1
|
Aguilo-Arce J, Compa M, Corriero G, Mastrodonato M, Savino I, Semeraro D, Sureda A, Trani R, Longo C. Microplastic filtering and its physiological effects on the Mediterranean bath sponge Spongia officinalis (Porifera, Demospongiae). MARINE POLLUTION BULLETIN 2025; 215:117849. [PMID: 40112645 DOI: 10.1016/j.marpolbul.2025.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) pose an increasing and significant threat to marine biodiversity and there is a current need to determine the effects of exposure on benthic sessile invertebrates. This study examines the filtration capacity and retention of MP particles, as well as their physiological impacts in the marine sponge Spongia officinalis, a bioindicator species. The findings revealed a very high filtration capacity for MPs within the size range of 1-5 μm, along with a rapid turnover rate, as a large portion of particles were expelled within 48 h of exposure. Histological analyses detected MP particles within the cellular structures of the analyzed tissues, indicating that MPs of this size can penetrate cellular barriers. In terms of physiological effects, detoxification activity was activated during the depuration phase, and lipid peroxidation was observed during both the exposure and depuration phases. Overall, this study provides critical insights into the filtration and retention capacity, intercellular integration of MP particles, and the physiological effects of MP exposure in S. officinalis, providing a baseline for future research.
Collapse
Affiliation(s)
- Joseba Aguilo-Arce
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Montserrat Compa
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Giuseppe Corriero
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Centre for Risk Analysis and Management in Health and Environmental Emergencies, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Maria Mastrodonato
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Ilaria Savino
- Water Research Institute, Italian National Research Council, CNR-IRSA, 70132 Bari, Italy.
| | - Daniela Semeraro
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Roberta Trani
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Caterina Longo
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Research Centre for Coastal Dynamics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
2
|
Rosa GP, Barreto MC, Seca AML, Pinto DCGA. Antiaging Potential of Lipophilic Extracts of Caulerpa prolifera. Mar Drugs 2025; 23:83. [PMID: 39997207 PMCID: PMC11857742 DOI: 10.3390/md23020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
The cosmeceutical industry has increasingly turned its attention to marine macroalgae, recognizing their significant bioactive potential as sources of natural compounds for skincare applications. A growing number of products now incorporate extracts or isolated compounds from various macroalgae species. However, many species remain underexplored, highlighting a valuable opportunity for further research. Among these, Caulerpa prolifera (Forsskål) J.V. Lamouroux has emerged as a promising candidate for cosmeceutical applications. This study provides the most comprehensive phytochemical assessment of C. prolifera to date, revealing its potential as a source of bioactive extracts and compounds. The analysis identified key components of its lipophilic profile, predominantly saturated and unsaturated fatty acids, alongside di-(2-ethylhexyl) phthalate-an endocrine disruptor potentially biosynthesized or bioaccumulated by the algae. While the crude extract exhibited moderate tyrosinase inhibitory activity, its overall antioxidant capacity was limited. Fractionation of the extract, however, yielded subfractions with distinct bioactivities linked to changes in chemical composition. Notably, enhanced inhibitory activities against elastase and collagenase were observed in subfractions enriched with 1-octadecanol and only traces of phthalate. Conversely, antioxidant activity diminished with the loss of specific compounds such as β-sitosterol, erucic acid, nervonic acid, and lignoceric acid. This work advances the understanding of the relationship between the chemical composition of C. prolifera and its bioactivities, emphasizing its potential as a source of cosmeceutical ingredients, leading to a more comprehensive valorization of this macroalga.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (G.P.R.); (M.C.B.); (A.M.L.S.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Carmo Barreto
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (G.P.R.); (M.C.B.); (A.M.L.S.)
| | - Ana M. L. Seca
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (G.P.R.); (M.C.B.); (A.M.L.S.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Onaji MO, Abolude DS, Abdullahi SA, Faria LDB, Chia MA. Analysis of microplastic contamination and associated human health risks in Clarias gariepinus and Oreochromis niloticus from Kubanni Reservoir, Zaria Nigeria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125328. [PMID: 39551382 DOI: 10.1016/j.envpol.2024.125328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Environmental safety has become a major concern in recent years due to the global increase in microplastic pollution. These ubiquitous, tiny, and potentially toxic plastic particles enter aquatic environments through weathering of larger plastics and the release of microbeads. Although numerous studies have focused on microplastic pollution in developed regions, information from developing countries remains limited. This study assessed the presence of MPs and associated oxidative stress responses in two commercial fish species, Clarias gariepinus (Catfish) and Oreochromis niloticus (Nile Tilapia), from Kubanni reservoir, Zaria, Nigeria, over six months spanning both the dry and rainy seasons. Fibers were identified as the most abundant MP particles, followed by fragments, films, and beads, in the order of fibers > fragments > films > beads. The highest fiber concentrations were recorded in the gills, with Clarias garipinus showing 11.5 MP items/individual and Oreochromis niloticus showing 22.5 MP items/individual. Black microplastics were predominant, and the most common ingested MP ranged from 1.0 to 2.0 mm. The primary polymers identified were polypropylene and polyethylene terephthalate. Evidence of oxidative stress and cellular damage was observed in the gills, liver, and dorsal muscles of both fish species, which correlated with MPs ingestion. According to recommendations from the European Food Safety Authority regarding fish consumption by children and adults, individuals consuming Clarias gariepinus and Oreochromis niloticus from the Kubanni reservoir may be exposed to between 70 and 700 MP items/organ. The risk associated with consuming MPs found in fish gills and guts was notably higher, posing significant concerns for human health. This study provides insights into microplastic contamination in commercially important fish from the Kubanni Reservoir and highlights the environmental and public health risks associated with consuming contaminated fish from this ecosystem.
Collapse
Affiliation(s)
| | - David S Abolude
- Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| | | | - Lucas Del Bianco Faria
- Department of Ecology, University of Brasília, Brazil; Department of Ecology and Conservation, Federal University of Lavras, MG, Brazil
| | - Mathias Ahii Chia
- Department of Ecology, University of Brasília, Brazil; Department of Botany, Ahmadu Bello University, Zaria, Nigeria; Department of Ecology, Institute of Biosciences, University of Sao Paulo, Brazil.
| |
Collapse
|
4
|
Shirmohammadi M, Kianersi F, Shiry N, Burgos-Aceves MA, Faggio C. Biotransformation and oxidative stress markers in yellowfin seabream (Acanthopagrus latus): Interactive impacts of microplastics and florfenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176661. [PMID: 39362562 DOI: 10.1016/j.scitotenv.2024.176661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
This study investigates the combined toxicity of microplastics (MPs) and florfenicol (FLO) on biotransformation enzymes and oxidative stress biomarkers in the liver and kidney of yellowfin seabream (Acanthopagrus latus). Fish were fed 15 mg kg-1 of FLO and 100 or 500 mg kg-1 of MPs for 10 days. Biomarkers, including ethoxyresorufin-O-deethylase, glutathione-S-transferase, superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde (MDA), and protein carbonylation (PC), were measured in both organs at 1, 7, and 14 days post-exposure. FLO levels peaked on day 1 and declined after that. Liver biomarkers were more responsive to pollutants, with the combined exposure of FLO and MPs leading to more pronounced toxicity. By day 14, only the FLO group showed a return to baseline biomarker levels, while MDA and PC levels remained elevated in MPs and co-exposed groups. These findings highlight the importance of considering the interactive effects of multiple pollutants in addressing marine environmental stressors.
Collapse
Affiliation(s)
- Mehrnaz Shirmohammadi
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Farahnaz Kianersi
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Nima Shiry
- Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran; Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mario Alberto Burgos-Aceves
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
5
|
Lv H, Park J, Lim HK, Abraham IJ, Yin X, Gao Y, Hur J. Impacts of polyhydroxybutyrate (PHB) microplastic exposure on physiology and metabolic profiles of Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175588. [PMID: 39154993 DOI: 10.1016/j.scitotenv.2024.175588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
In light of increasing concerns about microplastic pollution, it is crucial to understand the biological impacts of biodegradable PHB microplastics on marine organisms. This study included a 96-h exposure experiment to assess acute toxicity at PHB concentrations of 0 mg/L, 100 mg/L, 500 mg/L and 1000 mg/L. Additionally, a 60-day feeding trial was conducted with PHB concentrations of 0, 0.5, 1.0 and 2.0 g/kg to evaluate the long-term effects on growth, physiological health and metabolic responses of Litopenaeus vannamei. Results from the exposure experiment indicated that PHB microplastics up to 100 mg/L were non-toxic to shrimp. However, the 60-day feeding trial revealed that higher concentrations led to slight reductions in survival rates and growth performance, indicating a concentration-dependent response. Analysis of antioxidant and immune enzymes showed minimal changes across most parameters. However, increases in malondialdehyde content and lysozyme activity at higher PHB levels suggested a stress response. Microbial analysis indicated higher species richness and greater community diversity in the PHB group compared to controls, as evidenced by Chao1, ACE, Shannon and Simpson indices. Linear discriminant analysis revealed that Enterobacteriales and related taxa were more prevalent in the PHB group, while Rhodobacteraceae and associated taxa dominated the control group. Pathway analysis highlighted enhanced signal transduction, cell mobility and metabolic resource reallocation in response to PHB-induced stress. Integrated transcriptomic and metabolomic analyses revealed significant regulatory changes, especially in lipid metabolism pathways. These findings suggest that while PHB microplastics trigger adaptive metabolic responses in shrimp, they do not cause acute toxicity. Significant variations in intestinal microbiome composition reflect potential shifts in gut health dynamics due to PHB ingestion. This study enhances our understanding of the ecological impacts of microplastics and underscores the necessity for further research into the environmental safety of biodegradable alternatives.
Collapse
Affiliation(s)
- Huirong Lv
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jungyeol Park
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Han Kyu Lim
- Interdisciplinary Program of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan 58554, Republic of Korea
| | | | - Xiaolong Yin
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Yang Gao
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Junwook Hur
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, Republic of Korea.
| |
Collapse
|
6
|
Cohen-Sánchez A, Solomando A, Pinya S, Tejada S, Valencia JM, Box A, Sureda A. Microplastic Presence in the Digestive Tract of Pearly Razorfish Xyrichtys novacula Causes Oxidative Stress in Liver Tissue. TOXICS 2023; 11:365. [PMID: 37112592 PMCID: PMC10143270 DOI: 10.3390/toxics11040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Plastic pollution in the oceans is a growing problem, with negative effects on exposed species and ecosystems. Xyrichtys novacula L. is a very important fish species both culturally and economically in the Balearic Islands. The aim of the present study was to detect and categorise the presence of microplastics (MPs) in the digestive tract of X. novacula, as well as the existence of oxidative stress in the liver. For this purpose, the fish were categorised into two groups based on the number of MPs observed in the digestive tracts: a group with no or low presence of MPs (0-3 items) and a group with a higher presence of MPs (4-28 items). MPs were found in 89% of the specimens analysed, with a dominance of fibre type and blue colour. Regarding the type of polymer, polycarbonate was the most abundant, followed by polypropylene and polyethylene. For the group with a greater presence of MPs, the activities of the antioxidant enzymes glutathione peroxidase and glutathione reductase, as well as the phase II detoxification enzyme glutathione s-transferase, were higher than the activities observed in fish with little to no presence of MPs. The activities of catalase and superoxide dismutase and the levels of malondialdehyde did not show significant differences between both groups. In conclusion, these results demonstrate the presence of MPs in the digestive tract of X. novacula and the existence of an antioxidant and detoxification response, mainly based on the glutathione-based enzymes.
Collapse
Affiliation(s)
- Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Silvia Tejada
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - José María Valencia
- LIMIA-Laboratori d’Investigacions Marines i Aqüicultura, 07157 Port d’Andratx, Spain
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d’Eivissa, 07800 Eivissa, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
7
|
Solomando A, Cohen-Sánchez A, Box A, Montero I, Pinya S, Sureda A. Microplastic presence in the pelagic fish, Seriola dumerili, from Balearic Islands (Western Mediterranean), and assessment of oxidative stress and detoxification biomarkers in liver. ENVIRONMENTAL RESEARCH 2022; 212:113369. [PMID: 35508220 DOI: 10.1016/j.envres.2022.113369] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are characterized by their high persistence in marine ecosystems, and due to their small size, they can be easily ingested by very diverse organisms. Although the presence of MPs in wild fish is well documented, there is still limited information on their potential to induce adverse effects. Pelagic fish species, because of their wide distribution, are considered good bioindicators for monitoring environmental pollution of marine ecosystems. This study investigated the presence of MPs in the gastrointestinal tract of the predatory pelagic fish (Seriola dumerili) in the Balearic Islands (Mediterranean Sea), and the possible relationship with oxidative stress through the analysis of biomarkers in liver tissue. The results showed the presence of MPs in 98% of total samples examined (n = 52) with an average of 12.2 ± 1.3 MPs/individual. A greater amount of fibre-like particles was isolated compared to fragments. No correlation between the presence of MPs in the gastrointestinal contents and the size of the fishes was noted. Antioxidant enzymes (superoxide dismutase and catalase) and the phase II detoxification enzyme glutathione-S-transferase showed increased activities in fish with higher MPs load. The activity ethoxyresorufin-O-deethylase and the levels of malondialdehyde were similar in both groups. In conclusion, the present results provide an important database on the assessment of the presence of MP debris in S. dumerili gastrointestinal tract and, the potential capability to cause oxidative stress.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain; Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d'Eivissa, 07800, Balearic Islands, Spain.
| | - Inmaculada Montero
- Grup D'Accio Local Per Al Desenvolupament Rural D'Eivissa i Formentera (GALEF), 07800, Ibiza, Balearic Islands, Spain.
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain.
| |
Collapse
|
8
|
Lombardo J, Solomando A, Cohen-Sánchez A, Pinya S, Tejada S, Ferriol P, Mateu-Vicens G, Box A, Faggio C, Sureda A. Effects of Human Activity on Markers of Oxidative Stress in the Intestine of Holothuria tubulosa, with Special Reference to the Presence of Microplastics. Int J Mol Sci 2022; 23:ijms23169018. [PMID: 36012278 PMCID: PMC9409208 DOI: 10.3390/ijms23169018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/23/2022] Open
Abstract
Pollution in the seas and oceans is a global problem, which highlights emerging pollutants and plastics, specifically microplastics (MPs), which are tiny (1 μm to 5 mm) ubiquitous plastic particles present in marine environments that can be ingested by a wide range of organisms. Holothurians are benthic organisms that feed on sediment; therefore, they can be exposed to contaminants present in the particles they ingest. The objective was to evaluate the effects of human activity on Holothuria tubulosa through the study of biomarkers. Specimens were collected in three different areas throughout the island of Eivissa, Spain: (1) a highly urbanized area, with tourist uses and a marina; (2) an urbanized area close to the mouth of a torrent; (3) an area devoid of human activity and considered clean. The results showed a higher presence of microplastics (MPs) in the sediments from the highly urbanized area in relation to the other two areas studied. Similarly, a higher number of MPs were observed in the digestive tract of H. tubulosa from the most affected area, decreasing with the degree of anthropic influence. Both in the sediment and in the holothurians, fibers predominated with more than 75% of the items. In the three areas, mesoplastics were analyzed by means of FTIR, showing that the main polymer was polypropylene (27%) followed by low-density polyethylene (17%) and polystyrene (16%). Regarding the biomarkers of oxidative stress, the intestine of H. tubulosa from the most impacted areas showed higher catalase, superoxide dismutase (SOD), glutathione reductase (GRd), and glutathione S-transferase (GST) activities and reduced glutathione (GSH) levels compared to the control area. The intermediate area only presented significant differences in GRd and GST with respect to the clean area. The activities of acetylcholinesterase and the levels and malondialdehyde presented similar values in all areas. In conclusion, human activity evaluated with the presence of MPs induced an antioxidant response in H. tubulosa, although without evidence of oxidative damage or neurotoxicity. H. tubulosa, due to its benthic animal characteristics and easy handling, can be a useful species for monitoring purposes.
Collapse
Affiliation(s)
- Jessica Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Guillem Mateu-Vicens
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d’Eivissa, 07800 Eivissa, Spain
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (C.F.); (A.S.); Tel.: +39-090-676-5213 (C.F.); +34-971-172-820 (A.S.)
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Correspondence: (C.F.); (A.S.); Tel.: +39-090-676-5213 (C.F.); +34-971-172-820 (A.S.)
| |
Collapse
|
9
|
Embryotoxicity of Polystyrene Microspheres of Different Sizes to the Marine Medaka Oryzias melastigma (McClelland, 1839). WATER 2022. [DOI: 10.3390/w14121831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polystyrene microplastics (PS-MPs) are potentially harmful to marine organisms, especially during the early developmental stages, although the underlying mechanism remains unclear. The present study evaluated the growth and morphological characteristics of marine medaka Oryzias melastigma (McClelland, 1839) embryos exposed to PS-MP. PS-MPs of three different sizes (0.05, 0.5, and 6.0 μm with a concentration of 106 particles/L) were subjected to waterborne exposure for 19 d. The hatching time and rate of embryos exposed to 0.5 and 6.0 μm PS-MPs were significantly lower than those of the control, while no significant difference was observed in the 0.05 μm treatment. No significant differences were observed in the mortality rate of the embryos, embryo diameter, and relevant gene expression levels, including il6, il8, il-1β, jak, stat-3, nf-κb, hif-1α, epo, cyp1a1, ahr, sod, cat, and gpx, but with the exception of vtg. Fluorescent PS-MPs were found on the embryo surfaces when the embryos were exposed to 0.5 and 6.0 μm PS-MPs, but no signals were detected inside embryos using confocal microscopy. Therefore, the results indicate that PS-MPs having a diameter of 6.0 μm can only attach to the surface or villus of embryos and not enter the embryos through the membrane pores, whereas PS-MPs with diameters of 0.05 and 0.5 μm cannot enter the embryos.
Collapse
|
10
|
Hoyo-Alvarez E, Arechavala-Lopez P, Jiménez-García M, Solomando A, Alomar C, Sureda A, Moranta D, Deudero S. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106048. [PMID: 34875488 DOI: 10.1016/j.aquatox.2021.106048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, microplastics (MPs) and adsorbed pollutants are considered a global thread to marine ecosystems. This study describes the effects of pollutants and MPs ingestion on fish brains through the assessment of oxidative stress biomarkers and monoaminergic neurotransmitters using gilthead seabream (Sparus aurata) as fish model. Juveniles were experimentally exposed to three different dietary treatments for 90 days: Control treatment (C) consisted of standard feed; Virgin treatment (V) contained feed enriched with 10% of MPs; and Exposed treatment (E) consisted of feed with 10% of MPs that were exposed to seawater in an anthropogenically impacted area for 2 months in order to enrich the plastic with the pollutants within the water column. Sampling was made at the start of the experiment (T0), at the end of the dietary treatments (T90) and after a posterior detoxification period of 30 days (T120). Results evidenced that a MPs and pollutants enriched diet increases the activity of some of the oxidative stress biomarkers (e.g. CAT and GST), and it was shown for the first time alterations on dopaminergic and serotonergic system activity on seabream brains, indicating potential neurofunctional effects associated to MPs and pollutants ingestion. In addition, results showed a tendency to recover enzymatic and brain monoaminergic neurotransmitter levels after a 30-day detoxification period. In conclusion, MPs and pollutants exposure for 90 days induced oxidative stress and changes on monoaminergic activity in the brain of S. aurata.
Collapse
Affiliation(s)
| | - Pablo Arechavala-Lopez
- Fish Ethology and Welfare Group, Centro de Ciencias do Mar (CCMAR), Faro, Portugal.; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados (IMEDEA-CSIC/UIB), Mallorca, Spain
| | - Manuel Jiménez-García
- Group of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands (UIB)-IUNICS, Palma de Mallorca, Spain. CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, Madrid, Spain
| | - Carmen Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (COB-IEO), Mallorca, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands (UIB)-IUNICS, Palma de Mallorca, Spain. CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, Madrid, Spain
| | - David Moranta
- Group of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (COB-IEO), Mallorca, Spain
| |
Collapse
|
11
|
Vasanthi RL, Arulvasu C, Kumar P, Srinivasan P. Ingestion of microplastics and its potential for causing structural alterations and oxidative stress in Indian green mussel Perna viridis- A multiple biomarker approach. CHEMOSPHERE 2021; 283:130979. [PMID: 34144292 DOI: 10.1016/j.chemosphere.2021.130979] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The present study has investigated the distribution of microplastics in sediment and its impact on histological, ultrastructural, and oxidative stress mechanisms in Perna viridis (P. viridis) from Kasimedu, Chennai, India. The results confirmed that fibers were the predominant type of microplastics observed, followed by spheres, flakes, sheets, and fragments. The observed microplastics were confirmed as polyester, polypropylene, polyethylene, cellophane, and rayon using μ-FT-IR. Microplastic particles entangled in gills caused abrasion of ciliated structure and hemocyte infiltration in the hemolymph vessels. The digestive gland showed a shrunken nucleus, dark inclusions, and damage in the nucleoid core structure. Enlarged vacuoles and the presence of clusters of vesicles presumably represented the transformed golgi cisternae. Further, the results confirmed that oxidative stress markers were significantly high in gills and digestive diverticula of P. viridis. Overall, the results indicated that microplastics induced different toxic physiological and structural alterations in gills and digestive diverticula of P. viridis. These findings highlighted the necessity to focus on exposure studies to understand the absolute magnitude of the problem due to microplastic pollution in the urban estuarine ecosystems of Chennai, Tamil Nadu, India.
Collapse
Affiliation(s)
- Rajkumar L Vasanthi
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamilnadu, India
| | - Chinnasamy Arulvasu
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamilnadu, India
| | - Pappu Srinivasan
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamilnadu, India.
| |
Collapse
|
12
|
Capo X, Rubio M, Solomando A, Alomar C, Compa M, Sureda A, Deudero S. Microplastic intake and enzymatic responses in Mytilus galloprovincialis reared at the vicinities of an aquaculture station. CHEMOSPHERE 2021; 280:130575. [PMID: 33957472 DOI: 10.1016/j.chemosphere.2021.130575] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is a potential source of microplastics (MPs) that could be strong stressors for marine organisms. In this study, we evaluated the effects of MPs derived from aquaculture in antioxidant defences and oxidative stress markers in gills of Mytilus galloprovincialis. Mussels were distributed in three areas with different impacts: inside aquaculture cages, Control 1 (located inside Andratx harbour) and Control 2 (located in a no-anthropized area). Samples were obtained along three different time periods in May (T0), July (T60) and in September (T120). At each sampling period, mussels' biometric measurements were taken, and tissue samples were kept frozen for biochemical determinations and to determine the intake of MPs. An increase in MPs intake was detected throughout the study, and this increase was significantly higher in samples from the aquaculture cages. Similarly, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase) were significantly higher in samples from cages at T120. Additionally, a similar tendency was observed in glutathione-s-transferase, with a higher activity in the aquaculture cages at T60 and T120. Malondialdehyde and carbonyl protein derivates as a marker of oxidative damage were also measured and samples from aquaculture cages presented higher oxidative stress markers, mainly in T120. In conclusion, living in environments exposed to aquaculture activities at sea may imply a higher intake of MPs which in turn might cause an antioxidant response in M. galloprovincialis which is not enough to avoid oxidative damage.
Collapse
Affiliation(s)
- X Capo
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - M Rubio
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Solomando
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - C Alomar
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - M Compa
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - S Deudero
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
13
|
Solomando A, Capó X, Alomar C, Compa M, Valencia JM, Sureda A, Deudero S. Assessment of the effect of long-term exposure to microplastics and depuration period in Sparus aurata Linnaeus, 1758: Liver and blood biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147479. [PMID: 33975116 DOI: 10.1016/j.scitotenv.2021.147479] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The constant increase in plastic pollution has attracted great attention in recent years due to its potential detrimental effects on organisms and ecosystems. While the consequences of ingestion of large plastic litter are mostly understood, the impacts resulting from a long-term exposure and a recovery period of microplastics (MPs) are still limited. The aims were to monitor oxidative stress, detoxification and inflammatory biomarkers in liver, plasma and erythrocytes of Sparus aurata exposed during 90 days to low-density polyethylene (LDPE)-MPs enriched diet (10% by weight) followed by 30 days of depuration. Exposure to LDPE-MPs progressively activates the antioxidant and detoxification system and induces an inflammatory response in liver and plasma, whereas no significant changes were observed in erythrocytes. The plasma activities of catalase, myeloperoxidase (MPO), lysozyme and the levels of malondialdehyde (MDA) as maker of lipid peroxidation significantly increased after exposure to LDPE-MPs for 90 days compared to the control group. The activities of all antioxidant enzymes - catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase-, the detoxification enzyme glutathione s-transferase, MPO, the production of reactive oxygen species and the levels of MDA were also significantly increased in liver after MPs exposure. Additionally, all these biomarkers tended to recover during the depuration period, most of them reaching similar levels to those of the control group. In conclusion, the ingestion of a diet containing LDPE-MPs for 90 days induced a progressive increase in oxidative stress and inflammation biomarkers in liver and plasma of S. aurata but not in erythrocytes, which tended to regain control values when not exposed to MPs for 30 days. The present study contributes to a better understanding of the toxic effects of MPs in S. aurata and highlights the usefulness of plasma that can be obtained in a minimally invasive way to monitor these effects.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain.
| | - Xavier Capó
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain
| | - Carme Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| | - Montserrat Compa
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| | - José María Valencia
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de les Illes Balears, E-07157 Port d'Andratx, Balearic Islands, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA) (INIA-CAIB-UIB), E-07122 Palma de Mallorca, Balearic Islands, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain..
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| |
Collapse
|
14
|
Capó X, Company JJ, Alomar C, Compa M, Sureda A, Grau A, Hansjosten B, López-Vázquez J, Quintana JB, Rodil R, Deudero S. Long-term exposure to virgin and seawater exposed microplastic enriched-diet causes liver oxidative stress and inflammation in gilthead seabream Sparus aurata, Linnaeus 1758. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144976. [PMID: 33636779 DOI: 10.1016/j.scitotenv.2021.144976] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Plastics accumulation in marine ecosystems has notable ecological implications due to their long persistence, potential ecotoxicity, and ability to adsorb other pollutants or act as vectors of pathogens. The present work aimed to evaluate the physiological response of the gilthead seabream (Sparus aurata) fed for 90 days with a diet enriched with virgin and seawater exposed low-density polyethylene microplastics (LDPE-MPs) (size between 100 and 500 μM), followed by 30 days of depuration, applying oxidative stress and inflammatory markers in liver homogenates. No effects of LDPE-MPs treatments on fish growth were observed throughout this study. A progressive increase in antioxidant enzyme activities was observed throughout the study in both treatments, although this increase was higher in the group treated with seawater exposed MPs. This increase was significantly higher in catalase (CAT), glutathione reductase (GRd), and glutathione-s-transferase (GST) in the seawater exposed MPs group, with respect to the virgin group. In contrast, no significant differences were recorded in superoxide dismutase (SOD) and glutathione peroxidase (GPx) between both groups. Exposure to MPs also caused an increase in the oxidative damage markers (malondialdehyde and carbonyls groups). Myeloperoxidase activity significantly increased because of MPs treatments. After 30 days of depuration, antioxidant, inflammatory enzyme activities and oxidative damage markers returned to values similar to those observed in the control group. In conclusion, MPs exposure induced an increase of antioxidant defences in the liver of S. aurata. However, these elevated antioxidant capabilities were not enough to prevent oxidative damage in the liver since, an increased oxidative damage marker was associated with MPs ingestion. The treatment with seawater exposed MPs caused a more significant antioxidant response (CAT, GRs, and GST). Although after a depuration period of 30 days a tendency to recover the initial values of the biomarkers was observed this does not seem to be time enough for a complete normalization.
Collapse
Affiliation(s)
- X Capó
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain.
| | - J J Company
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain
| | - C Alomar
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain
| | - M Compa
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; CIBER (Fisiopatologia de la obesidad y nutrición) CIBEROBN. Instituto de Salud Carlos III, (ISCIII), 28029 Madrid, Spain
| | - A Grau
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de les Illes Balears, Port d'Andratx, Balearic Islands, Spain
| | - B Hansjosten
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de les Illes Balears, Port d'Andratx, Balearic Islands, Spain
| | - J López-Vázquez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidad de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidad de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidad de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Deudero
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
15
|
Pacheco D, Araújo GS, Cotas J, Gaspar R, Neto JM, Pereira L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar Drugs 2020; 18:E560. [PMID: 33207613 PMCID: PMC7697577 DOI: 10.3390/md18110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The introduction of exotic organisms in marine ecosystems can lead to economic and ecological losses. Globally, seaweeds represent a significant part of these non-indigenous species (NIS), with 407 introduced algal species. Furthermore, the presence of NIS seaweeds has been reported as a major concern worldwide since the patterns of their potential invasion mechanisms and vectors are not yet fully understood. Currently, in the Iberian Peninsula, around 50 NIS seaweeds have been recorded. Some of these are also considered invasive due to their overgrowth characteristic and competition with other species. However, invasive seaweeds are suitable for industrial applications due to their high feedstock. Hence, seaweeds' historical use in daily food diet, allied to research findings, showed that macroalgae are a source of nutrients and bioactive compounds with nutraceutical properties. The main goal of this review is to evaluate the records of NIS seaweeds in the Iberian Peninsula and critically analyze the potential of invasive seaweeds application in the food industry.
Collapse
Affiliation(s)
- Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Glacio Souza Araújo
- Federal Institute of Education, Science and Technology of Ceará–IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceará, Brazil;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Rui Gaspar
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - João M. Neto
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| |
Collapse
|
16
|
Solomando A, Capó X, Alomar C, Álvarez E, Compa M, Valencia JM, Pinya S, Deudero S, Sureda A. Long-term exposure to microplastics induces oxidative stress and a pro-inflammatory response in the gut of Sparus aurata Linnaeus, 1758. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115295. [PMID: 32763772 DOI: 10.1016/j.envpol.2020.115295] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 05/12/2023]
Abstract
Environmental pollution from plastic debris is a major global concern, being a potential threat to marine organisms and ecosystems. The accumulation of microplastics (MPs) in the oceans has notable ecological implications due to their long persistence, their potential ecotoxicity, and their ability to adsorb other pollutants and act as vectors of pathogens. Nevertheless, whereas the number of investigations documenting the presence of MPs in wild fish has increased, less studies have addressed the toxicological effects associated with the ingestion of MPs in long-term laboratory conditions. The aim of the present study was to assess the physiological response of gilthead seabream (Sparus aurata) exposed to low-density polyethylene (LDPE) MPs during a 90-day exposure followed by an extra 30 days of depuration through the application of oxidative stress biomarkers in the gut. No changes were observed in the Fulton condition factor of fish associated with MP intake. The activities of antioxidant enzymes and glutathione s-transferase and the levels of reduced glutathione progressively increased throughout the study in the MPs-fed group compared to the control group, reaching the highest values at 90 days. Similarly, the activity of the pro-inflammatory enzyme, myeloperoxidase, and the levels of oxidative damage markers -malondialdehyde and protein carbonyls-also increased after 90 days of exposure to an enriched diet with MPs. During the 30-day depuration period, all the biomarkers analysed tended to normalize, with the majority recovering values similar to those of the control group. In conclusion, MPs exposure during 90 days to S. aurata induced oxidative stress and a pro-inflammatory response in gut, and were able to recover after the exposure to MPs was removed.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Xavier Capó
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - Carme Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - Elvira Álvarez
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - Montserrat Compa
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - José María Valencia
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de les Illes Balears, Port d'Andratx, Balearic Islands, Spain.
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| |
Collapse
|
17
|
Hamed M, Soliman HAM, Osman AGM, Sayed AEDH. Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14581-14588. [PMID: 32048193 PMCID: PMC7190598 DOI: 10.1007/s11356-020-07898-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Recently, research on the biological effects of microplastics (MPs) has grown exponentially. However, effects of MPs on freshwater fishes and the mechanisms of the biological effects of MPs were limited. So, the purpose of the current study was to clarify the effects of microplastics on oxidative stress response, DNA fragmentation, and proteinogram of the early juvenile stage of Nile Tilapia (Oreochromis niloticus). The fishes were assigned into four groups: one control, three MPs-exposed groups as 1 mg/L of MPs, 10 mg/L of MPs, and 100 mg/L of MPs respectively for 15 days and 15 days of recovery. The activities of superoxide dismutase, catalase, total peroxides, and oxidative stress index (OSI), as well as lipid peroxidation and DNA fragmentation, increased in groups exposed to MPs compared to the control group in a dose-dependent manner. In contrast, the activity of total antioxidant capacity decreased in groups exposed to MPs compared to the control group in a dose-dependent manner. The electrophoretic pattern of muscle proteins revealed alteration in the proteinogram in the MPs-exposed groups compared to control. After the recovery period, the activities of superoxide dismutase, catalase, total peroxides, total antioxidant capacity, lipid peroxidation, DNA fragmentation, and the electrophoretic pattern of muscle proteins returned to normal levels in 1 mg/L of MPs-exposed group. Combined with our previous work, these results suggest that MPs cause the overproduction of reactive oxygen species (ROS) and alters the antioxidants parameters, resulting in oxidative stress and DNA damage. The present study fosters a better understanding of the toxic effects of MPs on Tilapia as a freshwater model. Graphical Abstract.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-AzharUniversity (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-AzharUniversity (Assiut Branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
18
|
Guzzetti E, Salabery E, Ferriol P, Díaz JA, Tejada S, Faggio C, Sureda A. Oxidative stress induction by the invasive sponge Paraleucilla magna growing on Peyssonnelia squamaria algae. MARINE ENVIRONMENTAL RESEARCH 2019; 150:104763. [PMID: 31349161 DOI: 10.1016/j.marenvres.2019.104763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The introduction of invasive species can lead to significant adverse effects on the colonized areas. The aim of the present research was to determine if the invasive behavior of Paraleucilla magna could induce the activation of the antioxidant defences in the native red algae, Peyssonnelia squamaria. Individuals of isolated P. squamaria and individuals epiphytized by P. magna, both growing on rocky bottoms, were collected. The activity of the antioxidant enzymes - catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase - and the levels of the malondialdehyde were significantly higher in the algae of the epiphytic group compared to the control group, while the detoxifying enzyme glutathione S-transferase did not show significant differences. The levels of reduced glutathione and total polyphenols were higher in the algae affected by the sponge. In conclusion, the arrival of the species P. magna induces an adaptative antioxidant response in P. squamaria determined by the use of biomarkers.
Collapse
Affiliation(s)
- Eleonora Guzzetti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, E-98166, Messina, Italy
| | - Eduardo Salabery
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Biology Department, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Julio A Díaz
- Interdisciplinary Ecology Group, Biology Department, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain; Instituto Español de Oceanografía, Centre Oceanogràfic de Balears, Palma de Mallorca, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, E-98166, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122, Palma de Mallorca, Spain.
| |
Collapse
|
19
|
Alomar C, Sureda A, Capó X, Guijarro B, Tejada S, Deudero S. Microplastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress. ENVIRONMENTAL RESEARCH 2017; 159:135-142. [PMID: 28800471 DOI: 10.1016/j.envres.2017.07.043] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/14/2017] [Accepted: 07/24/2017] [Indexed: 05/12/2023]
Abstract
A total of 417 striped red mullet, Mullus surmuletus, were analyzed to study microplastic ingestion and livers of fish were assessed to study effects of microplastics. Nearly one third (27.30%) of the individuals were quantified to ingest microplastics although there was no evidence of oxidative stress or cellular damage in the liver of fish which had ingested microplastics. A small increase in the activity of glutathione S-transferase (GST) of M. surmuletus was detected which could be suggesting an induction of the detoxification systems but these findings should be tested in laboratory conditions under a controlled diet and known concentration of microplastics. Fish from trammel fisheries, operating closer to land and targeting larger individuals, showed higher mean ingestion values than fish from trawling fisheries, and were related to body size, as microplastics ingested increased with total fish length. Consequently, ingestion values of microplastics were not related to sampling distance from land giving further evidence of the ubiquity of microplastics in the marine environment. Finally, Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that the vast majority of microplastics were filament type and polyethylene terephthalate (PET) was the main identified component.
Collapse
Affiliation(s)
- C Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain.
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, Department of Basic Biology and Health Sciences, University of Balearic Islands, Ctra. Valldemossa, km 7,5, Ed. Guillem Colom, 07122 Balearic Islands, Spain; CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038), Instituto de Salud Carlos III, Balearic Islands, Spain
| | - X Capó
- Research Group in Community Nutrition and Oxidative Stress, Department of Basic Biology and Health Sciences, University of Balearic Islands, Ctra. Valldemossa, km 7,5, Ed. Guillem Colom, 07122 Balearic Islands, Spain
| | - B Guijarro
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain
| | - S Tejada
- Experimental Laboratory, Research Unit, Son Llàtzer Hospital, IUNICS, Ctra. Manacor, km 4, 07198 Palma de Mallorca, Balearic Islands, Spain
| | - S Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain
| |
Collapse
|
20
|
Zupo V, Alexander TJ, Edgar GJ. Relating trophic resources to community structure: a predictive index of food availability. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160515. [PMID: 28386417 PMCID: PMC5367299 DOI: 10.1098/rsos.160515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/10/2017] [Indexed: 06/07/2023]
Abstract
The abundance and the distribution of trophic resources available for consumers influence the productivity and the diversity of natural communities. Nevertheless, assessment of the actual abundance of food items available for individual trophic groups has been constrained by differences in methods and metrics used by various authors. Here we develop an index of food abundance, the framework of which can be adapted for different ecosystems. The relative available food index (RAFI) is computed by considering standard resource conditions of a habitat and the influence of various generalized anthropogenic and natural factors. RAFI was developed using published literature on food abundance and validated by comparison of predictions versus observed trophic resources across various marine sites. RAFI tables here proposed can be applied to a range of marine ecosystems for predictions of the potential abundance of food available for each trophic group, hence permitting exploration of ecological theories by focusing on the deviation from the observed to the expected.
Collapse
Affiliation(s)
- Valerio Zupo
- Stazione Zoologica Anton Dohrn,
Integrative Marine Ecology Department, Benthic Ecology
Center, Punta San Pietro,
Ischia80077, Italy
| | - Timothy J. Alexander
- Department of Fish Ecology and Evolution, Centre
of Ecology, Evolution and Biogeochemistry, EAWAG Swiss
Federal Institute of Aquatic Science and Technology,
Seestrasse 79, Kastanienbaum 6047,
Switzerland
- Division of Aquatic Ecology and Evolution,
Institute of Ecology and Evolution, University of
Bern, Baltzerstrasse 6, Bern 3012,
Switzerland
| | - Graham J. Edgar
- Institute for Marine and Antarctic
Studies, University of Tasmania,
GPO Box 252-49, Hobart, Tasmania 7001,
Australia
| |
Collapse
|
21
|
Ameur WB, El Megdiche Y, de Lapuente J, Barhoumi B, Trabelsi S, Ennaceur S, Camps L, Serret J, Ramos-López D, Gonzalez-Linares J, Touil S, Driss MR, Borràs M. Oxidative stress, genotoxicity and histopathology biomarker responses in Mugil cephalus and Dicentrarchus labrax gill exposed to persistent pollutants. A field study in the Bizerte Lagoon: Tunisia. CHEMOSPHERE 2015; 135:67-74. [PMID: 25912422 DOI: 10.1016/j.chemosphere.2015.02.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The use of biomarkers has become an important tool for modern environmental assessment as they can help to predict pollutants involved in the monitoring program. Despite the importance of fish gill in several functions (gaseous exchange, osmotic and ionic regulation, acid-base balance and nitrogenous waste) its use in coastal water biomonitoring focusing on protection and damage is scarce. This field study investigates biochemical (catalase, superoxide dismutase, lipid peroxidation), molecular (DNA integrity) and morphological (histology) parameters in gill of mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) and originating from Bizerte lagoon (a coastal lagoon impacted by different anthropogenic activities) and from the Mediterranean Sea (a reference site). Remarkable alterations in the activities of oxidative stress enzymes and DNA integrity in the tissue of the two studied fish species were detected in Bizerte Lagoon. The study of histopathological alterations of gills in both two fish species from Bizerte Lagoon suggest thickening of primary lamellae, cellular hyperplasia, aneurism, curving, shortening and fusion of secondary lamellae. The adopted approach, considering simultaneously protection responses and damaging effects, revealed its usefulness on the pollution assessment.
Collapse
Affiliation(s)
- Walid Ben Ameur
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Yassine El Megdiche
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Joaquin de Lapuente
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain.
| | - Badreddine Barhoumi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Souad Trabelsi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Soukaina Ennaceur
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Lydia Camps
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| | - Joan Serret
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| | - David Ramos-López
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| | - Javier Gonzalez-Linares
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| | - Soufiane Touil
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Mohamed Ridha Driss
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Miquel Borràs
- UTOX-PCB, Unit of Experimental Toxicology and Ecotoxicology, Parc Científic Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Cappello T, Maisano M, D'Agata A, Natalotto A, Mauceri A, Fasulo S. Effects of environmental pollution in caged mussels (Mytilus galloprovincialis). MARINE ENVIRONMENTAL RESEARCH 2013; 91:52-60. [PMID: 23369822 DOI: 10.1016/j.marenvres.2012.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/05/2012] [Accepted: 12/26/2012] [Indexed: 06/01/2023]
Abstract
Biological effects of environmental pollution, mainly related to presence of PAHs, were assessed in mussels Mytilus galloprovincialis caged in Priolo, an anthropogenically-impacted area, and Vendicari, a reference site, both located along the eastern coastline of Sicily (Italy). PAHs concentration and histopathological changes were measured in digestive gland tissues. Expression of cytochrome P4504Y1 (CYP4Y1) and glutathione S-transferase (GST), indicative of xenobiotic detoxification, and activity of catalase (CAT) as oxidative stress index, were evaluated. The results show a direct correlation between the high concentrations of PAHs in digestive glands of mussels from Priolo and the significantly altered activity of phase I (P < 0.001) and phase II (P < 0.0001) biotransformation enzymes, along with increased levels of CAT activity (P < 0.05). These findings show the enhancement of the detoxification and antioxidant defense systems. The mussel caging approach and selected biomarkers demonstrated to be reliable for the assessment of environmental pollution effects on aquatic organisms.
Collapse
Affiliation(s)
- Tiziana Cappello
- Department of Animal Biology and Marine Ecology, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Tejada S, Deudero S, Box A, Sureda A. Physiological response of the sea urchin Paracentrotus lividus fed with the seagrass Posidonia oceanica and the alien algae Caulerpa racemosa and Lophocladia lallemandii. MARINE ENVIRONMENTAL RESEARCH 2013; 83:48-53. [PMID: 23158497 DOI: 10.1016/j.marenvres.2012.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/09/2012] [Accepted: 10/21/2012] [Indexed: 06/01/2023]
Abstract
The aim was to determine the effects of alien algae feeding on biomarkers of oxidative stress in the sea urchin Paracentrotus lividus. Sea urchins were fed during three months with the native seagrass Posidonia oceanica, and the alien macroalgae Caulerpa racemosa and Lophocladia lallemandii and biochemical analysis were performed in the gonads. A control group was immediately processed after sampling from the sea. Antioxidant enzyme and glutathione S-transferase activities and GSH concentration were significantly higher in sea urchins fed with alien algae when compared with the control group and the one fed with P. oceanica group. This response was more intense in the group fed with L. lallemandii respect to the C. racemosa group. The concentration of MDA, protein carbonyl derivates and 8-OHdG reported no significant differences between treatments. In conclusion, the invasive algae C. racemosa and L. lallemandii induced an antioxidant response in P. lividus without evident oxidative damage.
Collapse
Affiliation(s)
- Silvia Tejada
- Experimental Laboratory, Research Unit, Son Llàtzer Hospital, IUNICS, Palma de Mallorca, Balearic Islands, Spain
| | | | | | | |
Collapse
|
24
|
Tomasello B, Copat C, Pulvirenti V, Ferrito V, Ferrante M, Renis M, Sciacca S, Tigano C. Biochemical and bioaccumulation approaches for investigating marine pollution using Mediterranean rainbow wrasse, Coris julis (Linneaus 1798). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 86:168-175. [PMID: 23025894 DOI: 10.1016/j.ecoenv.2012.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
A multibiomarkers approach was used in order to estimate and monitor marine pollution. Coris julis (Linneaus, 1758) was chosen as a sentinel organism, and the specimens were collected from three well-known sites along the Ionic coast of Sicily: the protected marine area (P.M.A) "Cyclop's Islands" of Acitrezza (CT), used as a control site, Riposto (CT), and the industrial site of Augusta (SR). Abiotic levels of contaminants were also detected. High levels of biotic and abiotic accumulation were found at the industrial site in which the presence of genotoxic and oxidative damage were also evidenced, measured by Micronuclei, Alkaline and Fpg-modified Comet assays. The protein expression analysis showed metallothioneins (MTs) as good tissue-specific markers of metal accumulation. Their levels were significantly higher in muscle than in liver tissue for all the sampling sites, with a positive correlation among tissue levels and the degree of pollution at the sites. Conversely, heat shock proteins 70 (HSP70) expression was higher in Augusta and Riposto than in the control site, but no significant difference was found between the examined tissues among all sites.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug's Sciences, Section of Biochemistry, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Felline S, Caricato R, Cutignano A, Gorbi S, Lionetto MG, Mollo E, Regoli F, Terlizzi A. Subtle effects of biological invasions: cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa. PLoS One 2012; 7:e38763. [PMID: 22701707 PMCID: PMC3372483 DOI: 10.1371/journal.pone.0038763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/11/2012] [Indexed: 12/02/2022] Open
Abstract
The green alga Caulerpa racemosa var. cylindracea has invaded Mediterranean seabed including marine reserves, modifying the structure of habitats and altering the distributional patterns of associated organisms. However, the understanding of how such invasion can potentially affect functional properties of Mediterranean subtidal systems is yet to be determined. In this study, we show that C. racemosa changes foraging habit of the native white seabream, Diplodus sargus. In invaded areas, we found a high frequency of occurrence of C. racemosa in the stomach contents of this omnivorous fish (72.7 and 85.7%), while the alga was not detected in fish from a control area. We also found a significant accumulation of caulerpin, one of the main secondary metabolites of C. racemosa, in fish tissues. The level of caulerpin in fish tissues was used here as an indicator of the trophic exposure to the invasive pest and related with observed cellular and physiological alterations. Such effects included activation of some enzymatic pathways (catalase, glutathione peroxidases, glutathione S-transferases, total glutathione and the total oxyradical scavenging capacity, 7-ethoxy resorufin O-deethylase), the inhibition of others (acetylcholinesterase and acylCoA oxidase), an increase of hepatosomatic index and decrease of gonadosomatic index. The observed alterations might lead to a detrimental health status and altered behaviours, potentially preventing the reproductive success of fish populations. Results of this study revealed that the entering of alien species in subtidal systems can alter trophic webs and can represent an important, indirect mechanism which might contribute to influence fluctuations of fish stocks and, also, the effectiveness of protection regimes.
Collapse
Affiliation(s)
- Serena Felline
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, CoNISMa, Lecce, Italy
| | - Roberto Caricato
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, CoNISMa, Lecce, Italy
| | - Adele Cutignano
- Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Naples, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Giulia Lionetto
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, CoNISMa, Lecce, Italy
| | - Ernesto Mollo
- Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Naples, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Terlizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, CoNISMa, Lecce, Italy
- * E-mail:
| |
Collapse
|
26
|
Fasulo S, Marino S, Mauceri A, Maisano M, Giannetto A, D'Agata A, Parrino V, Minutoli R, De Domenico E. A multibiomarker approach in Coris julis living in a natural environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1565-1573. [PMID: 20132985 DOI: 10.1016/j.ecoenv.2010.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/08/2010] [Accepted: 01/10/2010] [Indexed: 05/28/2023]
Abstract
To monitor the health of aquatic organisms, biomarkers have been used as effective tools in assessing environmental risk. In this study was examined the teleost Coris julis, sampled in two marine sites in Messina (Italy) at different pollution degree, Milazzo, characterized by a strong anthropogenic impact, and Marinello, the natural reserve. C. julis is a species particularly suitable to biomonitoring because its feeding habits favor bio-accumulation of xenobiotics. The following biomarkers were used to estimate the impact of highly persistent pollutants: cellular localization of cytochrome P4501A (CYP1A) and glutathione-S-transferase (GST) in the liver, their hepatic expression at the mRNA level, the enzymatic activity (EROD and BPMO), the micronucleus and comet assays in the blood, esterases (AChE in the brain and BChE in the blood) activity and evaluation of PAH metabolites in the bile. The present findings provide evidence of statistically significant differences in parameters between individuals collected in two sites.
Collapse
Affiliation(s)
- Salvatore Fasulo
- Dipartimento di Biologia animale ed Ecologia marina, Università di Messina, Salita Sperone 31, 98166S. Agata, Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sureda A, Box A, Deudero S, Pons A. Reciprocal effects of caulerpenyne and intense herbivorism on the antioxidant response of Bittium reticulatum and Caulerpa taxifolia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:795-801. [PMID: 18234333 DOI: 10.1016/j.ecoenv.2007.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 10/08/2007] [Accepted: 12/09/2007] [Indexed: 05/25/2023]
Abstract
We studied the antioxidant enzyme response of the gastropoda Bittium reticulatum feeding the toxic alga Caulerpa taxifolia, and also the effects of intense herbivorism on caulerpenyne production and on the antioxidant response of C. taxifolia. B. reticulatum were maintained in two separated aquariums containing Posidonia oceanica or C. taxifolia. Glutathione peroxidase, glutathione reductase and glutathione S-transferase activities were significantly higher in B. reticulatum living in presence of C. taxifolia with respect to animals living in P. oceanica aquarium. Malondialdehyde levels in B. reticulatum showed similar values in both environments. Caulerpenyne levels were significantly higher in C. taxifolia fronds after herbivore exposure. C. taxifolia activities of catalase and glutathione reductase significantly increased in presence of B. reticulatum. B. reticulatum exposed to caulerpenyne evidenced antioxidant enzyme adaptations to prevent oxidative damage. The presence of B. reticulatum in the aquarium induces a protective adaptation in C. taxifolia in order to reduce the herbivorism.
Collapse
Affiliation(s)
- Antoni Sureda
- Laboratori de Ciències de l'Activitat Física, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain
| | | | | | | |
Collapse
|
28
|
Box A, Sureda A, Galgani F, Pons A, Deudero S. Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:531-9. [PMID: 17669691 DOI: 10.1016/j.cbpc.2007.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/28/2022]
Abstract
The antioxidant enzyme response of the mussel Mytilus galloprovincialis to different degree of pollution was investigated. Antioxidant enzyme activities - catalase (CAT), glutathione peroxidase (GSH-PX), glutathione reductase (GR), superoxide dismutase (SOD) - and malondialdehyde (MDA) concentration were measured in gills and digestive glands of mussels. Mussels from the same origin were transplanted along the Balearic coastal waters in eight stations characterized by a different degree of contamination and human impacts. Antioxidant enzyme activities showed an adaptive response to increase the activities in the more polluted areas. CAT, GR and SOD in gills and CAT and GR in digestive gland presented significant differences between polluted and non-polluted stations. No significant differences were observed in MDA concentration indicating that the antioxidant response is capable to avoid the lipid peroxidation. The use of biomarkers such as CAT and GR in gills and digestive glands of the mussel M. galloprovincialis is a good tool to categorize differences between polluted and non-polluted areas.
Collapse
Affiliation(s)
- A Box
- Laboratori de Biologia Marina & Grup d'Oceanografia Interdisciplinar-IMEDEA (CSIC/UIB), Guillem Colom, Campus Universitari, Ctra. de Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|