1
|
Roussel D, Roussel N, Voituron Y, Rey B. Liver mitochondrial coupling efficiency and its relationship to oxidative capacity and adenine nucleotide translocase content: A comparative study among crocodiles, birds and mammals. Mitochondrion 2024; 78:101909. [PMID: 38844192 DOI: 10.1016/j.mito.2024.101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
The primary objective of this study was to assess whether adenine nucleotide translocase (ANT) content could be associated with phylogenetic disparities in mitochondrial coupling efficiency, within liver mitochondria obtained from rats, crocodiles, and ducklings. Our measurements included mitochondrial membrane conductance, ANT content, and oxidative phosphorylation fluxes at various steady-state rates. We observed significant variations in liver mitochondrial coupling efficiency across the three species. These variations correlated with interspecific differences in mitochondrial oxidative capacity and, to a lesser extent, the ANT content of liver mitochondria. These findings expand upon previous research by highlighting the pivotal role of oxidative capacity and ANT in modulating mitochondrial efficiency on an interspecific scale.
Collapse
Affiliation(s)
- Damien Roussel
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, France.
| | | | - Yann Voituron
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, France
| | - Benjamin Rey
- Université Claude Bernard Lyon 1, CNRS, UMR 5558 LBBE, France
| |
Collapse
|
2
|
Long J, Xia Y, Qiu H, Xie X, Yan Y. Respiratory substrate preferences in mitochondria isolated from different tissues of three fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1555-1567. [PMID: 36472706 DOI: 10.1007/s10695-022-01137-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Energy requirements of tissues vary greatly and exhibit different mitochondrial respiratory activities with variable participation of both substrates and oxidative phosphorylation. The present study aimed to (1) compare the substrate preferences of mitochondria from different tissues and fish species with different ecological characteristics, (2) identify an appropriate substrate for comparing metabolism by mitochondria from different tissues and species, and (3) explore the relationship between mitochondrial metabolism mechanisms and ecological energetic strategies. Respiration rates and cytochrome c oxidase (CCO) activities of mitochondria isolated from heart, brain, kidney, and other tissues from Silurus meridionalis, Carassius auratus, and Megalobrama amblycephala were measured using succinate (complex II-linked substrate), pyruvate (complex I-linked), glutamate (complex I-linked), or combinations. Mitochondria from all tissues and species exhibited substrate preferences. Mitochondria exhibited greater coupling efficiencies and lower leakage rates using either complex I-linked substrates, whereas an opposite trend was observed for succinate (complex II-linked). Furthermore, maximum mitochondrial respiration rates were higher with the substrate combinations than with individual substrates; therefore, state III respiration rates measured with substrate combinations could be effective indicators of maximum mitochondrial metabolic capacity. Regardless of fish species, both state III respiration rates and CCO activities were the highest in heart mitochondria, followed by red muscle mitochondria. However, differences in substrate preferences were not associated with species feeding habit. The maximum respiration rates of heart mitochondria with substrate combinations could indicate differences in locomotor performances, with higher metabolic rates being associated with greater capacity for sustained swimming.
Collapse
Affiliation(s)
- Jing Long
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Yiguo Xia
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Hanxun Qiu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Xiaojun Xie
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Yulian Yan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Mammals to membranes: A reductionist story. Comp Biochem Physiol B Biochem Mol Biol 2020; 253:110552. [PMID: 33359769 DOI: 10.1016/j.cbpb.2020.110552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023]
Abstract
This is the story of a series of reductionist studies that started with an attempt to explain what underpins the high-level of aerobic metabolism in mammals (i.e. associated with the evolution of endothermy) and almost forty years later had led to investigations into the role of membrane lipids in determining metabolism. Initial studies showed that the increase in aerobic metabolism in mammals was driven by a combination of increases in mitochondrial volume and membrane densities, organ size and changes in the molecular activity of enzymes. The increase in the capacity to produce energy was matched by an increase in energy use, notably driven by increases in H+, Na+ and K+ fluxes. In the case of increased Na+ flux, it was found this was matched by increases in Na+-dependent metabolism at the tissue level and increases in enzyme activity at a cellular level but not by an increase in the number of sodium pumps. To maintain Na+ gradient across cell membranes, increased Na+ flux is not controlled by an increase in sodium pump number but rather by an increase in sodium pump molecular activity (i.e. an increase the substrate turnover rate of each sodium pump) in tissues of endotherms. This increase in molecular activity is coupled to an increase in the level of highly unsaturated polyunsaturated fatty acids (PUFA) in membranes, a mechanism similar to that used by ectotherms to ameliorate decreasing activities of metabolic processes in the cold. Determination of how changes in membrane fatty acid composition can change the activities of proteins in membranes will be the next step in this story.
Collapse
|
4
|
Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell 2019; 18:e13009. [PMID: 31322803 PMCID: PMC6718592 DOI: 10.1111/acel.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biology University of Ottawa Ottawa Ontario Canada
| | - Matthew E. Pamenter
- Department of Biology University of Ottawa Ottawa Ontario Canada
- University of Ottawa Brain and Mind Research Institute Ottawa Ontario Canada
| |
Collapse
|
5
|
Tan S, Wen J, Shi LL, Wang CM, Wang GY, Zhao ZJ. The increase in fat content in the warm-acclimated striped hamsters is associated with the down-regulated metabolic thermogenesis. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:162-172. [PMID: 27470945 DOI: 10.1016/j.cbpa.2016.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022]
Abstract
It has been well known that metabolic thermogenesis plays an important role in the thermoregulation of small mammals under different temperatures, while its role in fat accumulation is far from clear. In the present study, several physiological, hormonal, and biochemical measures indicative of metabolic thermogenesis were measured in the weaning striped hamsters after acclimated to a warm condition (30°C) for 1, 3 and 4months. The warm-acclimated groups significantly decreased energy intake, and simultaneously decreased nonshivering thermogenesis compared to those housed at 21°C. Body fat content increased by 29.9%, 22.1% and 19.6% in the hamsters acclimated to 1, 3 or 4months, respectively relative to their counterparts maintain at 21°C (P<0.05). The cytochrome c oxidase (COX) activity of brain, liver, heart and skeletal muscle, and the ratio of serum tri-iodothyronine to thyroxine significantly decreased in warm-acclimated groups compared with 21°C group. COX activity and uncoupling protein 1 (UCP1) mRNA expression of brown adipose tissue (BAT) were significantly down-regulated under the warm conditions. COX activity of BAT, liver, heart and muscle were significantly negatively correlated with body fat content, and the correlation between UCP1 expression and body fat content tended to be negative. These findings suggest that the decrease in the energy spent on metabolic thermogenesis plays an important role in the fat accumulation. The attenuation of COX and UCP1-based BAT activity may be involved in body fat accumulation in animals under warm conditions.
Collapse
Affiliation(s)
- Song Tan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Lu-Lu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Chun-Ming Wang
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Gui-Ying Wang
- College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
6
|
Paital B, Panda SK, Hati AK, Mohanty B, Mohapatra MK, Kanungo S, Chainy GBN. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J Biol Chem 2016; 7:110-127. [PMID: 26981200 PMCID: PMC4768115 DOI: 10.4331/wjbc.v7.i1.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/30/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to longevity of animals will become very crucial challenge to biologists of the present millennium.
Collapse
|
7
|
Frasier CC. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals. PeerJ 2015; 3:e1228. [PMID: 26355655 PMCID: PMC4562252 DOI: 10.7717/peerj.1228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/13/2015] [Indexed: 01/29/2023] Open
Abstract
The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass) (b) . Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal's characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal's means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals' skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can calculate a sturdiness factor value so that an individual animal's BMR and body mass can be simultaneously computed given its characteristic length awaits analysis of a data set that simultaneously reports all three of these items for individual animals. However for many of the addressed MMLE homogeneous groups, MMLE can predict the exponent obtained by regression analysis of the BMR and mass data using the exponent obtained by regression analysis of the mass and length data. This argues that MMLE may be able to accurately simultaneously compute BMR and mass for an individual animal.
Collapse
|
8
|
Perspectives on the membrane fatty acid unsaturation/pacemaker hypotheses of metabolism and aging. Chem Phys Lipids 2015; 191:48-60. [PMID: 26291495 DOI: 10.1016/j.chemphyslip.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
The membrane pacemaker hypotheses of metabolism and aging are distinct, but interrelated hypotheses positing that increases in unsaturation of lipids within membranes are correlated with increasing basal metabolic rate and decreasing longevity, respectively. The two hypotheses each have evidence that either supports or contradicts them, but consensus has failed to emerge. In this review, we identify sources of weakness of previous studies supporting and contradicting these hypotheses and suggest different methods and lines of inquiry. The link between fatty acyl composition of membranes and membrane-bound protein activity is a central tenet of the membrane pacemaker hypothesis of metabolism, but the mechanism by which unsaturation would change protein activity is not well defined and, whereas fatty acid desaturases have been put forward by some as the mechanism behind evolutionary differences in fatty acyl composition of phospholipids among organisms, there have been no studies to differentiate whether desaturases have been more affected by natural selection on aging and metabolic rate than have elongases or acyltransferases. Past analyses have been hampered by potentially incorrect estimates of the peroxidizability of lipids and longevity of study animals, and by the confounding effect of phylogeny. According to some authors, body mass may also be a confounding effect that should be taken into account, though this is not universally accepted. Further research on this subject should focus more on mechanisms and take weaknesses of past studies into account.
Collapse
|
9
|
Paital B, Chainy GBN. Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata. J Therm Biol 2014; 41:104-11. [PMID: 24679979 DOI: 10.1016/j.jtherbio.2014.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Effects of fluctuations in habitat temperature (18-30°) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrata are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40°C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR (≥3) and P/O ratio (1.4-2.7) at the temperature range of 15-25°C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18°C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40°C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondrial respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments.
Collapse
Affiliation(s)
| | - G B N Chainy
- Department of Zoology, Utkal University, Bhubaneswar 751004, India; Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| |
Collapse
|
10
|
Cooper AN, Brown JCL, Staples JF. Are long chain acyl CoAs responsible for suppression of mitochondrial metabolism in hibernating 13-lined ground squirrels? Comp Biochem Physiol B Biochem Mol Biol 2014; 170:50-7. [PMID: 24561259 DOI: 10.1016/j.cbpb.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/18/2022]
Abstract
Hibernation in 13-lined ground squirrels (Ictidomys tridecemlineatus) is associated with a substantial suppression of whole-animal metabolism. We compared the metabolism of liver mitochondria isolated from torpid ground squirrels with those from interbout euthermic (IBE; recently aroused from torpor) and summer euthermic conspecifics. Succinate-fuelled state 3 respiration, calculated relative to mitochondrial protein, was suppressed in torpor by 48% and 44% compared with IBE and summer, respectively. This suppression remains when respiration is expressed relative to cytochrome c oxidase activity. We hypothesized that this suppression was caused by inhibition of succinate transport at the dicarboxylate transporter (DCT) by long-chain fatty acyl CoAs that may accumulate during torpor. We predicted, therefore, that exogenous palmitoyl CoA would inhibit respiration in IBE more than in torpor. Palmitoyl CoA inhibited respiration ~70%, in both torpor and IBE. The addition of carnitine, predicted to reverse palmitoyl CoA suppression by facilitating its transport into the mitochondrial matrix, did not rescue the respiration rates in IBE or torpor. Liver mitochondrial activities of carnitine palmitoyl transferase did not differ among IBE, torpor and summer animals. Although palmitoyl CoA inhibits succinate-fuelled respiration, this suppression is likely not related exclusively to inhibition of the DCT, and may involve additional mitochondrial transporters such as the adenine-nucleotide transporter.
Collapse
Affiliation(s)
- Alex N Cooper
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada
| | - Jason C L Brown
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada.
| |
Collapse
|
11
|
Paital B, Samanta L. A comparative study of hepatic mitochondrial oxygen consumption in four vertebrates by using Clark-type electrode. ACTA BIOLOGICA HUNGARICA 2013; 64:152-60. [PMID: 23739884 DOI: 10.1556/abiol.64.2013.2.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study was undertaken to establish a comparative account on hepatic mitochondrial oxygen consumption of Clarias gariepinus (fish), Bufo melanostictus (amphibian), Gallus gallus (bird) and Rattus norvegicus (mammal) and to correlate it with their specific metabolic rate (SMR). Mitochondrial oxygen consumption was measured with a Clarke-type electrode with succinate and pyruvate/malate as substrates. ADP was used to start state-III respiration. The results show that rats and chickens have higher oxygen consumption rate than that of fish and toads. Similarly, a species and substrate specific difference was also noticed in P/O (phosphate utilized per oxygen atom) ratio and respiratory control index. In case of rat, a significant negative correlation was noticed between P/O ratio and SMR with succinate as substrate. It is surmised that the observed difference in the mitochondrial respiration and P/O ratio in the above vertebrates is due to the difference in their metabolic activities.
Collapse
Affiliation(s)
- B Paital
- Utkal University Department of Zoology and Biotechnology, Bhubaneswar, India.
| | | |
Collapse
|
12
|
Sanchez-Alavez M, Conti B, Wood MR, Bortell N, Bustamante E, Saez E, Fox HS, Marcondes MCG. ROS and Sympathetically Mediated Mitochondria Activation in Brown Adipose Tissue Contribute to Methamphetamine-Induced Hyperthermia. Front Endocrinol (Lausanne) 2013; 4:44. [PMID: 23630518 PMCID: PMC3632801 DOI: 10.3389/fendo.2013.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022] Open
Abstract
Methamphetamine (Meth) abuse has been shown to induce alterations in mitochondrial function in the brain as well as to induce hyperthermia, which contributes to neurotoxicity and Meth-associated mortality. Brown adipose tissue (BAT), a thermogenic site known to be important in neonates, has recently regained importance since being identified in significant amounts and in correlation with metabolic balance in human adults. Given the high mitochondrial content of BAT and its role in thermogenesis, we aimed to investigate whether BAT plays any role in the development of Meth-induced hyperthermia. By ablating or denervating BAT, we identified a partial contribution of this organ to Meth-induced hyperthermia. BAT ablation decreased temperature by 0.5°C and reduced the length of hyperthermia by 1 h, compared to sham-operated controls. BAT denervation also affected the development of hyperthermia in correlation with decreased the expression of electron transport chain molecules, and increase on PCG1a levels, but without affecting Meth-induced uncoupling protein 1 upregulation. Furthermore, in isolated BAT cells in culture, Meth, but not Norepinephrine, induced H2O2 upregulation. In addition, we found that in vivo Reactive Oxygen Species (ROS) play a role in Meth hyperthermia. Thus, sympathetically mediated mitochondrial activation in the BAT and Meth-induced ROS are key components to the development of hyperthermia in Meth abuse.
Collapse
Affiliation(s)
| | - Bruno Conti
- Chemical Physiology Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Malcolm R. Wood
- Core Microscopy Facility, The Scripps Research InstituteLa Jolla, CA, USA
| | - Nikki Bortell
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Eduardo Bustamante
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Enrique Saez
- Chemical Physiology Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical CenterOmaha, NE, USA
| | - Maria Cecilia Garibaldi Marcondes
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
- *Correspondence: Maria Cecilia Garibaldi Marcondes, Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, SR307, La Jolla, CA 92037, USA. e-mail:
| |
Collapse
|
13
|
Sussarellu R, Dudognon T, Fabioux C, Soudant P, Moraga D, Kraffe E. Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster Crassostrea gigas. J Exp Biol 2013; 216:1561-9. [DOI: 10.1242/jeb.075879] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Summary
As oxygen concentrations in marine coastal habitats can fluctuate rapidly and drastically, sessile marine organisms like the oyster Crassostrea gigas can experience marked and rapid oxygen variations. In this study, we investigated the responses of oyster gill mitochondria to short-term hypoxia (3 h and 12 h, at 1.7 mg O2 L-1) and subsequent re-oxygenation. Mitochondrial respiratory rates (state 3 and 4 stimulated by glutamate), phosphorylation efficiency (RCR ratio and ADP/O) were measured. Cytochrome c oxidase activity (CCO) and cytochrome concentrations (a, b, c1, c) were measured to investigate the rearrangements of respiratory chain subunits. The potential implication of an alternative oxidase (AOX) was investigated using an inhibitor of the respiratory chain (antimycin A) and through gene expression analysis in gills and digestive gland. Results indicate a down regulation of mitochondrial capacity, with 60% inhibition of respiratory rates after 12 h of hypoxia. RCR ratio remained stable, while ADP/O increased after 12 h of hypoxia and 1 h of re-oxygenation, suggesting increased phosphorylation efficiency. CCO showed a fast and remarkable increase of its catalytic activity only after 3 h of hypoxia. AOX mRNA levels showed similar patterns in gill and digestive gland, and were up regulated after 12 and 24 h of hypoxia and during re-oxygenation. Results suggest a set of controls in regulating mitochondrial functions in response to oxygen fluctuations and demonstrate the fast and extreme plasticity of oyster mitochondria in response to oxygen variations.
Collapse
Affiliation(s)
| | - Tony Dudognon
- UMR CNRS 6539-LEMAR, Université de Bretagne Occidentale, France
| | | | | | - Dario Moraga
- UMR CNRS 6539-LEMAR, Université de Bretagne Occidentale, France
| | - Edouard Kraffe
- UMR CNRS 6539-LEMAR, Université de Bretagne Occidentale, France
| |
Collapse
|
14
|
Martin N, Bureau DP, Marty Y, Kraffe E, Guderley H. Dietary lipid quality and mitochondrial membrane composition in trout: responses of membrane enzymes and oxidative capacities. J Comp Physiol B 2012; 183:393-408. [PMID: 23052948 DOI: 10.1007/s00360-012-0712-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/16/2012] [Accepted: 09/08/2012] [Indexed: 01/03/2023]
Abstract
To examine whether membrane fatty acid (FA) composition has a greater impact upon specific components of oxidative phosphorylation or on overall properties of muscle mitochondria, rainbow trout (Oncorhynchus mykiss) were fed two diets differing only in FA composition. Diet 1 was enriched in 18:1n-9 and 18:2n-6 while Diet 2 was enriched in 22:6n-3. The FA composition of mitochondrial phospholipids was strongly affected by diet. 22:6n-3 levels were twice as high (49%) in mitochondrial phospholipids of fish fed Diet 2 than in those fed Diet 1. 18:2n-6 content of the phospholipids also followed the diets, whereas 18:1n-9 changed little. All n-6 FA, most notably 22:5n-6, were significantly higher in fish fed Diet 1. Nonetheless, total saturated FA, total monounsaturated FA and total polyunsaturated FA in mitochondrial phospholipids varied little. Despite a marked impact of diet on specific FA levels in mitochondrial phospholipids, only non-phosphorylating (state 4) rates were higher in fish fed Diet 2. Phosphorylating rates (state 3), oxygen consumption due to flux through the electron transport chain complexes as well as the corresponding spectrophotometric activities did not differ with diet. Body mass affected state 4 rates and cytochrome c oxidase and F 0 F 1 ATPase activities while complex I showed a diet-specific effect of body mass. Only the minor FA that were affected by body mass were correlated with functional properties. The regulated incorporation of dietary FA into phospholipids seems to allow fish to maintain critical membrane functions even when the lipid quality of their diets varies considerably, as is likely in their natural environment.
Collapse
Affiliation(s)
- N Martin
- Département de Biologie, Université Laval, Quebec, QC G1K 7P4, Canada.
| | | | | | | | | |
Collapse
|
15
|
Paital B, Chainy GBN. Effects of salinity on O₂ consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:228-37. [PMID: 21930243 DOI: 10.1016/j.cbpc.2011.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 01/11/2023]
Abstract
Mitochondrial respiration, activities of electron transport chain enzymes and formation of oxidative stress parameters were investigated in mitochondria isolated from gill tissue of mud crabs (Scylla serrata) as a function of salinity (10 ppt, 17 ppt and 35 ppt). Mitochondrial oxygen consumption rate was higher for succinate as substrate compared with those of glutamate, malate and pyruvate. Complex I and complex II mediated respirations were higher at low salinity (10 ppt) than high salinity (17 ppt and 35 ppt). Although activities of electron transport chain enzymes particularly complexes I (EC 1.6.5.3), II (EC 1.3.99.1) and II-III (EC 1.3.2.1) were elevated linearly in response to salinity treatment, activity of complex V (ATPase, EC 3.6.1.34) was decreased at 35 ppt salinity. However, ATPase activity was higher at 17 ppt salinity in comparison to 10 ppt and 17 ppt salinity. Results of the experiment suggest that high salinity (35 ppt) causes hypoxic state in mitochondria of mud crabs. Hypoxic condition induced by high salinity was accompanied with increased hydrogen peroxide production resulting oxidative stress in mitochondria of crabs. A possible mechanism of hypoxia-induced reactive oxygen species generation and OS due to salinity stress in the crabs is discussed.
Collapse
|
16
|
Guderley H, Seebacher F. Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator mississippiensis). J Comp Physiol B 2010; 181:53-64. [DOI: 10.1007/s00360-010-0499-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/11/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022]
|
17
|
Li YG, Yan ZC, Wang DH. Physiological and biochemical basis of basal metabolic rates in Brandt's voles (Lasiopodomys brandtii) and Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:204-11. [PMID: 20601053 DOI: 10.1016/j.cbpa.2010.06.183] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/30/2022]
Abstract
Basal metabolic rate (BMR) has been shown to be a highly flexible phenotypic trait both between and within species, but the physiological, biochemical and molecular mechanisms are still unclear. Brandt's voles (Lasiopodomys brandtii) and Mongolian gerbils (Meriones unguiculatus) are two sympatric rodent species in Inner Mongolian grasslands of China. It has been shown that Brandt's voles have higher metabolic rate than Mongolian gerbils. In this study, we elucidated the inter-specific variation in BMR integratively from the molecular levels to whole organism. Our results showed that differences in organ mass were not good predictors for the observed variations in BMR, while variations in the activity of thyroid hormones and the metabolic biochemical markers of tissues, such as mitochondria density, cytochrome c oxidase activity and state 4 respiration, were strongly correlated with variations in BMR, and there was also a positive relationship between residuals of T(3)/T(4) and state 4 respiration, suggesting that thyroid hormones play an important role in the determination of BMR variations.
Collapse
Affiliation(s)
- Yong-Guo Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
18
|
Klaiman JM, Price ER, Guglielmo CG. Fatty acid composition of pectoralis muscle membrane, intramuscular fat stores and adipose tissue of migrant and wintering white-throated sparrows (Zonotrichia albicollis). J Exp Biol 2009; 212:3865-72. [DOI: 10.1242/jeb.034967] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The fatty acid composition of muscle membrane phospholipids and fat stores may affect migration performance in birds. The purpose of this study was to investigate seasonal changes in the fatty acid composition of (1) pectoralis muscle phospholipids, (2) intramuscular triglyceride stores and (3) adipose tissue triglycerides in free-living white-throated sparrows (Zonotrichia albicollis). During migratory seasons there was an increase in the n-6:n-3 ratio of muscle membrane phospholipid fatty acids without a change in the proportion of unsaturated fatty acids. This change was driven mainly by an increase in the proportion of 18:2n-6 and a decrease in the proportion of 22:6n-3. An increase in the proportion of 18:2n-6 was also observed in the intramuscular and adipose tissue triglyceride stores during the migratory seasons. These increases in 18:2n-6 were offset by a decrease in 16:0; resulting in an elevated proportion of unsaturated fatty acids and elevated double bond index in both fat stores of migrants. The elevated levels of 18:2n-6 in migrant fat stores indicates a high dietary component of this fatty acid, as white-throated sparrows feed mainly on tree seeds and some insects during migration and may not have access to a diet high in n-3 fatty acids. We suspect that elevated dietary levels of 18:2n-6 also caused the observed increases in the proportion of this fatty acid in muscle phospholipids. Overall, we conclude that seasonal changes in adipose and muscle fatty acid composition are likely attributable to diet more than other factors such as migratory exercise or mitochondrial density.
Collapse
Affiliation(s)
- J. M. Klaiman
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - E. R. Price
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - C. G. Guglielmo
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
19
|
Martin N, Kraffe E, Guderley H. Effect of day length on oxidative capacities of mitochondria from red muscle of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2009; 152:599-603. [DOI: 10.1016/j.cbpa.2009.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Dietary fatty acid composition changes mitochondrial phospholipids and oxidative capacities in rainbow trout red muscle. J Comp Physiol B 2008; 178:385-99. [PMID: 18210132 DOI: 10.1007/s00360-007-0231-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 11/14/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
Abstract
Dietary conditioning of juvenile trout changed the acyl chain composition of mitochondrial phospholipids and the oxidative capacities of muscle mitochondria. Trout were fed three diets differing only in fatty acid (FA) composition. The highly unsaturated 22:6 n-3 (DHA) accounted for 0.4, 14, and 30% of fatty acids in Diets 1, 2 and 3. After 10 weeks of growth, the dietary groups differed markedly in FA composition of mitochondrial phospholipids, with significant dietary effects for virtually all FA. Mean mitochondrial DHA levels were 19, 40 and 33% in trout fed Diets 1, 2 and 3. Mitochondrial oxidative capacities changed with diet, while mitochondrial concentrations of cytochromes and of the adenylate nucleotide translocase (nmol mg(1) protein) did not. Mitochondria from fish fed Diet 1 had higher non-phosphorylating (state 4) rates at 5 degrees C than those fed other diets. When phosphorylating (state 3) rates differed between dietary groups, rates at 5 and 15 degrees C were higher for fish fed the more unsaturated diets. Stepwise multiple regressions indicated that FA composition could explain much (42-70%) of the variability of state 4 rates, particularly at 5 degrees C. At 15 degrees C, FA composition explained 16-42% of the variability of states 3 and 4 rates. Similar conclusions were obtained for the complete data set (trout fed diets 1, 2 and 3) and for the data from trout achieving similar growth rates (e.g. those fed Diets 1 and 2). Neither general characteristics of membrane FA, such as % saturates, unsaturation index, n-3, n-6 or n-3/n-6 nor levels of abundant unsaturated FA such as DHA or 18:1(n-9 + n-7), were systematically correlated with mitochondrial capacities even though they differed considerably between trout fed the different diets. Relatively minor FA (20:5n-3, 20:0, 18:2n-6, 18:3n-3, 18:0 and 15:0) showed better correlations with mitochondrial oxidative capacities. This supports the concept that acyl chain composition modulates mitochondrial capacities via interactions between membrane proteins and specific FA of particular phospholipid classes in their microenvironment.
Collapse
|
21
|
Brown JCL, Gerson AR, Staples JF. Mitochondrial metabolism during daily torpor in the dwarf Siberian hamster: role of active regulated changes and passive thermal effects. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1833-45. [PMID: 17804585 DOI: 10.1152/ajpregu.00310.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During daily torpor in the dwarf Siberian hamster, Phodopus sungorus, metabolic rate is reduced by 65% compared with the basal rate, but the mechanisms involved are contentious. We examined liver mitochondrial respiration to determine the possible role of active regulated changes and passive thermal effects in the reduction of metabolic rate. When assayed at 37 degrees C, state 3 (phosphorylating) respiration, but not state 4 (nonphosphorylating) respiration, was significantly lower during torpor compared with normothermia, suggesting that active regulated changes occur during daily torpor. Using top-down elasticity analysis, we determined that these active changes in torpor included a reduced substrate oxidation capacity and an increased proton conductance of the inner mitochondrial membrane. At 15 degrees C, mitochondrial respiration was at least 75% lower than at 37 degrees C, but there was no difference between normothermia and torpor. This implies that the active regulated changes are likely more important for reducing respiration at high temperatures (i.e., during entrance) and/or have effects other than reducing respiration at low temperatures. The decrease in respiration from 37 degrees C to 15 degrees C resulted predominantly from a considerable reduction of substrate oxidation capacity in both torpid and normothermic animals. Temperature-dependent changes in proton leak and phosphorylation kinetics depended on metabolic state; proton leakiness increased in torpid animals but decreased in normothermic animals, whereas phosphorylation activity decreased in torpid animals but increased in normothermic animals. Overall, we have shown that both active and passive changes to oxidative phosphorylation occur during daily torpor in this species, contributing to reduced metabolic rate.
Collapse
Affiliation(s)
- Jason C L Brown
- Dept. of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | | |
Collapse
|
22
|
Brzek P, Bielawska K, Ksiazek A, Konarzewski M. Anatomic and Molecular Correlates of Divergent Selection for Basal Metabolic Rate in Laboratory Mice. Physiol Biochem Zool 2007; 80:491-9. [PMID: 17717812 DOI: 10.1086/520617] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2007] [Indexed: 11/03/2022]
Abstract
Proximal mechanisms describing the evolution of high levels of basal metabolic rate (BMR) in endotherms are one of the most intriguing problems of evolutionary physiology. Because BMR mostly reflects metabolic activity of internal organs, evolutionary increase in BMR could have been realized by an increase in relative organ size and/or mass-specific cellular metabolic rate. According to the "membrane pacemaker" theory of metabolism, the latter is mediated by an increase in the average number of double bonds (unsaturation index) in cell membrane fatty acids. To test this, we investigated the effect of divergent artificial selection for body-mass-corrected BMR on the mass of internal organs and the fatty acid composition of cell membranes in laboratory mice (Mus musculus). Mice from the high-BMR line had considerably larger liver, kidneys, heart, and intestines. In contrast, the unsaturation index of liver cell membranes was significantly higher in low-BMR mice, mainly because of the significantly higher content of highly polyunsaturated 22 : 6 docosahexanoic fatty acid. Thus, divergent selection for BMR did not affect fatty acyl composition of liver and kidney phospholipids in the direction predicted by the membrane pacemaker theory. We conclude that an intraspecific increase in BMR may rapidly evolve mainly as a result of the changes in size of internal organs, without simultaneous increase of the unsaturation index in cell membrane lipids.
Collapse
Affiliation(s)
- Pawel Brzek
- Institute of Biology, University of Białstok, Swierkowa 20B,15-950 Białystok,Poland.
| | | | | | | |
Collapse
|
23
|
Kraffe E, Marty Y, Guderley H. Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. ACTA ACUST UNITED AC 2007; 210:149-65. [PMID: 17170158 DOI: 10.1242/jeb.02628] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in the properties of mitochondria from oxidative muscle of rainbow trout Oncorhynchus mykiss were examined during warm (5 degrees C to 15 degrees C) acclimation. Trout were studied shortly after the initial thermal change and after 8 weeks acclimation to 15 degrees C. To identify potential mechanisms by which oxidative capacities change, the modifications of phospholipid composition, membrane proteins and functional capacities of red muscle mitochondria were examined. Marked functional changes of isolated muscle mitochondria during warm acclimation of rainbow trout were reflected by a host of modifications in phospholipid composition, but by few shifts in protein components. Shortly after transfer of trout from 5 degrees C to 15 degrees C, the maximal oxidative capacity of mitochondria measured at 15 degrees C increased slightly, but rates at both assay temperatures (5 degrees C and 15 degrees C) decreased markedly after warm acclimation. The increase in capacity in short-term warm exposed trout was most pronounced when rates at 15 degrees C were expressed relative to cytochrome a and c(1) levels. Non-phosphorylating (State 4) rates of oxygen uptake increased with short-term warm exposure before returning to initial levels after warm acclimation. Cytochrome c oxidase (CCO) activity in the mitochondrial preparations decreased with warm acclimation. The thermal sensitivity of the ADP affinity was markedly modified during short-term warm exposure, when the ADP/O ratio increased, but warm acclimation returned these values to those observed initially. ADP affinity increased after warm acclimation. Changes in the mitochondrial content of cytochromes and adenine nucleotide translocase (ANT) could not explain these patterns. On the other hand, changes in the proportions of the lipid classes and in the acyl chain composition of certain phospholipid classes mirror the modifications in functional properties. Short-term exposure to 15 degrees C decreased the ratio of diacylphosphatidylethanolamine/diacylphosphatidylcholine (diacylPE/diacylPC), whereas warm acclimation led to restructuring of fatty acids (FA) and to increases of plasmalogen forms of PE and PC. Modification of overall membrane unsaturation did not appear to be the primary aim of restructuring membrane FA during warm acclimation, as total mitochondrial phospholipids and the major phospholipid classes only showed slight shifts of their acyl composition with warm acclimation. On the other hand, natural lysophosphatidylcholine (LysoPC) showed dramatic changes in FA content, as 16:0 and 18:1n-9 doubled whereas 22:6n-3 decreased from around 50% to 32% in warm acclimated trout. Similarly, in cardiolipin (CL), the levels of 16:0 and 18:1n-7 halved while 18:2n-6 increased to over 20% of the FA with warm acclimation. Given the central role of CL in modulating the activity of CCO, F(0)F(1)-ATPase and ANT, these changes suggest that specific compositional changes in CL are important modulators of mitochondrial capacities. The many structural changes in membrane lipids contrast with the limited modifications of the membrane protein components examined and support the concept of lipid structure modulating mitochondrial capacities.
Collapse
Affiliation(s)
- Edouard Kraffe
- Unité mixte CNRS 6521, Université de Bretagne Occidentale, C.S. 93837, 29238 Brest cedex 3, France.
| | | | | |
Collapse
|
24
|
Szabó A, Fébel H, Mézes M, Balogh K, Horn P, Romvári R. Body size related adaptations of the avian myocardial phospholipid fatty acyl chain composition. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:496-502. [PMID: 16765623 DOI: 10.1016/j.cbpb.2006.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/28/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
The myocardial phospholipid fatty acid (FA) composition (mol %) of 7 avian species was determined, in a body mass range from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo). Significant allometric increases were found for C16:1 n7 (allometric exponent: B=0.15), C18:1 n7 (B=0.08), C18:1 n9 (B=0.24), C20:1 n9 (B=0.22) and C20:3 n3 (B=0.12); moreover, total monounsaturates (B=0.20) and the sum of n9 FAs (B=0.24) was also positively related to body mass. The total n3 FAs (B=-0.36), and within them C22:5 n3 (B=-0.41) and C22:6 n3 (B=-0.60) showed allometric declines, such as total polyunsaturated fatty acids (PUFA; B=-0.01), unsaturation index (B=-0.03) and mean FA chain length (B=-0.003). Comparing our results with earlier published data on avian skeletal muscle and divergent mammalian tissues, the allometric scaling of the above membrane forming fatty acids seems to be part of a general relationship postulated as the theory "membranes as metabolic pacemakers". In addition, the cardiac muscle malondialdehyde concentration was negatively related to body mass (B=-0.16), referring to a lower level of lipid peroxidation in larger birds, and vice versa, indicating a progressive myocardial lipid peroxidation in smaller-bodied species.
Collapse
Affiliation(s)
- András Szabó
- University of Kaposvár, Faculty of Animal Science, H-7400, Kaposvár, Guba S. u. 40., Hungary.
| | | | | | | | | | | |
Collapse
|