source of low dietary levels of n-3 VLC-PUFA, while Atlantic salmon and mice were fed higher dietary levels of n-3 VLC-PUFA from a FO concentrate. In all experiments, n-3 VLC-PUFA incorporation in organs was investigated. We found that natural FO, due to its high EPA content, to a limited extent increased endogenous production of n-3 VLC-PUFA in brain and eye of mice with neglectable amounts of n-3 VLC-PUFA originating from diet. When higher dietary levels were given in the form of concentrate, these fatty acids were bio-available and deposited in both phospholipids and TAG fractions of all tissues studied, including skin, eye, brain, testis, liver and heart, and their distribution appeared to be tissue-dependent, but not species-specific. When dietary EPA and DHA were balanced and n-3 VLC-PUFA increased, the major n-3 VLC-PUFA from the concentrate increased significantly in the organs studied, showing that these fatty acids can be provided through diet and thereby provide a tool for functional studies of these VLC-PUFA.
Collapse
|
3
|
Arge R, Dessen JE, Østbye TK, Ruyter B, Thomassen MS, Rørvik KA. Effects of tetradecylthioacetic acid (TTA) treatment on lipid metabolism in salmon hearts-in vitro and in vivo studies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:703-716. [PMID: 29349633 DOI: 10.1007/s10695-018-0466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In intensive farming of Atlantic salmon, a large proportion of observed mortality is related to cardiovascular diseases and circulatory failure, indicating insufficient robustness and inadequate cardiac performance. This paper reports on the use of tetradecylthioacetic acid (TTA) where the main objective was to enhance utilisation of fatty acids (FA), considered the main energy source of the heart. In this study, three experiments were conducted: (I) an in vivo study where salmon post-smolt were administrated dietary TTA in sea, (II) an in vitro study where isolated salmon heart cells were pre-stimulated with increasing doses of TTA and (III) an in vivo experiment where salmon post-smolt were subjected to injections with increasing doses of TTA. In study I, TTA-treated fish had a smaller decrease in heart weight relative to fish bodyweight (CSI) in a period after sea transfer compared to the control. This coincided with lowered condition factor and muscle fat in the TTA-treated fish, which may indicate a higher oxidation of lipids for energy. In study II, the isolated hearts treated with the highest dose of TTA had higher uptake of radiolabelled FA and formation of CO2 and acid-soluble products. In study III, expression of genes regulating peroxisomal FA oxidation, cell growth, elongation and desaturation were upregulated in the heart of TTA injected salmon. In contrast, genes involved in FA transport into the mitochondria were not influenced. In conclusion, these experiments indicate that TTA enhances energy production in salmon hearts by stimulation of FA oxidation.
Collapse
Affiliation(s)
- Regin Arge
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway.
- Formerly associated with Fiskaaling, Aquacultural Research Station of the Faroes, FO-430, Hvalvík, Faroe Islands.
| | - Jens-Erik Dessen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
- Nofima AS, 1431, Ås, Norway
| | | | - Bente Ruyter
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
- Nofima AS, 1431, Ås, Norway
| | - Magny S Thomassen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Kjell-Arne Rørvik
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
- Nofima AS, 1431, Ås, Norway
| |
Collapse
|
4
|
Corsolini S, Borghesi N. A comparative assessment of fatty acids in Antarctic organisms from the Ross Sea: Occurrence and distribution. CHEMOSPHERE 2017; 174:747-753. [PMID: 28237525 DOI: 10.1016/j.chemosphere.2017.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
Lipids are important energy source and structural component for cellular membranes and tissues, involved in the osmoregulation and immune response, and are very important in the bioaccumulation of lipophilic chemicals too. Among lipids, fatty acids (FAs) give information on diet of organisms, since FA of consumer lipids can be related to those of diet; plants and animals vary in their FA signature because of differences in the synthesis of lipids. In this study, lipid content and FA composition in tissues of Antarctic organisms from the Ross Sea (Odontaster validus, Sterechinus neumayeri, Chionodraco hamatus, Trematomus bernacchii, Pygoscelis adèliae) were assessed. Differences in lipid characterisation were found between both species and tissues. The lipid content was highest in C. hamatus liver (3.51%), and lowest in T. bernacchii muscle (0.16%). The polyunsaturated fatty acids (PUFAs) prevailed in the C. hamatus muscle, and among FAs, the docosahexaenoic acid (DHA; C22:6n3) was the most abundant (20.93%). The C22:6n3 accumulated more in fish and penguin tissues than in invertebrate species. The high contribution of unsaturated fatty acids (>74%) in fish tissues wats related to the low environmental temperature. The fatty acid profile and the essential fatty acids occurrence were also discussed in the light of physiological adaptations and feeding habits of organisms; the relationships with contaminant bioaccumulation were also assessed. To the best of our knowledge, this is the first report of fatty acid composition and fingerprint in a Ross Sea trophic web and their correlation with contaminant concentration.
Collapse
Affiliation(s)
- Simonetta Corsolini
- University of Siena, Department of Physics, Earth and Environmental Sciences, Via Mattioli, 4, 53100 Siena, Italy.
| | - Nicoletta Borghesi
- University of Siena, Department of Physics, Earth and Environmental Sciences, Via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
5
|
Kjær MA, Ruyter B, Berge GM, Sun Y, Østbye TKK. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. PLoS One 2016; 11:e0168230. [PMID: 27973547 PMCID: PMC5156434 DOI: 10.1371/journal.pone.0168230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad) genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids.
Collapse
|
6
|
Dessen JE, Arge R, Thomassen MS, Rørvik KA. Differences in fat accumulation between immature male and female Atlantic salmon Salmo salar after dietary administration of tetradecylthioacetic acid. JOURNAL OF FISH BIOLOGY 2016; 89:2085-2097. [PMID: 27506658 DOI: 10.1111/jfb.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
This study provoked sex-specific differences in fat metabolism in Atlantic salmon Salmo salar, by dietary administration of tetradecylthioacetic acid (TTA) during their first spring and winter in the sea. The effects of TTA were evaluated in June of the first spring and May of the second spring in the sea, by analysing white muscle-fat content. Muscle fat in males and females differed significantly as a result of TTA in their diet and diet interacted with the sex of the fish. The fat content during the first spring after dietary TTA was lowered by a greater amount in females than in males, 3·1-4·3%, respectively (P < 0·05). In contrast, during the second spring, fat content was lowered by a greater amount in males than in females, 15·8-16·7%, respectively (P < 0·01). Condition factor followed a similar pattern to the muscle fat. The results indicate that the difference in male and female fat accumulation dynamics is related to sex-specific reproduction biology of S. salar. In addition, the findings show that it is important to consider the sex of the fish and the season of the year when studying fat dynamics and reproductive biology of S. salar.
Collapse
Affiliation(s)
- J-E Dessen
- Nofima, NO-1432 Ås, Akershus, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Akershus, Norway
| | - R Arge
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Akershus, Norway .
- Fiskaaling, Aquacultural Research Station of the Faroes, FO-430, Hvalvík, Faroe Islands.
| | - M S Thomassen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Akershus, Norway
| | - K-A Rørvik
- Nofima, NO-1432 Ås, Akershus, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Akershus, Norway
| |
Collapse
|
7
|
Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas. J Comp Physiol B 2014; 184:303-17. [DOI: 10.1007/s00360-013-0800-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
8
|
Effects of dietary supplementation of coriander oil, in canola oil diets, on the metabolism of [1-14C] 18:3n-3 and [1-14C] 18:2n-6 in rainbow trout hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:65-72. [DOI: 10.1016/j.cbpb.2013.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022]
|
9
|
Schiller Vestergren A, Wagner L, Pickova J, Rosenlund G, Kamal-Eldin A, Trattner S. Sesamin modulates gene expression without corresponding effects on fatty acids in Atlantic salmon (Salmo salar L.). Lipids 2012; 47:897-911. [PMID: 22790840 DOI: 10.1007/s11745-012-3697-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
This study examined the effects of sesamin inclusion in vegetable oil-based diets fed to Atlantic salmon (Salmo salar L.). The diets used differed in n-6/n-3 fatty acid (FA) ratio (0.5 and 1) and sesamin content (high 5.8 g/kg, low 1.16 g/kg and no sesamin). The oils used in the feeds were a mixture of rapeseed, linseed and palm oil. Fish were fed for 4 months. Fatty acids and expression of hepatic genes involved in transcription, lipid uptake, desaturation, elongation and β-oxidation were measured. No major effects on the percentage of DHA in white muscle, liver triacylglycerol and phospholipid fraction were detected. Genes involved in β-oxidation, elongation and desaturation were affected by sesamin addition. Limited effects were seen on any of the transcription factors tested and no effect was seen on the expression of peroxisome proliferator-activated receptors (PPAR). Expression of both SREBP-1 and SREBP-2 increased with sesamin addition. It was concluded that supplementation of fish feed with a high level of sesamin had a negative effect on the growth rate and live weight and did not alter the proportions of DHA in tissues even though gene expression was affected. Thus, more studies are needed to formulate a diet that would increase the percentage of DHA in fish without negative effects on fish growth.
Collapse
Affiliation(s)
- A Schiller Vestergren
- Department of Food Science, Swedish University of Agricultural Sciences-SLU, Uppsala BioCenter, P.O. Box 7051, 75007 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
10
|
Grammes F, Rørvik KA, Thomassen MS, Berge RK, Takle H. Genome wide response to dietary tetradecylthioacetic acid supplementation in the heart of Atlantic Salmon (Salmo salar L). BMC Genomics 2012; 13:180. [PMID: 22577878 PMCID: PMC3483216 DOI: 10.1186/1471-2164-13-180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 04/13/2012] [Indexed: 11/10/2022] Open
Abstract
Background Under-dimensioned hearts causing functional problems are associated with higher mortality rates in intensive Atlantic salmon aquaculture. Previous studies have indicated that tetradecylthioacetic acid (TTA) induces cardiac growth and also stimulates transcription of peroxisome proliferator activated receptors (PPAR) αand βin the Atlantic salmon heart. Since cardiac and transcriptional responses to feed are of high interest in aquaculture, the objective of this study was to characterize the transcriptional mechanisms induced by TTA in the heart of Atlantic salmon. Results Atlantic salmon were kept at sea for 17 weeks. During the first 8 weeks the fish received a TTA supplemented diet. Using microarrays, profound transcriptional effects were observed in the heart at the end of the experiment, 9 weeks after the feeding of TTA stopped. Approximately 90% of the significant genes were expressed higher in the TTA group. Hypergeometric testing revealed the over-representation of 35 gene ontology terms in the TTA fed group. The GO terms were generally categorized into cardiac performance, lipid catabolism, glycolysis and TCA cycle. Conclusions Our results indicate that TTA has profound effects on cardiac performance based on results from microarray and qRT-PCR analysis. The gene expression profile favors a scenario of ”physiological”lright hypertrophy recognized by increased oxidative fatty acid metabolism, glycolysis and TCA cycle activity as well as cardiac growth and contractility in the heart ventricle. Increased cardiac efficiency may offer significant benefits in the demanding Aquaculture situations.
Collapse
|
11
|
Grammes F, Rørvik KA, Takle H. Tetradecylthioacetic acid modulates cardiac transcription in Atlantic salmon, Salmo salar L., suffering heart and skeletal muscle inflammation. JOURNAL OF FISH DISEASES 2012; 35:109-117. [PMID: 22233512 DOI: 10.1111/j.1365-2761.2011.01326.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Heart and skeletal muscle inflammation (HSMI) is a disease causing considerable mortality in farmed Atlantic salmon. We have previously reported that pre-feeding of tetradecylthioacetic acid (TTA) reduces the mortality during a natural outbreak of HSMI. In the present paper we show that in the cardiac ventricle, during HSMI infection, pre-feeding TTA increases the expression of the immune genes: TNFα, VCAM-1, IgM and CD8α. We also show that TTA increases the cardiosomatic index potentially by elevating cardiomyogenesis through activation of the cardiac transcription factors MEF2C and Nkx2.5. Using the recently published genomic sequence of a HSMI associated piscine reovirus (PRV), we could show that the PRV levels have no confounding effects on the mRNA expression of the investigated genes. The results suggest that TTA induced cardiac growth, together with an elevated cardiac recruitment of immune cells, which might lead to increased robustness during HSMI infection.
Collapse
|
12
|
Grammes F, Takle H. Anti-inflammatory effects of tetradecylthioacetic acid (TTA) in macrophage-like cells from Atlantic salmon (Salmo salar L.). BMC Immunol 2011; 12:41. [PMID: 21774812 PMCID: PMC3161001 DOI: 10.1186/1471-2172-12-41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 07/20/2011] [Indexed: 12/20/2022] Open
Abstract
Background Commercial Atlantic salmon is fed diets with high fat levels to promote fast and cost-effective growth. To avoid negative impact of obesity, food additives that stimulate fat metabolism and immune function are of high interest. TTA, tetradecylthioacetic acid, is a synthetic fatty acid that stimulates mitochondrial β-oxidation most likely by activation of peroxysome proliferator-activated receptors (PPARs). PPARs are important transcription factors regulating multiple functions including fat metabolism and immune responses. Atlantic salmon experiments have shown that TTA supplemented diets significantly reduce mortality during natural outbreaks of viral diseases, suggesting a modulatory role of the immune system. Results To gain new insights into TTA effects on the Atlantic salmon immune system, a factorial, high-throughput microarray experiment was conducted using a 44K oligo nucleotide salmon microarray SIQ2.0 and the Atlantic salmon macrophage-like cell line ASK. The experiment was used to determine the transcriptional effects of TTA, the effects of TTA in poly(I:C) elicited cells and the effects of pretreating the cells with TTA. The expression patterns revealed that a large proportion of genes regulated by TTA were related to lipid metabolism and increased mitochondrial β-oxidation. In addition we found that for a subset of genes TTA antagonized the transcriptional effects of poly(I:C). This, together with the results from qRT-PCR showing an increased transcription of anti-inflammatory IL10 by TTA, indicates anti-inflammatory effects. Conclusions We demonstrate that TTA has significant effects on macrophage-like salmon cells that are challenged by the artificial dsRNA poly(I:C). The immune stimulatory effect of TTA in macrophages involves increased lipid metabolism and suppressed inflammatory status. Thus, suggesting that TTA directs the macrophage-like cells towards alternative, anti-inflammatory, activation. This has positive implications for TTA as a feed additive.
Collapse
Affiliation(s)
- Fabian Grammes
- Institute of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As-UMB, Norway
| | | |
Collapse
|
13
|
Trumble SJ, Noren SR, Cornick LA, Hawke TJ, Kanatous SB. Age-related differences in skeletal muscle lipid profiles of Weddell seals: clues to developmental changes. J Exp Biol 2010; 213:1676-84. [DOI: 10.1242/jeb.040923] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SUMMARY
Our objective was to elucidate age-related changes in lipids associated with skeletal muscle of Weddell seals and to suggest possible physiological implications. Muscle biopsies were collected from pups, juveniles and adults in McMurdo Sound, Antarctica and analyzed for intramuscular lipid (IML) and triacylglyceride (IMTG) amounts, fatty acid groups, as well as individual fatty acid profiles. The results from this study suggest a switch from primarily saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) in the skeletal muscle of young pups to increases in polyunsaturated fatty acids (PUFAs) as the percentage of blubber increases, resulting in possible thermoregulatory benefits. As Weddell pups continue to develop into juveniles, fatty acids associated with the skeletal muscle changes such that MUFA levels are relatively higher, which may be in response to energy depletion associated with their restricted diving ability and rapid growth. As juveniles transform into adults, a reduction in n-3 PUFA levels in the muscle as the percentage of blubber increases may be indicative of a trigger to prepare for deep diving or could be a mechanism for oxygen conservation during long-duration dives. We speculate that the observed change in lipids associated with the skeletal muscle of Weddell seals is related to ontogenetic differences in thermoregulation and locomotion.
Collapse
Affiliation(s)
- Stephen J. Trumble
- Department of Biology, Baylor University, One Bear Place No. 97388, Waco, TX 76798, USA
| | - Shawn R. Noren
- Institute of Marine Science, University of California, 100 Shaffer Road, Santa Cruz, CA 95118
| | - Leslie A. Cornick
- Department of Environmental Science, Alaska Pacific University, 4101 University Drive, Anchorage, AK 99508, USA
| | - Thomas J. Hawke
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada M3J 1P3
| | - Shane B. Kanatous
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Alne H, Thomassen MS, Takle H, Terjesen BF, Grammes F, Oehme M, Refstie S, Sigholt T, Berge RK, Rørvik KA. Increased survival by feeding tetradecylthioacetic acid during a natural outbreak of heart and skeletal muscle inflammation in S0 Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2009; 32:953-961. [PMID: 19602091 DOI: 10.1111/j.1365-2761.2009.01078.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have previously documented increased survival by feeding tetradecylthioacetic acid (TTA) during a natural outbreak of infectious pancreatic necrosis in post-smolt S1 Atlantic salmon. The aim of the present study was to test the effects of dietary TTA in S0 smolt at a location where fish often experience natural outbreaks of heart and skeletal muscle inflammation (HSMI) during their first spring at sea. The experimental groups were fed a diet supplemented with 0.25% TTA for a 6-week period prior to a natural outbreak of HSMI in May 2007. Relative percent survival for the groups fed TTA was 45% compared with control diets, reducing mortality from 4.7% to 2.5%. Expression of genes related to lipid oxidation was higher in cardiac ventricles from salmon fed TTA compared with controls. In addition, salmon fed TTA had periodically reduced levels of plasma urea, and increased cardiosomatic index and growth. Reduced mortality and increased growth after administration of TTA may be related to a combination of anti-inflammatory effects, and an altered metabolic balance with better protein conservation because of increased lipid degradation.
Collapse
|
15
|
Rørvik KA, Alne H, Gaarder M, Ruyter B, Måseide NP, Jakobsen JV, Berge RK, Sigholt T, Thomassen MS. Does the capacity for energy utilization affect the survival of post-smolt Atlantic salmon, Salmo salar L., during natural outbreaks of infectious pancreatic necrosis? JOURNAL OF FISH DISEASES 2007; 30:399-409. [PMID: 17584437 DOI: 10.1111/j.1365-2761.2007.00823.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
If osmotic stress and reduced seawater tolerance are predisposing factors for infectious pancreatic necrosis (IPN) outbreaks in farmed Atlantic salmon, increased survival by enhancing access to energy would be expected. The aim of the present study was, therefore, to increase energy access in 1-year old Atlantic salmon after sea transfer by increasing the level of dietary fat, by exchanging some of the dietary oil with more easily oxidized medium chain triacylglycerols, or by dietary supplementation of potentially energy enhancing additives such as clofibrate and tetradecylthioacetic acid (TTA). A natural outbreak of IPN occurred 8 weeks after sea transfer, and a significant dietary effect explaining 76% of the variation in mortality was observed. Relative percentage survival for the fish fed TTA in sea water was 70% when compared with the unsupplemented control, reducing mortality from 7.8 to 2.3%. Muscle fat content and plasma chloride were related to IPN mortality, suggesting that reduced hypoosmoregulatory capacity might be a predisposing factor to the onset of an IPN outbreak. Based on the observation of a threefold increase in white muscle mitochondrial fatty acid oxidizing activity by TTA, it is suggested that TTA has resulted in a re-allocation of dietary fatty acids from storage to energy producing oxidation.
Collapse
Affiliation(s)
- K-A Rørvik
- Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, As-UMB, and Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gjøen T, Kleveland EJ, Moya-Falcón C, Frøystad MK, Vegusdal A, Hvattum E, Berge RK, Ruyter B. Effects of dietary thia fatty acids on lipid composition, morphology and macrophage function of Atlantic salmon (Salmo salar L.) kidney. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:103-11. [PMID: 17572126 DOI: 10.1016/j.cbpb.2007.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/30/2007] [Accepted: 04/30/2007] [Indexed: 12/20/2022]
Abstract
High lipid levels are being used in modern salmonid diets to promote rapid growth; however there is a limiting supply of the traditional fish oils as the fish farming industry expands. One way to utilize the lipid sources better, could be to find ways to stimulate fatty acid (FA) oxidation so that Atlantic salmon use more energy for muscle growth and less for storage in perivisceral adipose tissue. We have previously shown that dietary inclusion of the thia FA tetradecylthioacetic acid (TTA) promoted hepatic beta-oxidation and reduced total body lipid levels. However, dietary TTA also had some negative effects, leading to accumulation of sulfone and sulfoxide metabolites of TTA in the kidney and increasing mortality rates, particularly at low water temperatures. Therefore we also wish to investigate the effects of TTA on kidney function at high and low temperatures, including some immune system parameters. The production of leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) immunoreactive material from exogenously added arachidonic acid in isolated head kidney macrophages was affected by both diet and temperature. The phagocytic activity in these cells was reduced by DTA in the 12 degrees C group and there was significantly higher protein degradation in head kidney macrophages at 12 degrees C compared to 5 degrees C in all dietary groups. Interestingly, the incorporation of thia FAs in the kidney was higher at 5 degrees C (0.3% TTA and 0.6% DTA) than at 12 degrees C (0.1% TTA and 0.5% DTA). Additionally, there were lower levels of saturated FAs, while higher levels of polyunsaturated FAs (PUFAs) in the kidney of TTA fed fish at 5 degrees C. We also observed temperature-independent tubular dilatation and a reduction in the density of melanomacrophages of the kidney in salmon fed TTA. Nevertheless, the mRNA expression of some immune-relevant genes in head kidney tissue was not affected by TTA-inclusion in salmon diets. In conclusion, it is clear that 0.6% TTA-inclusion in the feed leads to changes in the kidney function particularly at low water temperatures.
Collapse
Affiliation(s)
- Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, and Institute of Medicine, Section of Medical Biochemistry, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Maillet D, Weber JM. Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: evidence for natural doping. J Exp Biol 2007; 210:413-20. [PMID: 17234610 DOI: 10.1242/jeb.02660] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYDuring their fall migration from the Arctic to South America, semipalmated sandpipers Calidris pusilla stop in the Bay of Fundy (east coast of Canada) before flying non-stop for ∼4500 km across the ocean. Refueling birds double their body mass by feeding on Corophium volutator, an amphipod containing high amounts of n-3 polyunsaturated fatty acids (n-3 PUFA), particularly eicosapentaenoic (20:5) and docosahexaenoic acid (22:6). In mammals, high dietary intake of n-3 PUFA is known to increase capacity for oxidative metabolism. Therefore, we hypothesized that tissue incorporation of n-3 PUFA would be associated with increases in the activity of key muscle enzymes to upregulate energy metabolism for prolonged exercise.Birds were collected at various stages of fat loading to monitor changes in lipid composition and flight muscle enzymes simultaneously. Enzymes were measured to assess oxidative capacity [citrate synthase (CS)],β-oxidation [carnitine palmitoyl transferase (CPT) and 3-hydroxyacyl dehydrogenase (HOAD)] and glycolytic capacity [lactate dehydrogenase (LDH)]. Changes in the fatty acid composition of muscle membranes (phospholipids) and fuel reserves (neutral lipids) were measured separately to distinguish between membrane-related and systemic effects of n-3 PUFA. Results show that muscle CS and HOAD are stimulated during refueling and that their activities are correlated with n-3 PUFA content in phospholipids (22:6 for CS, 20:5 for HOAD)and in neutral lipids (20:5 for CS). This suggests that 20:5 and 22:6 have different effects on energy metabolism and that they act via changes in membrane structure and systemic mechanisms. CPT and LDH did not change during refueling, but LDH activity was significantly related to the n-3 PUFA content of fuel reserves. This study shows that oxidative capacity increases rapidly during refueling and supports the idea that dietary n-3 PUFA are used as molecular signals to prime flight muscles of some long-distance migrants for extreme exercise.
Collapse
Affiliation(s)
- Dominique Maillet
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | | |
Collapse
|
18
|
Kleveland EJ, Ruyter B, Vegusdal A, Sundvold H, Berge RK, Gjøen T. Effects of 3-thia fatty acids on expression of some lipid related genes in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol 2006; 145:239-48. [PMID: 16971150 DOI: 10.1016/j.cbpb.2006.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/15/2006] [Accepted: 07/31/2006] [Indexed: 11/16/2022]
Abstract
In this study, the effects of in vivo administration of 3-thia fatty acids (FAs) on lipid metabolism in muscle and liver of Atlantic salmon were investigated. Prior to analysis, the fish were kept in tanks supplied with 5 degrees C seawater for 20 weeks. The fish were fed fish meal and fish oil (FO)-based diets supplemented with either nothing (FO), or 0.3% and 0.6% of the 3-thia FAs dodecylthioacetic acid (DTA) and tetradecylthioacetic acid (TTA) respectively. The fish grew from an initial weight of 110 g to 220 g in the FO group and to approximately 160 g in the 3-thia FA groups. There was a significant higher mortality (66%) in fish fed 0.6% TTA than in fish fed the 0.3% DTA (15%) and FO diets (15%). None of the 3-thia FA diets affected the lipid content of the salmon muscle. The liver index, however, was significantly higher and the total liver fat content lower in the TTA group than in the FO group. Both DTA and TTA were incorporated into the lipid fraction of muscle and liver (0.4% to 0.9%). There were no major differences in the total FA composition of liver and muscle between the dietary groups; except for a small increase of n-3 polyunsaturated FAs (PUFAs) in liver of the DTA group. The mRNA expression of peroxisome proliferator-activated receptor (PPAR) alpha, apolipoprotein AI (ApoAI), apolipoprotein CII (ApoCII) and low-density lipoprotein receptor (LDL-R) was down-regulated in liver of the salmon fed 0.3% DTA. PPARalpha and ApoAI transcripts were also reduced in liver of salmon fed 0.6% TTA. Additionally, the hepatic lipoprotein lipase (LPL) mRNA level was 3.8 fold increased in TTA fish relative to the FO group. In muscle there were no significant changes in gene expression pattern of any of the genes investigated. This is the first report on the effects of 3-thia FAs on gene expression in Atlantic salmon.
Collapse
Affiliation(s)
- Ellen Johanne Kleveland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Moya-Falcón C, Hvattum E, Tran TN, Thomassen MS, Skorve J, Ruyter B. Phospholipid molecular species, beta-oxidation, desaturation and elongation of fatty acids in Atlantic salmon hepatocytes: effects of temperature and 3-thia fatty acids. Comp Biochem Physiol B Biochem Mol Biol 2006; 145:68-80. [PMID: 16872856 DOI: 10.1016/j.cbpb.2006.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 06/13/2006] [Accepted: 06/19/2006] [Indexed: 11/21/2022]
Abstract
We have investigated the effects of a 3-thia fatty acid (TTA) and of temperature on the fatty acid (FA) metabolism of Atlantic salmon (Salmo salar). One experiment investigated the activity of the peroxisomal beta-oxidation enzyme, acyl-CoA oxidase (ACO), and the incorporation of TTA into phospholipid (PL) molecular species. Salmon hepatocytes in culture were incubated either without TTA (control(spades)) or with 0.8 mM TTA (TTA(spades)) in a short term (48 h) temperature study at 5 degrees C and at 12 degrees C. TTA was incorporated into the four PL classes studied: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS). TTA was preferentially esterified with 18:1, 16:1, 20:4 and 22:6 in the PLs. Hepatocytes incubated with TTA had higher ACO activity at 5 degrees C than at 12 degrees C. In a second experiment salmon were fed a diet based on fish meal-fish oil without any TTA added (control) or a fish meal-fish oil diet supplemented with 0.6% TTA for 8 weeks at 12 degrees C and 20 weeks at 5 degrees C. At the end of the feeding trial, hepatocytes from fish acclimated to high or low temperatures were isolated from both dietary groups and incubated with either [1-(14)C]18:1 n-9 or [1-(14)C]20:4 n-3 at 5 degrees C or 12 degrees C. Radiolabelled 18:1 n-9 was mainly esterified into neutral lipids (NL), whereas [1-(14)C]20:4 n-3 was mainly esterified into PL at both temperatures. The rate of elongation of [1-(14)C]18:1 n-9 to 20:1 n-9 was twice as high in hepatocytes from fish fed the control diet than it was in hepatocytes from fish fed the TTA diet, at both temperatures. The amount of [1-(14)C]20:4 n-3 converted to 22:6 n-3 was approximately the same in hepatocytes from the two dietary groups, but there was a tendency to higher production of 22:6 n-3 at the lower temperature. Oxidation of [1-(14)C]18:1 n-9 to acid soluble products (ASP) and CO(2) was approximately 10-fold greater in hepatocytes kept at 5 degrees C than in those kept at 12 degrees C and the main oxidation products formed were acetate, oxaloacetate and malate.
Collapse
Affiliation(s)
- C Moya-Falcón
- AKVAFORSK, Institute of Aquaculture Research, P.O. Box 5010, NO-1432 As, Norway
| | | | | | | | | | | |
Collapse
|
20
|
Moya-Falcón C, Thomassen MS, Jakobsen JV, Ruyter B. Effects of dietary supplementation of rapeseed oil on metabolism of [1-14C]18∶1n−9, [1-14C]20∶3n−6, and [1-14C]20∶4n−3 in atlantic salmon heaptocytes. Lipids 2005; 40:709-17. [PMID: 16196422 DOI: 10.1007/s11745-005-1434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Atlantic salmon were fed fish meal-based diets supplemented with either 100% fish oil (FO) or 100% rapeseed oil (RO) from an initial weight of 85 g to a final average weight of 280 g. The effects of these diets on the capacity of Atlantic salmon hepatocytes to elongate, desaturate, and esterify [1-14C] 18:1n-9 and the immediate substrates for the delta5 desaturase, [1-14C] 20:3 n-6 and [1-14C] 20:4n-3, were investigated. Radiolabeled 18:1n-9 was mainly esterified into cellular TAG, whereas the more polyunsaturated FA, [1-14C] 20:3n-6 and [1-14C] 20:4n-3, were primarily esterified into cellular PL. More of the elongation product, [1-14C] 20:1n-9, was produced from 18:1n-9 and more of the desaturation and elongation products, 22:5n-6 and 22:6n-3, were produced from [1-14C]20:3n-6 and [1-14C] 20:4n-3, respectively, in RO hepatocytes than in FO hepatocytes. Further, we studied whether increased addition of [1-14C]18:1n-9 to the hepatocyte culture media would affect the capacity of hepatocytes to oxidize 18:1n-9 to acid-soluble products and CO2. An increase in exogenous concentration of 18:1 n-9 from 7 to 100 microM resulted in a nearly twofold increase in the amount of 18:1n-9 that was oxidized. The conversion of 20:4n-3 and 20:3n-6 to the longer-chain 22:6n-3 and 22:5n-6 was enhanced by RO feeding in Atlantic salmon hepatocytes. The increased capacity of RO hepatocytes to produce 22:6n-3 was, however, not enough to achieve the levels found in FO hepatocytes. Our data further showed that there were no differences in the hepatocyte FA oxidation capacity and the lipid deposition of carcass and liver between the two groups.
Collapse
Affiliation(s)
- C Moya-Falcón
- AKVAFORSK, Institute of Aquaculture Research, NO-1432 As, Norway.
| | | | | | | |
Collapse
|