1
|
Salunke A, Pandya P, Thakkar B, Parikh P. A comparative genotoxicity study of agrochemicals: nuclear abnormalities, comet assay, and gene expression alterations. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01030-5. [PMID: 40263196 DOI: 10.1007/s11626-025-01030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/20/2025] [Indexed: 04/24/2025]
Abstract
Agrochemicals (AGs) are known for their ability to have a negative impact on the health of non-target species, despite the fact that they are meant to protect agricultural plants from harmful pests. Catla catla (Hamilton, 1822) gill cells (ICG) were exposed to four AGs: insecticide (Imidacloprid (IMI)), fungicide (Curzate (CZ)), herbicide (pyrazosulfuron ethyl (PE)), and fertilizer micronutrients (MN) with sublethal concentrations 1/20th, 1/10th, and 1/5th of IC50, described here as low dose (LD), medium dose (MD), and high dose (HD), respectively. A significant dose-dependent increase in the nuclear abnormalities such as micronuclei formation, bi-nucleated, and lobbed nucleated cells was observed in ICG cells treated with AGs. Of all the AGs, maximum alterations were observed with the HD of IMI followed by CZ, PE, and MN. Concurrently, the genotoxicity was determined by performing comet assays with high dose of all AGs. The gene expression of dnmt and cyp p450 were also studied through q-PCR in ICG cells. The significant increase in expression as well as alteration in cyp p450 and dnmt sequence was reported in ICG cells exposed to HD of IMI. This suggests that IMI has a genotoxic effect and may lead to epigenetic alterations.
Collapse
Affiliation(s)
- Ankita Salunke
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| | - Parth Pandya
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India, 391410
| | - Bhumi Thakkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| | - Pragna Parikh
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002.
| |
Collapse
|
2
|
Gu Y, Jin CX, Tong ZH, Jiang T, Yao FC, Zhang Y, Huang J, Song FB, Sun JL, Luo J. Expression of genes related to gonadal development and construction of gonadal DNA methylation maps of Trachinotus blochii under hypoxia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173172. [PMID: 38740210 DOI: 10.1016/j.scitotenv.2024.173172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic hypoxia can affect the growth and metabolism of fish and potentially impact gonadal development through epigenetic regulation. Trachinotus blochii (Golden pompano) is widely cultured near the coast and is sensitive to low oxygen conditions. We found that hypoxia and reoxygenation processes acted on multiple targets on the HPG axis, leading to endocrine disorders. Changes in the expression of key genes in the brain (gnrh), pituitary (fsh and lh), ovaries (cyp19a1a, foxl2, and er), and testes (dmrt1, ar, sox9, and gsdf) were associated with significant decreases in estrogen and testosterone levels. Hypoxia and reoxygenation lead to changes in DNA methylation levels in the gonads. Hypoxia upregulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in females and dnmt3a and dnmt3b in males, while reoxygenation down-regulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in males. Whole genome methylation sequencing showed that the number of differentially methylated regions was highest on chromosome 10 (5192) and lowest on chromosome 24 (275). Differentially methylated genes in females and males, as well as between males and females, were enriched in the oxytocin signaling pathway, fatty acid metabolism pathway, and HIF-1a pathway. In summary, hypoxia and reoxygenation can induce endocrine disorders, affect the expression of HPG axis genes, change the methylation pattern and modification pattern of gonad DNA, and then have potential effects on gonad development.
Collapse
Affiliation(s)
- Yue Gu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Chun Xiu Jin
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zai Hui Tong
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Tian Jiang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fu Cheng Yao
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Yu Zhang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jie Huang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fei Biao Song
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jun Long Sun
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Jian Luo
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Liu Y, Li T, Zhu H, Cao L, Liang L, Liu D, Shen Q. Methionine inducing carbohydrate esterase secretion of Trichoderma harzianum enhances the accessibility of substrate glycosidic bonds. Microb Cell Fact 2024; 23:120. [PMID: 38664812 PMCID: PMC11046756 DOI: 10.1186/s12934-024-02394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lebin Liang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
4
|
Liu DD, Zhang CY, Zhang JT, Gu LM, Xu GT, Zhang JF. Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface. Neural Regen Res 2023; 18:1441-1449. [PMID: 36571340 PMCID: PMC10075108 DOI: 10.4103/1673-5374.361536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Epigenetics focuses on DNA methylation, histone modification, chromatin remodeling, noncoding RNAs, and other gene regulation mechanisms beyond the DNA sequence. In the past decade, epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels. The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated. The diabetic condition facilitates epigenetic changes and influences target gene expression. In this review, we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Chao-Yang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jing-Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Li-Min Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Jing-Fa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
5
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
6
|
Hu F, Yin L, Dong F, Zheng M, Zhao Y, Fu S, Zhang W, Chen X. Effects of long-term cadmium exposure on growth, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106014. [PMID: 34739975 DOI: 10.1016/j.aquatox.2021.106014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a ubiquitous environmental contaminant, posing serious threats to aquatic organisms. The aims of the present study were to investigate the effects of long-term Cd exposure on the growth, GH/IGF axis, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). To this end, juvenile Nile tilapia were exposed to 0, 10 and 50 µg∙L-1 Cd for 45 and 90 days. The obtained results revealed that exposure to high concentrations of Cd significantly decreased body mass and body length, and down-regulated mRNA levels of GHRs, IGF-I and IGF-II in the liver of Nile tilapia. Cd exposure induced oxidative stress including the reduction of antioxidant activities and increases of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) contents. Beside, the global DNA methylation levels significantly decreased with increasing Cd concentration and exposure time, which might result from increased oxidative DNA damage, the down-regulated expression of DNMT3a and DNMT3b and up-regulated expression of TET1 and TET2. In conclusion, long-term Cd exposure could inhibit growth, reduce antioxidant capacity and lead to oxidative damages to lipid and DNA, and decrease global DNA methylation level in juvenile Nile tilapia.
Collapse
Affiliation(s)
- Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Yin
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyan Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shirong Fu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
7
|
Lin W, Yan Y, Ping S, Li P, Li D, Hu J, Liu W, Wen X, Ren Y. Metformin-Induced Epigenetic Toxicity in Zebrafish: Experimental and Molecular Dynamics Simulation Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1672-1681. [PMID: 33332093 DOI: 10.1021/acs.est.0c06052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The increased detection of many prescription drugs in aquatic environments has heightened concerns of their potential ecotoxicological effects. In this study, the effects of metformin (MEF) exposure on tissue accumulation, gene expression, and global DNA methylation (GDM) in zebrafish were investigated. The toxic mechanism of MEF exposure was simulated by molecular dynamics (MD) to reveal any conformational changes to DNA methyltransferase 1 (DNMT1). The results showed MEF accumulation in the gills, gut, and liver of zebrafish after 30 days of exposure, and the bioaccumulation capacity was in the order of gut > liver > gills. After a 30 day recovery period, MEF could still be detected in zebrafish tissues in groups exposed to MEF concentrations ≥ 10 μg/L. Moreover, the liver was the main site of GDM, and the restoration of GDM in the liver was slower than that in the gut and gills during the recovery period. Furthermore, MEF could induce the abnormal expression of CYP3A65, GSTM1, p53, and DNMT1 genes in the liver due to the formation of hydrogen bonds between MEF and the protein residues of those genes. The MD simulation allowed for the mechanistic determination of MEF-induced three-dimensional (3D) conformational changes and changes to the catalytic activity of DNMT1.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanyang Yan
- School of Chemical and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Senwen Ping
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Diandi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Wei Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xiufang Wen
- School of Chemical and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China
| |
Collapse
|
8
|
Akcha F, Barranger A, Bachère E. Genotoxic and epigenetic effects of diuron in the Pacific oyster: in vitro evidence of interaction between DNA damage and DNA methylation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8266-8280. [PMID: 33052562 DOI: 10.1007/s11356-020-11021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Recently, research has contributed to better knowledge on the occurrence of pesticides in coastal water by identifying frequently detected substances, their concentration range and their acute and chronic toxicity for organisms. Pesticide pollution is of particular concern in France due to important agricultural activities and presence of several exoreic catchment areas that vehicle pesticides up to coastal waters, impacting non-target marine species. Several ecotoxicology questions remain to be addressed concerning the long-term effects of chronic pesticide exposure and the mechanisms involved in adaptation to chemical stress. In the present study, we brought new insights on the genetic and epigenetic effects of the herbicide diuron in oyster genitors. During gametogenesis, we exposed Crassostrea gigas to environmentally realistic herbicide concentrations (0.2-0.3 μg L-1 during two 7-day periods at half-course and end of gametogenesis). Diuron exposure was shown to decrease global DNA methylation and total methyltransferase activity in whole oyster tissue; this is consistent with the previous observation of a significant decrease in DNMT1 gene expression. Diuron effect seemed to be tissue-specific; hypermethylation was detected in the digestive gland, whereas diuron exposure had no effect on gill and gonad tissue. The genotoxicity of diuron was confirmed by the detection of one adduct in gonad DNA. By using in vitro approaches and human DNMT1 (DNMT1 has not been purified yet in bivalves), the presence of DNA lesions (adduct, 8-oxodGuo) was shown to interfere with DNMT1 activity, indicating a complex interaction between DNA damage and DNA methylation. Based on our results, we propose mechanisms to explain the effect of diuron exposure on DNA methylation, a widespread epigenetic mark.
Collapse
Affiliation(s)
- Farida Akcha
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France.
| | - Audrey Barranger
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France
| | - Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions Hosts Pathogens Environment, UPVD, CNRS, University of Montpellier, CC 80, 34095, Montpellier, France
| |
Collapse
|
9
|
Li Q, Li W, Zhao J, Guo X, Zou Q, Yang Z, Tian R, Peng Y, Zheng J. Glutathione Conjugation and Protein Adduction by Environmental Pollutant 2,4-Dichlorophenol In Vitro and In Vivo. Chem Res Toxicol 2020; 33:2351-2360. [PMID: 32786540 DOI: 10.1021/acs.chemrestox.0c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2,4-Dichlorophenol (2,4-DCP), an environmental pollutant, was reported to cause hepatotoxicity. The biochemical mechanisms of 2,4-DCP induced liver injury remain unknown. The present study showed that 2,4-DCP is chemically reactive and spontaneously reacts with GSH and bovine serum albumin to form GSH conjugates and BSA adducts. The observed conjugation/adduction apparently involved the addition of GSH and departure of chloride via the ipso substitution pathway. Two biliary GSH conjugates and one urinary N-acetyl cysteine conjugate were observed in rats given 2,4-DCP. The N-acetyl cysteine conjugate was chemically synthesized and characterized by mass spectrometry and NMR. As expected, 2,4-DCP was found to modify hepatic protein at cysteine residues in vivo by the same chemistry. The observed protein adduction reached its peak at 15 min and revealed dose dependency. The new findings allowed us to better understand the mechanisms of the toxic action of 2,4-DCP.
Collapse
Affiliation(s)
- Qingmei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiucai Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Zou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zixin Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruixue Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guiyang, Guizhou 550004, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, P. R. China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Park K, Han EJ, Ahn G, Kwak IS. Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137130. [PMID: 32045767 DOI: 10.1016/j.scitotenv.2020.137130] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 05/12/2023]
Abstract
Fish are frequently affected by environmental stressors, such as temperature changes and heavy metal exposure, in aquatic ecosystems. In this study, we evaluated the combined effects of cadmium (Cd) toxicity and temperature (rearing temperature of 26 °C and heat stress at 34 °C) on zebrafish (Danio rerio) embryos. The survival and heart rates of zebrafish embryos decreased at relatively high Cd concentrations of 0.07 and 0.1 mg L-1. Abnormal morphology was induced by exposure to a combination of Cd toxicity and heat stress. The yolk sac edema size was not significantly different between the control- and Cd-treated groups. Cd exposure induced reactive oxygen species (ROS) production and cell death in the live zebrafish. High temperature (34 °C) triggered Cd-induced cell death and intracellular ROS production to a greater extent than the rearing temperature of 26 °C. Transcriptional levels of six genes-CAT, SOD, p53, BAX, Dnmt1, and Dnmt3b-were investigated. The mRNA expression of CAT and SOD, molecular indicators of oxidative stress, was increased significantly at 34 °C after Cd exposure. The mRNA expression of CAT was more sensitive to temperature than that of SOD in Cd-treated zebrafish. p53 and BAX, apoptosis-related genes, were upregulated upon combined exposure to high temperature and Cd. In addition, at 34 °C, the expression of Dnmt1 and Dnmt3b transcripts, markers of DNA methylation, was increased upon exposure of zebrafish to all concentrations of Cd. Overall, these results suggest that high temperature facilitates the potential role of Cd toxicity in the transcriptional regulation of genes involved in the antioxidant system, apoptosis, and DNA methylation.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Eui Jeong Han
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|
11
|
Zhang C, Li D, Ge T, Han J, Qi Y, Huang D. 2,4-Dichlorophenol induces feminization of zebrafish (Danio rerio) via DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135084. [PMID: 31780173 DOI: 10.1016/j.scitotenv.2019.135084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 05/10/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a ubiquitous contaminant of aquatic environments with an estrogenic effect on fish. However, the molecular mechanism underlying this effect remains elusive. To this end, the present study aimed to explore the effect of 2,4-DCP on sex differentiation and its relevant mechanism in zebrafish (Danio rerio). The results showed that a female-biased sex ratio was induced after exposing larval zebrafish to 2,4-DCP (0-160 μg/L) from 20 to 50 days post fertilization (dpf). The feminization of zebrafish was accompanied by decreased expression of male-related genes (sox9a, amh and dmrt1) under 2,4-DCP from 20 to 50 dpf. However, the expression of female-related genes (cyp19a1a, foxl2 and esr1) was also suppressed. Nevertheless, it is noteworthy that the methylation level of sox9a promoter was significantly increased, which may result in the significantly decreased expression of sox9a and ultimately the feminization effect of 2,4-DCP on zebrafish. In addition, 5-aza-2'-deoxycytidine (5-AZA), a methyltransferase inhibitor, significantly reduced the methylation level, increased the expression of sox9a, and partly impaired the feminization effect caused by 2,4-DCP, which further confirmed the importance of DNA methylation of sox9a in 2,4-DCP-induced feminization. These findings provide novel insights into the epigenetic mechanisms of DCP-induced estrogenic effect in fish.
Collapse
Affiliation(s)
- Chen Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tingting Ge
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Yuan C, Zhang C, Qi Y, Li D, Hu Y, Huang D. 2,4-Dichlorophenol induced feminization of zebrafish by down-regulating male-related genes through DNA methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110042. [PMID: 31816500 DOI: 10.1016/j.ecoenv.2019.110042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is ubiquitous in aquatic environment and has potential estrogenic effect on fish. However, the effect of 2,4-DCP on sex differentiation of zebrafish (Danio rerio) and the underlying mechanism are largely unknown. To address these questions, zebrafish larvae at 20 or 30 days post fertilization (dpf) were exposed to 2,4-DCP (0, 80 and 160 μg L-1) with/without 5-aza-2'-deoxycytidine (5AZA, 50 μg L-1) for 10 days. The sex ratios and the expressions of male-related genes including amh, gata4, nr5a1a, nr5a2 and sox9a were analyzed. In addition, the DNA methylation levels of amh, nr5a2 and sox9a were examined. The results showed that 2,4-DCP exposure resulted in significant increase of female ratios both in 20-30 and 30-40 dpf groups. Correspondingly, the expressions of gata4, nr5a1a, nr5a2 and sox9a were decreased by 2,4-DCP exposure in two treatment periods. However, the transcript of amh was decreased by 2,4-DCP exposure only from 30 to 40 dpf. The DNA methylation levels of amh, nr5a2 and sox9a were increased following 2,4-DCP exposure. Moreover, the addition of 5AZA could counteract the effects including feminization, disturbance of gene expression and DNA hypermethylation caused by 2,4-DCP. These results indicated that the feminizing effect of 2,4-DCP was accomplished by regulating the expression of male-related genes through DNA methylation.
Collapse
Affiliation(s)
- Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
LINC00662 promotes hepatocellular carcinoma progression via altering genomic methylation profiles. Cell Death Differ 2020; 27:2191-2205. [PMID: 31959915 DOI: 10.1038/s41418-020-0494-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
The identification of viability-associated long noncoding RNAs (lncRNAs) is a means of uncovering therapeutic approaches for hepatocellular carcinoma (HCC). In addition, aberrant genome-wide hypomethylation has been implicated in HCC initiation and progression. However, the relationship between lncRNA dysregulation and genome-wide hypomethylation in hepatocarcinogenesis has not been fully elucidated. A novel lncRNA named LINC00662 was previously demonstrated to play a role in gastrointestinal cancer. In this study, we demonstrated that this lncRNA was correlated with survival and exhibited oncogenic properties, both in vitro and in vivo. Moreover, we determined that LINC00662 could lead to genome-wide hypomethylation and alter the genomic methylation profile by synchronously reducing the S-adenosylmethionine (SAM) level and enhancing the S-adenosylhomocysteine (SAH) level. Mechanistically, LINC00662 was determined to regulate the key enzymes influencing SAM and SAH levels, namely, methionine adenosyltransferase 1A (MAT1A) and S-adenosylhomocysteine hydrolase (AHCY), by RNA-RNA and RNA-protein interactions. In addition, we demonstrated that some SAM-dependent HCC-promoting genes could be regulated by LINC00662 by altering the methylation status of their promoters via the LINC00662-coupled axes of MAT1A/SAM and AHCY/SAH. Taken together, the results of this this study indicate that LINC00662 could be a potential biomarker for HCC therapy. More importantly, we proposed a new role of lncRNA in regulating genomic methylation to promote oncogene activation.
Collapse
|
14
|
Xu L, Hao H, Hao Y, Wei G, Li G, Ma P, Xu L, Ding N, Ma S, Chen AF, Jiang Y. Aberrant MFN2 transcription facilitates homocysteine-induced VSMCs proliferation via the increased binding of c-Myc to DNMT1 in atherosclerosis. J Cell Mol Med 2019; 23:4611-4626. [PMID: 31104361 PMCID: PMC6584594 DOI: 10.1111/jcmm.14341] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
It is well‐established that homocysteine (Hcy) is an independent risk factor for atherosclerosis. Hcy can promote vascular smooth muscle cell (VSMC) proliferation, it plays a key role in neointimal formation and thus contribute to arteriosclerosis. However, the molecular mechanism on VSMCs proliferation underlying atherosclerosis is not well elucidated. Mitofusin‐2 (MFN2) is an important transmembrane GTPase in the mitochondrial outer membrane and it can block cells in the G0/G1 stage of the cell cycle. To investigate the contribution of aberrant MFN2 transcription in Hcy‐induced VSMCs proliferation and the underlying mechanisms. Cell cycle analysis revealed a decreased proportion of VSMCs in G0/G1 and an increased proportion in S phase in atherosclerotic plaque of APOE−/− mice with hyperhomocystinaemia (HHcy) as well as in VSMCs exposed to Hcy in vitro. The DNA methylation level of MFN2 promoter was obviously increased in VSMCs treated with Hcy, leading to suppressed promoter activity and low expression of MFN2. In addition, we found that the expression of c‐Myc was increased in atherosclerotic plaque and VSMCs treated with Hcy. Further study showed that c‐Myc indirectly regulates MFN2 expression is duo to the binding of c‐Myc to DNMT1 promoter up‐regulates DNMT1 expression leading to DNA hypermethylation of MFN2 promoter, thereby inhibits MFN2 expression in VSMCs treated with Hcy. In conclusion, our study demonstrated that Hcy‐induced hypermethylation of MFN2 promoter inhibits the transcription of MFN2, leading to VSMCs proliferation in plaque formation, and the increased binding of c‐Myc to DNMT1 promoter is a new and relevant molecular mechanism.
Collapse
Affiliation(s)
- Long Xu
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongyi Hao
- The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yinju Hao
- The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, China
| | - Guo Wei
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guizhong Li
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Pengjun Ma
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lingbo Xu
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ning Ding
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shengchao Ma
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Alex F Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yideng Jiang
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
15
|
Falisse E, Ducos B, Stockwell PA, Morison IM, Chatterjee A, Silvestre F. DNA methylation and gene expression alterations in zebrafish early-life stages exposed to the antibacterial agent triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1867-1877. [PMID: 30408875 DOI: 10.1016/j.envpol.2018.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that toxicant exposure can alter DNA methylation profile, one of the main epigenetic mechanisms, particularly during embryogenesis when DNA methylation patterns are being established. In order to investigate the effects of the antibacterial agent Triclosan on DNA methylation and its correlation with gene expression, zebrafish embryos were exposed during 7 days post-fertilization (starting at maximum 8-cells stage) to 50 and 100 μg/l, two conditions for which increased sensitivity and acclimation have been respectively reported. Although global DNA methylation was not significantly affected, a total of 171 differentially methylated fragments were identified by Reduced Representation Bisulfite Sequencing. The majority of these fragments were found between the two exposed groups, reflecting dose-dependant specific responses. Gene ontology analysis revealed that pathways involved in TGF-β signaling were enriched in larvae exposed to 50 μg/l, while de novo pyrimidine biosynthesis functions were overrepresented in fish exposed to 100 μg/l. In addition, gene expression analysis revealed a positive correlation between mRNA levels and DNA methylation patterns in introns, together with significant alterations of the transcription of genes involved in nervous system development, transcriptional factors and histone methyltransferases. Overall this work provides evidence that Triclosan alters DNA methylation in zebrafish exposed during embryogenesis as well as related genes expression and proposes concentration specific modes of action. Further studies will investigate the possible long-term consequences of these alterations, i.e. latent defects associated with developmental exposure and transgenerational effects, and the possible implications in terms of fitness and adaptation to environmental pollutants.
Collapse
Affiliation(s)
- Elodie Falisse
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment - University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Bertrand Ducos
- High Throughput qPCR Facility of ENS, IBENS, 46 rue d'Ulm, 75005, PARIS, France
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin, 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin, 9054, New Zealand
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment - University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
16
|
Huang D, Zhang X, Zhang C, Li H, Li D, Hu Y, Yang F, Qi Y. 2,4-Dichlorophenol induces DNA damage through ROS accumulation and GSH depletion in goldfish Carassius auratus. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:798-804. [PMID: 30091148 DOI: 10.1002/em.22209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/17/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is one of the most abundant chlorophenols in the aquatic environment and has been frequently detected in surface waters. Although ecological and cellular toxicity of 2,4-DCP has aroused the public concern, few reports focus on the genotoxicity, especially on DNA double strand breaks (DSBs), of 2,4-DCP in fish. The present study aims to explore the genotoxic effect of 2,4-DCP on DSBs in goldfish Carassius auratus and to further elucidate its potential mechanism. The results showed that 2,4-DCP significantly induced DSBs (detected by neutral comet assay) in erythrocytes and hepatocytes of goldfish in a dose-dependent manner, indicating a genotoxicity of 2,4-DCP on fish. The total antioxidant capability and the content of reduced glutathione (GSH) were significantly decreased, while the level of reactive oxygen species (ROS) was significantly increased in a dose-dependent manner in erythrocytes and hepatocytes, suggesting an oxidative stress caused by 2,4-DCP in fish. N-acetyl-l-cysteine, a precursor of GSH and a ROS scavenger, significantly impaired 2,4-DCP-induced ROS overproduction and DSBs, which proves that ROS accumulation and GSH depletion are involved in 2,4-DCP-induced DNA damage in fish. Environ. Mol. Mutagen. 59:798-9, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaoning Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Chen Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Hui Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Dong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Feng Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
17
|
Chatterjee N, Gim J, Choi J. Epigenetic profiling to environmental stressors in model and non-model organisms: Ecotoxicology perspective. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2018; 33:e2018015-0. [PMID: 30286591 PMCID: PMC6182246 DOI: 10.5620/eht.e2018015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 05/16/2023]
Abstract
Epigenetics, potentially heritable changes in genome function that occur without alterations to DNA sequence, is an important but understudied component of ecotoxicology studies. A wide spectrum of environmental challenge, such as temperature, stress, diet, toxic chemicals, are known to impact on epigenetic regulatory mechanisms. Although the role of epigenetic factors in certain biological processes, such as tumourigenesis, has been heavily investigated, in ecotoxicology field, epigenetics still have attracted little attention. In ecotoxicology, potential role of epigenetics in multi- and transgenerational phenomenon to environmental stressors needs to be unrevealed. Natural variation in the epigenetic profiles of species in responses to environmental stressors, nature of dose-response relationships for epigenetic effects, and how to incorporate this information into ecological risk assessment should also require attentions. In this review, we presented the available information on epigenetics in ecotoxicological context. For this, we have conducted a systemic review on epigenetic profiling in response to environmental stressors, mostly chemical exposure, in model organisms, as well as, in ecotoxicologically relevant wildlife species.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| | - Jiwan Gim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
18
|
Ribas L, Vanezis K, Imués MA, Piferrer F. Treatment with a DNA methyltransferase inhibitor feminizes zebrafish and induces long-term expression changes in the gonads. Epigenetics Chromatin 2017; 10:59. [PMID: 29216900 PMCID: PMC5721477 DOI: 10.1186/s13072-017-0168-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of epigenetic modifications such as DNA methylation during vertebrate sexual development is far from being clear. Using the zebrafish model, we tested the effects of one of the most common DNA methyltransferase (dnmt) inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), which is approved for the treatment of acute myeloid leukaemia and is under active investigation for the treatment of solid tumours. Several dose-response experiments were carried out during two periods, including not only the very first days of development (0-6 days post-fertilization, dpf), as done in previous studies, but also, and as a novelty, the period of gonadal development (10-30 dpf). RESULTS Early treatment with 5-aza-dC altered embryonic development, delayed hatching and increased teratology and mortality, as expected. The most striking result, however, was an increase in the number of females, suggesting that alterations induced by 5-aza-dC treatment can affect sexual development as well. Results were confirmed when treatment coincided with gonadal development. In addition, we also found that the adult gonadal transcriptome of 5-aza-dC-exposed females included significant changes in the expression of key reproduction-related genes (e.g. cyp11a1, esr2b and figla), and that several pro-female-related pathways such as the Fanconi anaemia or the Wnt signalling pathways were downregulated. Furthermore, an overall inhibition of genes implicated in epigenetic regulatory mechanisms (e.g. dnmt1, dicer, cbx4) was also observed. CONCLUSIONS Taken together, our results indicate that treatment with a DNA methylation inhibitor can also alter the sexual development in zebrafish, with permanent alterations of the adult gonadal transcriptome, at least in females. Our results show the importance of DNA methylation for proper control of sexual development, open new avenues for the potential control of sex ratios in fish (aquaculture, population control) and call attention to possibly hidden long-term effects of dnmt therapy when used, for example, in the treatment of prepuberal children affected by some types of cancer.
Collapse
Affiliation(s)
- Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-45, 08003, Barcelona, Spain
| | - Konstantinos Vanezis
- Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Marco Antonio Imués
- Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Torobajo, Pasto, Colombia
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-45, 08003, Barcelona, Spain.
| |
Collapse
|
19
|
Bello G, Dumancas G. Association of 2,4-dichlorophenol urinary concentrations and olfactory dysfunction in a national sample of middle-aged and older U.S. adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:498-508. [PMID: 29172666 DOI: 10.1080/09603123.2017.1405245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Olfaction is a key sensory mechanism in humans. Deficits in this chemosensory function have wide-ranging impacts on overall health and quality of life. This study examines the role of environmental phenols as risk factors for olfactory dysfunction among a random sample of 839 middle-aged and older U.S. adults. Olfactory function assessment was carried out using a short 8-item test, scores on which were used to classify subjects into normal or impaired olfactory function groups. Logistic regression models were used to test for associations between olfactory impairment and creatinine-adjusted urinary levels of 8 common environmental phenols, adjusting for potentially confounding covariates. A statistically significant association between 2,4-dichlorophenol levels and olfactory impairment (OR = 1.02 [95 % CI: (1.003, 1.04)]; p = 0.02) was found. 2,4-dichlorophenol is a hazardous pollutant with widespread exposure via industrial and indoor air pollution, diet, and the use of pesticides and herbicides. This study is the first to reveal its role in olfactory impairment.
Collapse
Affiliation(s)
- Ghalib Bello
- a Icahn School of Medicine at Mount Sinai , Environmental Medicine & Public Health , New York , NY , USA
| | - Gerard Dumancas
- b Department of Mathematics and Physical Sciences , Louisiana State University at Alexandria , Alexandria , LA , USA
| |
Collapse
|
20
|
Xiao B, Cui LQ, Ding C, Wang H. Effects of Lithium and 2,4-Dichlorophenol on Zebrafish: Circadian Rhythm Disorder and Molecular Effects. Zebrafish 2017; 14:209-215. [DOI: 10.1089/zeb.2016.1389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Bo Xiao
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Li-Qiang Cui
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Cheng Ding
- Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Han Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
21
|
Fu J, Zhang X, Chen P, Zhang Y. Endoplasmic reticulum stress is involved in 2,4-dichlorophenol-induced hepatotoxicity. J Toxicol Sci 2017; 41:745-756. [PMID: 27853103 DOI: 10.2131/jts.41.745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
2,4-Dichlorophenol (2,4-DCP) is an environmental pollutant exhibiting a wide spectrum of toxic effects. We investigated the toxic effects and potential mechanisms underlying 2,4-DCP-induced hepatotoxicity. In vitro, 2,4-DCP caused hepatotoxicity manifested by a decrease in cell viability and inhibition of colony formation. Bip and CHOP expression was up-regulated at the mRNA and protein levels. Moreover, 2,4-DCP induced eIF2α phosphorylation and Xbp1 mRNA splicing, indicating that endoplasmic reticulum (ER) stress was activated after exposure of HL7702 cells to 2,4-DCP for 12 hr. Furthermore, the mitochondrial membrane potential collapsed and apoptosis was triggered after exposure to 2,4-DCP for 24 hr. In vivo, 2,4-DCP caused histological changes in the liver, and dramatically elevated the serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels of mice. ER stress was also triggered in the liver of mice on days 1 and 3. The ER stress inhibitor TUDCA could partly relieve the liver damage, as indicated by the restoration of serum ALT and AST levels. Taken together, our results demonstrated that ER stress may serve as an early warning mechanism against 2,4-DCP-induced hepatotoxicity, and severe ER stress may lead to apoptosis.
Collapse
Affiliation(s)
- Jianbo Fu
- Institute of Life Science, Nanchang University, China
| | | | | | | |
Collapse
|
22
|
Yuan C, Zhang Y, Liu Y, Wang S, Wang Z. DNA demethylation mediated by down-regulated TETs in the testes of rare minnow Gobiocypris rarus under bisphenol A exposure. CHEMOSPHERE 2017; 171:355-361. [PMID: 28030787 DOI: 10.1016/j.chemosphere.2016.12.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/10/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Inevitable BPA exposure resulted in disturbance of DNA methylation status and our published study suspected that BPA has the potentiality to disturb DNA demethylation and GSH production in Gobiocypris rarus testes. To confirm this conjecture, several experiments were carried out in the present study. Adult male G. rarus was exposed to 1, 15 and 225 μg L-1 (nominal concentration) BPA for two weeks. The levels of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), glutathione (GSH), and enzyme levels for DNA methylation and GSH synthesis in the testes were detected. Meanwhile, the contents of substrates for GSH synthesis were measured. Furthermore, the transcriptional changes of the studied genes were examined. Results indicated that 1-225 μg L-1 BPA caused decrease of testicular ten-eleven translocation proteins (TETs) with more obvious effects at low concentrations. Moreover, all concentrations of BPA resulted in decrease of 5hmC levels while only 225 μg L-1 BPA resulted in significant increase of 5mC. In addition, all treatments resulted in significant decrease of GSH and the replenishment of GSH might be mainly accomplished by circular synthesis. These results indicated that BPA exposure inhibited TETs-mediated DNA demethylation and the declined DNA demethylation mediated by TETs may result in DNA hypermethylation at 225 μg L-1 BPA. In addition, the changes of DNA methylation status were irrelevant with GSH levels.
Collapse
Affiliation(s)
- Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China
| | - Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China
| | - Song Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China.
| |
Collapse
|
23
|
Ge T, Han J, Qi Y, Gu X, Ma L, Zhang C, Naeem S, Huang D. The toxic effects of chlorophenols and associated mechanisms in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:78-93. [PMID: 28119128 DOI: 10.1016/j.aquatox.2017.01.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 05/15/2023]
Abstract
Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent studies on the alteration of DNA methylation by CPs through high-throughput DNA sequencing analysis provide new insights into our understanding of the epigenetic mechanisms underlying CPs toxicity.
Collapse
Affiliation(s)
- Tingting Ge
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lin Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
24
|
Testicular Dnmt3 expression and global DNA methylation are down-regulated by gonadotropin releasing hormones in the ricefield eel Monopterus albus. Sci Rep 2017; 7:43158. [PMID: 28225069 PMCID: PMC5320511 DOI: 10.1038/srep43158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, DNA methyltransferase 3 (Dnmt3) homologues are responsible for de novo DNA methylation and play important roles in germ cell development. In the present study, four dnmt3 genes, dnmt3aa, dnmt3ab, dnmt3ba and dnmt3bb.1, were identified in ricefield eels. Real-time quantitative PCR analysis showed that all four dnmt3 mRNAs were detected broadly in tissues examined, with testicular expression at relatively high levels. In the testis, immunostaining for all four Dnmt3 forms was mainly localized to spermatocytes, which also contained highly methylated DNA. All three forms of Gonadotropin-releasing hormone (Gnrh) in the ricefield eel were shown to decrease the expression of dnmt3 genes in the in vitro incubated testicular fragments through cAMP and IP3/Ca2+ pathways. Moreover, in vivo treatment of male fish with three forms of Gnrh decreased significantly the testicular Dnmt3 expression at both mRNA and protein levels, and the global DNA methylation levels. These results suggest that the expression of Dnmt3 and global DNA methylation in the testis of ricefield eels are potentially down-regulated by Gnrh, and reveal a novel regulatory mechanism of testicular Dnmt3 expression in vertebrates.
Collapse
|
25
|
Liu Y, Zhang Y, Tao S, Guan Y, Zhang T, Wang Z. Global DNA methylation in gonads of adult zebrafish Danio rerio under bisphenol A exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:124-32. [PMID: 27101439 DOI: 10.1016/j.ecoenv.2016.04.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 05/18/2023]
Abstract
Altered DNA methylation is pervasively associated with changes in gene expression and signal transduction after exposure to a wide range of endocrine disrupting chemicals. As a weak estrogenic chemical, bisphenol A (BPA) has been extensively studied for reproductive toxicity. In order to explore the effects of BPA on epigenetic modification in gonads of zebrafish Danio rerio, we measured the global DNA methylation together with the gene expression of DNA methyltransferase (dnmts), glycine N-methyltransferase (gnmt), and ten-eleven translocation (tets) in gonads of D. rerio under BPA exposure by ELISA and quantitative real-time PCR method, respectively. The global level of DNA methylation was significantly decreased in ovaries after exposed to BPA for 7 days, and testes following 35-day exposure. Moreover, the global level of DNA methylation was also significantly reduced in testes after exposed to 15μg/L BPA for 7 days. Besides the alteration of the global level of DNA methylation, varying degrees of transcriptional changes of dnmts, gnmt and tets were detected in gonads of D. rerio under BPA exposure. The present study suggested that BPA might cause the global DNA demethylation in gonads of zebrafish by regulating the transcriptional changes of the DNA methylation/demethylation-associated genes (dnmts, gnmt, and tets).
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shiyu Tao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Lurquin PF. Production of a toxic metabolite in 2,4-D-resistant GM crop plants. 3 Biotech 2016; 6:82. [PMID: 28330152 PMCID: PMC4764611 DOI: 10.1007/s13205-016-0387-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/24/2015] [Indexed: 11/17/2022] Open
Abstract
This Note questions the safety of crop plants engineered with transgenes coding for the degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) into its cytotoxic metabolite 2,4-dichlorophenol (2,4-DCP).
Collapse
|
27
|
Knothe C, Shiratori H, Resch E, Ultsch A, Geisslinger G, Doehring A, Lötsch J. Disagreement between two common biomarkers of global DNA methylation. Clin Epigenetics 2016; 8:60. [PMID: 27222668 PMCID: PMC4877994 DOI: 10.1186/s13148-016-0227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The quantification of global DNA methylation has been established in epigenetic screening. As more practicable alternatives to the HPLC-based gold standard, the methylation analysis of CpG islands in repeatable elements (LINE-1) and the luminometric methylation assay (LUMA) of overall 5-methylcytosine content in "CCGG" recognition sites are most widely used. Both methods are applied as virtually equivalent, despite the hints that their results only partly agree. This triggered the present agreement assessments. RESULTS Three different human cell types (cultured MCF7 and SHSY5Y cell lines treated with different chemical modulators of DNA methylation and whole blood drawn from pain patients and healthy volunteers) were submitted to the global DNA methylation assays employing LINE-1 or LUMA-based pyrosequencing measurements. The agreement between the two bioassays was assessed using generally accepted approaches to the statistics for laboratory method comparison studies. Although global DNA methylation levels measured by the two methods correlated, five different lines of statistical evidence consistently rejected the assumption of complete agreement. Specifically, a bias was observed between the two methods. In addition, both the magnitude and direction of bias were tissue-dependent. Interassay differences could be grouped based on Bayesian statistics, and these groups allowed in turn to re-identify the originating tissue. CONCLUSIONS Although providing partly correlated measurements of DNA methylation, interchangeability of the quantitative results obtained with LINE-1 and LUMA was jeopardized by a consistent bias between the results. Moreover, the present analyses strongly indicate a tissue specificity of the differences between the two methods.
Collapse
Affiliation(s)
- Claudia Knothe
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hiromi Shiratori
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Eduard Resch
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alfred Ultsch
- />DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Gerd Geisslinger
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexandra Doehring
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Hammond SA, Nelson CJ, Helbing CC. Environmental influences on the epigenomes of herpetofauna and fish. Biochem Cell Biol 2016; 94:95-100. [DOI: 10.1139/bcb-2015-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Herpetofauna (amphibians and reptiles) and fish represent important sentinel and indicator species for environmental and ecosystem health. It is widely accepted that the epigenome plays an important role in gene expression regulation. Environmental stimuli, including temperature and pollutants, influence gene activity, and there is growing evidence demonstrating that an important mechanism is through modulation of the epigenome. This has been primarily studied in human and mammalian models; relatively little is known about the impact of environmental conditions or pollutants on herpetofauna or fish epigenomes and the regulatory consequences of these changes on gene expression. Herein we review recent studies that have begun to address this deficiency, which have mainly focused on limited specific epigenetic marks and individual genes or large-scale global changes in DNA methylation, owing to the comparative ease of measurement. Greater understanding of the epigenetic influences of these environmental factors will depend on increased availability of relevant species-specific genomic sequence information to facilitate chromatin immunoprecipitation and DNA methylation experiments.
Collapse
Affiliation(s)
- S. Austin Hammond
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Christopher J. Nelson
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
29
|
Leljak-Levanić D, Mrvková M, Turečková V, Pěnčík A, Rolčík J, Strnad M, Mihaljević S. Hormonal and epigenetic regulation during embryogenic tissue habituation in Cucurbita pepo L. PLANT CELL REPORTS 2016; 35:77-89. [PMID: 26403461 DOI: 10.1007/s00299-015-1869-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/30/2015] [Accepted: 09/14/2015] [Indexed: 05/08/2023]
Abstract
Habituated embryogenic line of pumpkin contained more CKs and IAA, but less ABA than the non-habituated line. Pronounced hypomethylation correlated with the absence of 2,4-D, addition of 5-azaC, and the process of habituation. A comparative analysis between habituated and non-habituated embryogenic cultures of pumpkin (Cucurbita pepo L.) in relation to endogenous phytohormones, global DNA methylation, and developmental and regeneration capacities of the cultures was conducted. The analysis revealed more cytokinins (CKs) and indole-3-acetic acid (IAA), but less abscisic acid (ABA) in the habituated HEC line than in the non-habituated DEC line. Ribosides and ribotides were the most abundant CK forms in both HEC and DEC lines (75.9 and 57.6 %, respectively). HEC contained more free-base CKs (5.8 vs. 3.2 %), whereas DEC contained considerably more O-glycosides (39.1 vs. 18.3 %). Although prevalence of IAA was common for both lines, relative ratio of CKs and ABA differed between DEC and HEC lines. ABA was prevailing over CKs in DEC, while CKs prevailed over ABA in HEC line. Taking into account the importance of ABA for embryo maturation, the reduced endogenous ABA content in HEC line might be the reason for a 5-fold reduction in regeneration capacity compared to DEC. Both habituated and non-habituated embryogenic lines were highly methylated in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D). Pronounced hypomethylation correlated with the absence of 2,4-D, addition of 5-azacytidine (5-azaC), but also with the process of habituation. The habituated line was resistant to the effect of hypomethylation drug 5-azaC and remained highly methylated even after the addition of 5-azaC. Also, 5-azaC did not change the developmental pattern in the habituated line, indicating the existence of separate mechanisms by which 2,4-D influences global DNA methylation in comparison to habituation-related global DNA methylation.
Collapse
Affiliation(s)
- Dunja Leljak-Levanić
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Mihaela Mrvková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Veronika Turečková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 783 71, Olomouc, Czech Republic
| | | |
Collapse
|
30
|
Knothe C, Doehring A, Ultsch A, Lötsch J. Methadone induces hypermethylation of human DNA. Epigenomics 2015; 8:167-79. [PMID: 26340303 DOI: 10.2217/epi.15.78] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Increased global DNA methylation in the blood of patients chronically exposed to opioids had been interpreted as an indication of an epigenetic action of this drug class. MATERIALS & METHODS To strengthen the causality, human MCF7 cells were cultured in media with the addition of several known or potential modulators of DNA methylation including methadone. RESULTS Following 3 days of incubation with several different known or potential epigenetic modulators, global DNA methylation, quantified at LINE-1 CpG islands, showed a large variability across all treatments ranging from 27.8 to 63%. Based on distribution analysis of the global methylation of human DNA exposed to various potential modulators, present in vitro experiments showed that treatment with the opioid methadone was associated with an increased probability of hypermethylation. CONCLUSION This strengthens the evidence that opioids interfere with mechanisms of classical epigenetics.
Collapse
Affiliation(s)
- Claudia Knothe
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexandra Doehring
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology & Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Application of Novel Amino-Functionalized NZVI@SiO2 Nanoparticles to Enhance Anaerobic Granular Sludge Removal of 2,4,6-Trichlorophenol. Bioinorg Chem Appl 2015; 2015:548961. [PMID: 26060427 PMCID: PMC4427803 DOI: 10.1155/2015/548961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/17/2022] Open
Abstract
A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2) was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI) to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80-100 nm), high loading of amino functionality (~0.9 wt%), and relatively large specific surface area (126.3 m(2)/g). The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe(0)-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP) in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2) in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater.
Collapse
|
32
|
Jiménez-Chillarón JC, Nijland MJ, Ascensão AA, Sardão VA, Magalhães J, Hitchler MJ, Domann FE, Oliveira PJ. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling. Epigenetics 2015; 10:259-73. [PMID: 25774863 DOI: 10.1080/15592294.2015.1020267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations.
Collapse
|