1
|
Cao L, Kang Q, Tian Y. Pesticide residues: Bridging the gap between environmental exposure and chronic disease through omics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117335. [PMID: 39536570 DOI: 10.1016/j.ecoenv.2024.117335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Pesticide residues, resulting from agricultural practices, pose significant health and environmental risks. This review synthesizes the current understanding of pesticide impacts on the immune system, highlighting their role in chronic diseases such as asthma, diabetes, Parkinson's disease (PD) and cancer. We emphasize the significant role of omics technologies in the study of pesticide toxicity mechanisms. The integration of genomics, proteomics, metabolomics, and epigenomics offers a multidimensional strategy for a comprehensive assessment of pesticide effects, facilitating personalized risk management and policy formulation. We advocate for stringent regulatory policies, public education, and global cooperation to enhance food safety and environmental sustainability. By adopting a unified approach, we aim to mitigate the risks of pesticide residues, ensuring human health and ecological balance are preserved.
Collapse
Affiliation(s)
- Lingling Cao
- Department of Pharmacology, Clinical School of Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| | - Qiyuan Kang
- Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| | - Yuan Tian
- Department of Pathology and Pathophysiology, Clinical School of Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Kwon YS, Park CB, Lee SM, Zee S, Kim GE, Kim YJ, Sim HJ, Kim JH, Seo JS. Proteomic analysis of zebrafish (Danio rerio) embryos exposed to benzyl benzoate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26375-26386. [PMID: 36367642 PMCID: PMC9995408 DOI: 10.1007/s11356-022-24081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Benzyl benzoate (BB) is widely used in the food, cosmetics, agriculture, and pharmaceutical industries and is discharged into the aquatic environment via various water sources, including wastewater. Research on the bioaccumulation and possible toxicity of BB has been conducted, but the biochemical responses to BB toxicity are not fully understood, and the specific molecular pathways by which BB causes toxicity remain unknown. In this study, label-free quantitative proteomics based on mass spectrometry was applied to investigate protein profiles in zebrafish (Danio rerio) embryos exposed to BB (1 µg/mL) for 7 days. A total of 83 differentially expressed proteins (DEPs) were identified, including 49 up-regulated and 34 down-regulated proteins. The biological functions of proteins regulated by BB were grouped into functional categories and subcategories, including the biosynthesis of organonitrogen compound biosynthetic process, translation, amide biosynthetic process, lipid transport, stress response, and cytoskeletal activity. The results provide novel insight into the molecular basis of the ecotoxicity of BB in aquatic ecosystems.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Seung-Min Lee
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Go-Eun Kim
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yeong-Jin Kim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Hee-Jung Sim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Su Seo
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
3
|
Silva M, Kwok RKH. Use of Computational Toxicology Tools to Predict In Vivo Endpoints Associated with Mode of Action and the Endocannabinoid System: A Case Study with Chlorpyrifos, Chlorpyrifos-oxon and Δ9Tetrahydrocannabinol. Curr Res Toxicol 2022; 3:100064. [PMID: 35243363 PMCID: PMC8860916 DOI: 10.1016/j.crtox.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 01/04/2023] Open
|
4
|
Jiang Y, He Y, Li W, Ni J, Li J, Peng L, Luo L, Rui R, Ju S. Exposure to chlorpyrifos leads to spindle disorganization and mitochondrial dysfunction of porcine oocytes during in vitro maturation. Theriogenology 2021; 173:249-260. [PMID: 34399389 DOI: 10.1016/j.theriogenology.2021.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
Chlorpyrifos (CPF), as one of the most extensively applied organophosphorus pesticides (OPs) in agricultural and domestic settings, causes a potential threat to human and animal health. Various reproductive toxicities of CPF have been reported, however, little information is available on whether CPF exposure could exert toxic effects on mammalian oocytes. Herein, the effects of CPF on the meiotic maturation and developmental capability of porcine oocytes were investigated, and the possible toxic mechanisms of CPF were also explored. Porcine cumulus-oocyte complexes (COCs) were treated with 0, 5, 10, or 20 μM CPF for 44 h during in vitro maturation (IVM), and the results showed that the first polar body (PB1) extrusion rate was significantly decreased, and the subsequent developmental competence of the resulting metaphase II (MII) oocytes was also impaired when the concentration of CPF reached 10 μM. In addition, a higher percentage of CPF-exposed oocytes were arrested at the anaphase-telophase I (ATI) stage, accompanied by misaligned chromosomes and aberrant spindles. Furthermore, higher levels of ROS and upregulated antioxidant-related genes (CAT, SOD1, SOD2, GPX) were detected in CPF-treated oocytes. Additionally, CPF treatment led to the depolarization of mitochondrial membrane potential (MMP) and the release of cytochrome c (Cyt c). Simultaneously, the apoptotic rate of the oocytes was significantly increased, and the expression levels of Bax and CASPASE3 were significantly upregulated after CFP exposure. Together, exposure to 10 μM CPF can disrupt the meiotic cycle progression, lead to aberrant spindles and mitochondrial dysfunction, which eventually induce oxidative stress and apoptosis in porcine oocytes.
Collapse
Affiliation(s)
- Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jun Ni
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jia Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Lei Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Liping Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
5
|
Shields JN, Hales EC, Ranspach LE, Luo X, Orr S, Runft D, Dombkowski A, Neely MN, Matherly LH, Taub J, Baker TR, Thummel R. Exposure of Larval Zebrafish to the Insecticide Propoxur Induced Developmental Delays that Correlate with Behavioral Abnormalities and Altered Expression of hspb9 and hspb11. TOXICS 2019; 7:E50. [PMID: 31546644 PMCID: PMC6958418 DOI: 10.3390/toxics7040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that organophosphates and carbamates affect human fetal development, resulting in neurological and growth impairment. However, these studies are conflicting and the extent of adverse effects due to pesticide exposure warrants further investigation. In the present study, we examined the impact of the carbamate insecticide propoxur on zebrafish development. We found that propoxur exposure delays embryonic development, resulting in three distinct developmental stages: no delay, mild delay, or severe delay. Interestingly, the delayed embryos all physically recovered 5 days after exposure, but behavioral analysis revealed persistent cognitive deficits at later stages. Microarray analysis identified 59 genes significantly changed by propoxur treatment, and Ingenuity Pathway Analysis revealed that these genes are involved in cancer, organismal abnormalities, neurological disease, and hematological system development. We further examined hspb9 and hspb11 due to their potential roles in zebrafish development and found that propoxur increases expression of these small heat shock proteins in all of the exposed animals. However, we discovered that less significant increases were associated with the more severely delayed phenotype. This raises the possibility that a decreased ability to upregulate these small heat shock proteins in response to propoxur exposure may cause embryos to be more severely delayed.
Collapse
Affiliation(s)
- Jeremiah N Shields
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI 48201, USA.
| | - Eric C Hales
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| | - Lillian E Ranspach
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Steven Orr
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| | - Donna Runft
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Alan Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Melody N Neely
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Jeffrey Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI 48201, USA.
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA.
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Kao CM, Ou WJ, Lin HD, Eva AW, Wang TL, Chen SC. Toxicity of diuron in HepG2 cells and zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:432-438. [PMID: 30735975 DOI: 10.1016/j.ecoenv.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Diuron is an herbicide, which is used to control a wide variety of annual and perennial broadleaf, grassy weeds, and mosses. However, the toxicity of diuron in HepG2 cells and zebrafish embryos was unclear. In this study, HpeG2 cells and zebrafish embryos were exposed to different concentrations of diuron for 24 h and 48 h, respectively. Results reveal the diuron caused cytotoxicity and the generation of reactive oxygen species (ROS) in the treated HepG2 cells. The effects of diuron on the expression of catalase and superoxide dismutase (SOD1 and SOD2), an antioxidant enzyme, were investigated. Results showed that only SOD1 was significantly induced after treated diuron 48 h, but the expression of catalase and SOD2 was unaffected. Additionally, the cytotoxicity of diuron was not attenuated in cells pretreated with of N-acetyl-cysteine (NAC), a well-known antioxidant, indicating that oxidative stress could not contribute to cellular death in the treated HepG2 cells. In zebrafish embryos, results from proteomic analysis show that 332 differentially upregulated proteins and 199 down-regulated proteins were detected in the treated embryos (P < 0.05). In addition to the up-regulated antioxidant proteins (prdx3, cat, prdx4, txnrd1, prdx1, sod1, prdx2, and sod2), some decreased proteins were related to cytoskeleton formation, tight junction, and gap junction, which could be related to the malformation of the treated zebrafish embryos. In summary, diuron caused cytotoxicity in HepG2 cells, and the mechanisms of toxicity in zebrafish were addressed using the proteomic analysis.
Collapse
Affiliation(s)
- Chih Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Jen Ou
- Hematology-Oncology Section, LANDSEED Hospital, Jhongli, Taiwan
| | - Heng-Dao Lin
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Ari Wahyuni Eva
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Tzu-Ling Wang
- Graduate Institute of Mathematics and Science Education, National Tsing Hua University, Taiwan
| | - Ssu Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan.
| |
Collapse
|
7
|
Hausen J, Otte JC, Legradi J, Yang L, Strähle U, Fenske M, Hecker M, Tang S, Hammers-Wirtz M, Hollert H, Keiter SH, Ottermanns R. Fishing for contaminants: identification of three mechanism specific transcriptome signatures using Danio rerio embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4023-4036. [PMID: 28391457 DOI: 10.1007/s11356-017-8977-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/03/2017] [Indexed: 05/10/2023]
Abstract
In ecotoxicology, transcriptomics is an effective way to detect gene expression changes in response to environmental pollutants. Such changes can be used to identify contaminants or contaminant classes and can be applied as early warning signals for pollution. To do so, it is important to distinguish contaminant-specific transcriptomic changes from genetic alterations due to general stress. Here we present a first step in the identification of contaminant class-specific transcriptome signatures. Embryos of zebrafish (Danio rerio) were exposed to three substances (methylmercury, chlorpyrifos and Aroclor 1254, each from 24 to 48 hpf exposed) representing sediment typical contaminant classes. We analyzed the altered transcriptome to detect discriminative genes significantly regulated in reaction to the three applied contaminants. By comparison of the results of the three contaminants, we identified transcriptome signatures and biologically important pathways (using Cytoscape/ClueGO software) that react significantly to the contaminant classes. This approach increases the chance of finding genes that play an important role in contaminant class-specific pathways rather than more general processes.
Collapse
Affiliation(s)
- Jonas Hausen
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jens C Otte
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jessica Legradi
- Environment and Health, VU Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, the Netherlands
| | - Lixin Yang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group for Translational Medicine and Pharmacology, Forckenbeckstraße 6, 52074, Aachen, Germany
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Monika Hammers-Wirtz
- Research Institute for Ecosystem Analysis and Assessment - gaiac, Kackertstraße 10, 52072, Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Man-Technology-Environment Research Centre, Örebro University, SE-701 82, Örebro, Sweden
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
8
|
Bruneau A, Landry C, Giraudo M, Douville M, Brodeur P, Boily M, Gagnon P, Houde M. Integrated spatial health assessment of yellow perch (Perca flavescens) populations from the St. Lawrence River (QC, Canada), part B: cellular and transcriptomic effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18211-18221. [PMID: 27272701 DOI: 10.1007/s11356-016-7001-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
Multi-biological level assessments have become great tools to evaluate the health of aquatic ecosystems. Using this approach, a complementary study was designed to evaluate the health of yellow perch (Perca flavescens) populations in the St. Lawrence River (Quebec, Canada). In the present study, stress responses were compared at the transcriptomic, cellular, and tissue levels in yellow perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island and Lake St. Pierre (north and south). These results complement the physiological and chemical parameters as well as pathogen infection investigated in a companion paper published in the present issue. Thiobarbituric acid reactive substance (TBARS) analyses indicated the presence of oxidative stress in fish collected in the southern part of Lake St. Louis and at the downstream sites of Lake St. Pierre. High lipid peroxidation levels were found in the muscle of yellow perch caught at Beauregard Island, located downstream of the Montreal's wastewater treatment plant, suggesting an impact of the municipal effluent on redox homeostasis. Transcriptomic results indicated the down-regulation of genes related to lipid, glucose, and retinoid in southern Lake St. Pierre as well as a decrease in retinoid storage. Overall, biochemical and molecular markers indicated that the health status of yellow perch followed a decreasing gradient from upstream to downstream of the St. Lawrence River. This gradient is representative of the cumulative negative impacts of human activities on water and habitat quality along the river.
Collapse
Affiliation(s)
- Audrey Bruneau
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Catherine Landry
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada.
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Philippe Brodeur
- Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune de la Mauricie et du Centre-du-Québec, 100, rue Laviolette, bureau 207, Trois-Rivières, QC, G9A 5S9, Canada
| | - Monique Boily
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Pierre Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| |
Collapse
|