1
|
Kaidi D, Odin E, Wettergren Y, Bexe Lindskog E. Prognostic value of folate-associated gene expression in stage II colon cancer. J Cancer Res Clin Oncol 2025; 151:92. [PMID: 39998667 PMCID: PMC11861115 DOI: 10.1007/s00432-025-06141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Prognostic variability in stage II colon cancer underscores the need for better risk stratification. Analyzing folate-associated gene expression in stage II colon cancer could provide researchers and clinicians with deeper insights into tumor biology and potentially aid in identifying early prognostic and/or predictive biomarkers. METHODS Patients with stage II colon cancer and recurrence (n = 48) were matched to patients with a 5 year recurrence-free follow-up (n = 133). Gene expression of ABCC3, AMT, FPGS, GGH, MFT, PCFT, RFC-1, and TYMS was analyzed in tumor tissue and matching colon mucosa using qPCR and evaluated in relation to time to recurrence (TTR), as well as to demographic and clinicopathological variables. RESULTS Independent of other covariates, TYMS expression in tumors, pT4 stage, and emergency surgery were associated with TTR. There were significant differences in expression levels of all examined genes between tumor and mucosa. ABCC3, GGH, and RFC-1 expression levels differed in mucosa between microsatellite instability-high (MSI-H) compared to microsatellite stable/microsatellite instability-low (MSS/MSI-L) tumors, whereas tumoral expression of AMT, GGH, and TYMS differed between MSI-H and MSS/MSI-L tumors. Depending on tumor location, the expression of ABCC3, AMT, GGH, and RFC-1 in mucosa, as well as the tumoral expression of AMT, GGH, PCFT and RFC-1 differed. CONCLUSION Low tumoral expression of TYMS was associated with worse TTR, independent of MSI status, pT stage, and emergency surgery. The indication of a better outcome for patients with MSI-H status and high tumoral TYMS expression might be of particular interest in the stratification of patients for immunotherapy.
Collapse
Affiliation(s)
- Donia Kaidi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden
| | - Elisabeth Odin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden
| | - Elinor Bexe Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden.
| |
Collapse
|
2
|
de
Lima IL, Cataldi TR, Brites C, Labate MT, Vaz SN, Deminco F, da Cunha GS, Labate CA, Eberlin MN. 4D-DIA Proteomics Uncovers New Insights into Host Salivary Response Following SARS-CoV-2 Omicron Infection. J Proteome Res 2025; 24:499-514. [PMID: 39803891 PMCID: PMC11812090 DOI: 10.1021/acs.jproteome.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 02/08/2025]
Abstract
Since late 2021, Omicron variants have dominated the epidemiological scenario as the most successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineages, driving new and breakthrough infections globally over the past two years. In this study, we investigated for the first time the host salivary response of COVID-19 patients infected with Omicron variants (BA.1, BA.2, and BA.4/5) by using an untargeted four-dimensional data-independent acquisition (4D-DIA)-based proteomics approach. We identified 137 proteins whose abundance levels differed between the COVID-19 positive and negative groups. Salivary signatures were mainly enriched in ribosomal proteins, linked to mRNAviral translation, protein synthesis and processing, immune innate, and antiapoptotic signaling. The higher abundance of 14-3-3 proteins (YWHAG, YWHAQ, YWHAE, and SFN) in saliva, first reported here, may be associated with increased infectivity and improved viral replicative fitness. We also identified seven proteins (ACTN1, H2AC2, GSN, NDKA, CD109, GGH, and PCYOX) that yielded comprehension into Omicron infection and performed outstandingly in screening patients with COVID-19 in a hospital setting. This panel also presented an enhanced anti-COVID-19 and anti-inflammatory signature, providing insights into disease severity, supported by comparisons with other proteome data sets. The salivary signature provided valuable insights into the host's response to SARS-CoV-2 Omicron infection, shedding light on the pathophysiology of COVID-19, particularly in cases associated with mild disease. It also underscores the potential clinical applications of saliva for disease screening in hospital settings. Data are available via ProteomeXchange with the identifier PXD054133.
Collapse
Affiliation(s)
- Iasmim Lopes de
Lima
- PPGEMN,
School of Engineering, Mackenzie Presbyterian University & MackGraphe
- Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São
Paulo 01302-907, Brazil
| | - Thais Regiani Cataldi
- Department
of Genetics, “Luiz de Queiroz”
College of Agriculture, University of São Paulo/ESALQ, Piracicaba, São Paulo 13418-900, Brazil
| | - Carlos Brites
- LAPI
- Laboratory of Research in Infectology, University Hospital Professor
Edgard Santos (HUPES), Federal University
of Bahia (UFBA), Salvador, Bahia 40110-060, Brazil
| | - Mônica Teresa
Veneziano Labate
- Department
of Genetics, “Luiz de Queiroz”
College of Agriculture, University of São Paulo/ESALQ, Piracicaba, São Paulo 13418-900, Brazil
| | - Sara Nunes Vaz
- LAPI
- Laboratory of Research in Infectology, University Hospital Professor
Edgard Santos (HUPES), Federal University
of Bahia (UFBA), Salvador, Bahia 40110-060, Brazil
| | - Felice Deminco
- LAPI
- Laboratory of Research in Infectology, University Hospital Professor
Edgard Santos (HUPES), Federal University
of Bahia (UFBA), Salvador, Bahia 40110-060, Brazil
| | - Gustavo Santana da Cunha
- PPGEMN,
School of Engineering, Mackenzie Presbyterian University & MackGraphe
- Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São
Paulo 01302-907, Brazil
| | - Carlos Alberto Labate
- Department
of Genetics, “Luiz de Queiroz”
College of Agriculture, University of São Paulo/ESALQ, Piracicaba, São Paulo 13418-900, Brazil
| | - Marcos Nogueira Eberlin
- PPGEMN,
School of Engineering, Mackenzie Presbyterian University & MackGraphe
- Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São
Paulo 01302-907, Brazil
| |
Collapse
|
3
|
Qi X, Qin JY, Ru S, Xiong JQ. Functional characterization of a novel Chlamydomonas reinhardtii hydrolase involved in biotransformation of chloramphenicol. WATER RESEARCH 2024; 265:122285. [PMID: 39167975 DOI: 10.1016/j.watres.2024.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Microalgae-based biotechnology is one of the most promising alternatives to conventional methods for the removal of antibiotic contaminants from diverse water matrices. However, current knowledge regarding the biochemical mechanisms and catabolic enzymes involved in microalgal biodegradation of antibiotics is scant, which limits the development of enhancement strategies to increase their engineering feasibility. In this study, we investigated the removal dynamics of amphenicols (chloramphenicol, thiamphenicol, and florfenicol), which are widely used in aquaculture, by Chlamydomonas reinhardtii under different growth modes (autotrophy, heterotrophy, and mixotrophy). We found C. reinhardtii removed >92 % chloramphenicol (CLP) in mixotrophic conditions. Intriguingly, gamma-glutamyl hydrolase (GGH) in C. reinhardtii was most significantly upregulated according to the comparative proteomics, and we demonstrated that GGH can directly bind to CLP at the Pro77 site to induce acetylation of the hydroxyl group at C3 position, which generated CLP 3-acetate. This identified role of microalgal GGH is mechanistically distinct from that of animal counterparts. Our results provide a valuable enzyme toolbox for biocatalysis and reveal a new enzymatic function of microalgal GGH. As proof of concept, we also analyzed the occurrence of these three amphenicols and their degradation intermediate worldwide, which showed a frequent distribution of the investigated chemicals at a global scale. This study describes a novel catalytic enzyme to improve the engineering feasibility of microalgae-based biotechnologies. It also raises issues regarding the different microalgal enzymatic transformations of emerging contaminants because these enzymes might function differently from their counterparts in animals.
Collapse
Affiliation(s)
- Xin Qi
- College of Marine Life Sciences, Ocean University of China, Yushan Road 5, Qingdao 266003, Shandong, China
| | - Jing-Yu Qin
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Yushan Road 5, Qingdao 266003, Shandong, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Yushan Road 5, Qingdao 266003, Shandong, China.
| |
Collapse
|
4
|
van de Meeberg MM, Sundaresan J, Lin M, Jansen G, Struys EA, Fidder HH, Oldenburg B, Mares WGN, Mahmmod N, van Asseldonk DP, Rietdijk ST, Nissen LHC, de Boer NKH, Bouma G, Ćalasan MB, de Jonge R. Methotrexate accumulation in target intestinal mucosa and white blood cells differs from non-target red blood cells of patients with Crohn's disease. Basic Clin Pharmacol Toxicol 2024; 135:308-320. [PMID: 38973551 DOI: 10.1111/bcpt.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Intracellular methotrexate polyglutamates (MTX-PGs) concentrations are measurable in red blood cells (RBCs) during MTX treatment. MTX-PG3 concentrations correlate with efficacy in patients with Crohn's disease (CD). Since RBCs are not involved in pathogenesis of CD and lack extended MTX metabolism, we determined MTX-PGs accumulation in peripheral blood mononuclear cells (PBMCs: effector cells) and intestinal mucosa (target cells) and compared those with RBCs as a potential more precise biomarker. METHODS In a multicentre prospective cohort study, blood samples of patients with CD were collected during the first year of MTX therapy. Mucosal biopsies were obtained from non-inflamed rectum and/or inflamed intestine. MTX-PGs concentrations in mucosa, PBMCs and RBCs were measured by liquid chromatography-tandem mass spectrometry. RESULTS From 80 patients with CD, a total of 27 mucosal biopsies, 9 PBMC and 212 RBC samples were collected. From 12 weeks of MTX therapy onwards, MTX-PG3 was the most predominant species (33%) in RBCs. In PBMCs, the distribution was skewed towards MTX-PG1 (48%), which accounted for an 18 times higher concentration than in RBCs. Long-chain MTX-PGs were highly present in mucosa: 21% of MTX-PGtotal was MTX-PG5. MTX-PG6 was measurable in all biopsies. CONCLUSIONS MTX-PG patterns differ between mucosa, PBMCs and RBCs of patients with CD.
Collapse
Affiliation(s)
- Maartje M van de Meeberg
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Janani Sundaresan
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marry Lin
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| | - Eduard A Struys
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Herma H Fidder
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wout G N Mares
- Department of Gastroenterology and Hepatology, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Nofel Mahmmod
- Department of Gastroenterology and Hepatology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Dirk P van Asseldonk
- Department of Gastroenterology and Hepatology, NWZ Alkmaar, Alkmaar, The Netherlands
| | - Svend T Rietdijk
- Department of Gastroenterology and Hepatology, OLVG, Amsterdam, The Netherlands
| | - Loes H C Nissen
- Department of Gastroenterology and Hepatology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| | - Maja Bulatović Ćalasan
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Robert de Jonge
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Chen Y, Fang H, Sun H, Wu X, Xu Y, Zhou BBS, Li H. Up-regulation of ABCG1 is associated with methotrexate resistance in acute lymphoblastic leukemia cells. Front Pharmacol 2024; 14:1331687. [PMID: 38259297 PMCID: PMC10800869 DOI: 10.3389/fphar.2023.1331687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a prevalent hematologic malignancy in children, and methotrexate (MTX) is a widely employed curative treatment. Despite its common use, clinical resistance to MTX is frequently encountered. In this study, an MTX-resistant cell line (Reh-MTXR) was established through a stepwise selection process from the ALL cell line Reh. Comparative analysis revealed that Reh-MTXR cells exhibited resistance to MTX in contrast to the parental Reh cells. RNA-seq analysis identified an upregulation of ATP-binding cassette transporter G1 (ABCG1) in Reh-MTXR cells. Knockdown of ABCG1 in Reh-MTXR cells reversed the MTX-resistant phenotype, while overexpression of ABCG1 in Reh cells conferred resistance to MTX. Mechanistically, the heightened expression of ABCG1 accelerated MTX efflux, leading to a reduced accumulation of MTX polyglutamated metabolites. Notably, the ABCG1 inhibitor benzamil effectively sensitized Reh-MTXR cells to MTX treatment. Moreover, the observed upregulation of ABCG1 in Reh-MTXR cells was not induced by alterations in DNA methylation or histone acetylation. This study provides insight into the mechanistic basis of MTX resistance in ALL and also suggests a potential therapeutic approach for MTX-resistant ALL in the future.
Collapse
Affiliation(s)
- Yao Chen
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshun Fang
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin-Bing S. Zhou
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fujian Children’s Hospital, Fujian Branch of Shanghai Children’s Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fujian Children’s Hospital, Fujian Branch of Shanghai Children’s Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
| |
Collapse
|
6
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
7
|
Yu C, Qi H, Zhang Y, Zhao W, Wu G. Elevated Expression of Gamma-Glutamyl Hydrolase Is Associated With Poor Prognosis and Altered Immune Signature in Uterine Corpus Endometrial Carcinoma. Front Genet 2022; 12:764194. [PMID: 35082830 PMCID: PMC8785095 DOI: 10.3389/fgene.2021.764194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/21/2021] [Indexed: 01/21/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is a common malignant tumor of the female reproductive system with poor prognosis in advanced, recurrent, and metastatic cases. Identification of reliable molecular markers will help in the development of clinical strategies for early detection, diagnosis, and intervention. Gamma-glutamyl hydrolase (GGH) is a key enzyme in folate metabolism pathway. High expression of GGH is associated with severe clinicopathological features and poor prognosis of several cancers. High GGH expression is also related to cell resistance to antifolate drugs such as methotrexate. In this study we focused on the prognostic value of immunohistochemical GGH expression level in UCEC tissue and RNA-seq data from The Cancer Genome Atlas to establish associations with clinical features and outcomes. Further, we conducted comprehensive bioinformatics analyses to identify and functionally annotate differentially expressed genes (DEGs) associated with UCEC upregulation and assessed the effects of upregulation on immune infiltration. Both GGH mRNA and protein expression levels were elevated in tumor tissues, and higher expression was significantly associated with advanced clinicopathological features and poor prognosis by univariate analysis. Further multivariate analysis identified elevated GGH expression as an independent risk factor for poor outcome. Nomograms including GGH expression yielded a c-index for disease-specific survival prediction of 0.884 (95% confidence interval: 0.861–0.907). A total of 520 DEGs (111 upregulated and 409 downregulated) were identified between high and low GGH expression groups. Analysis using Gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, Gene set enrichment analysis, and protein‒protein interaction indicated significant associations of altered GGH expression with cell proliferation, immune response, and the occurrence and development of UCEC tumors. Finally, GGH expression level was associated with high Th2 cell and low natural killer CD56bright cell infiltration. Collectively, these findings indicate that GGH drives UCEC progression and could be a useful biomarker for survival prediction as well as a therapeutic target.
Collapse
Affiliation(s)
- Cong Yu
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Haining Qi
- Department of Obstetrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanhui Zhang
- Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, China
| | - Wen Zhao
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guoying Wu
- School of Life Sciences, Qilu Normal University, Jinan, China
| |
Collapse
|
8
|
Zhao W, Ahmed S, Liu J, Ahmed S, Quansah E, Solangi TH, Wu Y, Yangliu Y, Wang H, Zhu J, Cai X. Comparative iTRAQ proteomics identified proteins associated with sperm maturation between yak and cattleyak epididymis. BMC Vet Res 2021; 17:255. [PMID: 34311720 PMCID: PMC8314601 DOI: 10.1186/s12917-021-02907-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background During maturation, spermatozoa acquire motility and fertilizing capacity as they transit through the epididymis. In recent years, two-dimensional gel electrophoresis has been employed in proteomics studies conducted in rat, boar and human. However, there has not been a complete information regarding the proteins associated with sperm maturation in the epididymis. In this study, we employed iTRAQ proteomics to investigate proteins associated with sperm maturation between yak and cattleyak epididymis. Results After a successful sampling and protein extraction, the iTRAQ coupled with LC-MS/MS mass spectrometry and bioinformatics analysis were performed. We identified 288 differentially abundant proteins (DAPs) between yak and cattleyak epididymis; 151 were up-regulated while 137 were down-regulated in cattleyak relative to yak. Gene Ontology analysis identified that down-regulated DAPs in cattleyak were mostly enriched in the acetylation of protein component, along with negative and positive regulatory activities. iTRAQ proteomics data showed that the top up-regulated DAPs were mainly enriched in cell communication, cell adhesion, cytoskeleton organization, stress response, post-translational modifications and metabolic functions while the down-regulated DAPs were predominantly associated with sperm maturation, long-term sperm storage, sperm forward motility, sperm-oocyte fusion and regulatory functions. Conclusion These results provide insight into the molecular mechanisms underlying male cattleyak sterility.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Siraj Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Junxia Liu
- Qingdao Bright Moon Seaweed Group Co., ltd, Qingdao, 266400, Shandong, China
| | - Saeed Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Eugene Quansah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Tajmal Hussain Solangi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yitao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yueling Yangliu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, Sichuan, China. .,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, Sichuan, China. .,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Kashif M, Alici E, Nahi H. Predicting Drug Resistance by Single-Cell RNASeq in Patients with Multiple Myeloma. Clin Chem 2021; 67:1309-1311. [PMID: 34240120 DOI: 10.1093/clinchem/hvab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Muhammad Kashif
- a Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Evren Alici
- a Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hareth Nahi
- a Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,b Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Fang X, Duan SF, Gong YZ, Wang F, Chen XL. Identification of Key Genes Associated with Changes in the Host Response to Severe Burn Shock: A Bioinformatics Analysis with Data from the Gene Expression Omnibus (GEO) Database. J Inflamm Res 2020; 13:1029-1041. [PMID: 33293847 PMCID: PMC7718973 DOI: 10.2147/jir.s282722] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with severe burns continue to display a high mortality rate during the initial shock period. The precise molecular mechanism underlying the change in host response during severe burn shock remains unknown. This study aimed to identify key genes leading to the change in host response during burn shock. METHODS The GSE77791 dataset, which was utilized in a previous study that compared hydrocortisone administration to placebo (NaCl 0.9%) in the inflammatory reaction of severe burn shock, was downloaded from the Gene Expression Omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs). Functional enrichment analyses of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed. The protein-protein interaction (PPI) network of DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and then visualized in Cytoscape. In addition, important modules in this network were selected using the Molecular Complex Detection (MCODE) algorithm, and hub genes were identified in cytoHubba, a Cytoscape plugin. RESULTS A total of 1059 DEGs (508 downregulated genes and 551 upregulated genes) were identified from the dataset. The DEGs enriched in GO terms and KEGG pathways were related to immune response. The PPI network contained 439 nodes and 2430 protein pairs. Finally, important modules and hub genes were identified using the different Cytoscape plugins. The key genes in burn shock were identified as arginase 1 (ARG1), cytoskeleton-associated protein (CKAP4), complement C3a receptor (C3AR1), neutrophil elastase (ELANE), gamma-glutamyl hydrolase (GGH), orosomucoid (ORM1), and quiescin sulfhydryl (QSOX1). CONCLUSION The DEGs, functional terms and pathways, and hub genes identified in the present study can help shed light on the molecular mechanism underlying the changes in host response during burn shock and provide potential targets for early detection and treatment of burn shock.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Shu-Fang Duan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yu-Zhou Gong
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Fei Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
11
|
|
12
|
Kim SE. Enzymes involved in folate metabolism and its implication for cancer treatment. Nutr Res Pract 2020; 14:95-101. [PMID: 32256983 PMCID: PMC7075736 DOI: 10.4162/nrp.2020.14.2.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy. METHODS This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil. RESULTS AND DISCUSSION Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
13
|
Liang J, Lu T, Chen Z, Zhan C, Wang Q. Mechanisms of resistance to pemetrexed in non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:1107-1118. [PMID: 32010588 DOI: 10.21037/tlcr.2019.10.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, lung cancer has remained the most common cause of cancer death while non-small cell lung cancer (NSCLC) accounts for the most of all lung cancer cases. Regardless of multiple existing managements, chemotherapy regimens are still the mainstay of treatment for NSCLC, where pemetrexed has shown cytotoxic activity and has increasingly been used, especially for advanced cases. However, chemo-resistance may inhibit clinical efficacy after long-term use. Mechanisms responsible for chemo-resistance to pemetrexed in NSCLC are plethoric but can be separated into two categories to be discussed: tumor cells and their interactions with drugs. Phenomena relevant to tumor cells such as oncogene or oncoprotein alterations, DNA synthesis, DNA repair, and tumor cell biology behavior are discussed, as well as processes associated with drug dynamics, including drug uptake, drug elimination, and antifolate polyglutamylation. This review will focus on clinical trials and the basic biomedical mechanisms of NSCLC treated with pemetrexed and will describe the underlying mechanisms of resistance to facilitate more efficient clinical therapies to treat patients.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Gpr63 is a modifier of microcephaly in Ttc21b mouse mutants. PLoS Genet 2019; 15:e1008467. [PMID: 31730647 PMCID: PMC6881074 DOI: 10.1371/journal.pgen.1008467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/27/2019] [Accepted: 10/08/2019] [Indexed: 11/19/2022] Open
Abstract
The primary cilium is a signaling center critical for proper embryonic development. Previous studies have demonstrated that mice lacking Ttc21b have impaired retrograde trafficking within the cilium and multiple organogenesis phenotypes, including microcephaly. Interestingly, the severity of the microcephaly in Ttc21baln/aln homozygous null mutants is considerably affected by the genetic background and mutants on an FVB/NJ (FVB) background develop a forebrain significantly smaller than mutants on a C57BL/6J (B6) background. We performed a Quantitative Trait Locus (QTL) analysis to identify potential genetic modifiers and identified two regions linked to differential forebrain size: modifier of alien QTL1 (Moaq1) on chromosome 4 at 27.8 Mb and Moaq2 on chromosome 6 at 93.6 Mb. These QTLs were validated by constructing congenic strains. Further analysis of Moaq1 identified an orphan G-protein coupled receptor (GPCR), Gpr63, as a candidate gene. We identified a SNP that is polymorphic between the FVB and B6 strains in Gpr63 and creates a missense mutation predicted to be deleterious in the FVB protein. We used CRISPR-Cas9 genome editing to create two lines of FVB congenic mice: one with the B6 sequence of Gpr63 and the other with a deletion allele leading to a truncation of the GPR63 C-terminal tail. We then demonstrated that Gpr63 can localize to the cilium in vitro. These alleles affect ciliary localization of GPR63 in vitro and genetically interact with Ttc21baln/aln as Gpr63;Ttc21b double mutants show unique phenotypes including spina bifida aperta and earlier embryonic lethality. This validated Gpr63 as a modifier of multiple Ttc21b neural phenotypes and strongly supports Gpr63 as a causal gene (i.e., a quantitative trait gene, QTG) within the Moaq1 QTL. TTC21B in humans is a known ciliopathy gene and contributes to the pathophysiology of a number of ciliopathies. Mice homozygous for a null allele of Ttc21b also have a spectrum of ciliopathy phenotypes, including microcephaly (small brain). Further work has shown that the severity of the microcephaly significantly depends on the genetic background of the mouse model. The genetic mechanisms of the Ttc21b pathophysiology and the interacting gene network remain far from understood. As an initial attempt to understand the underlying mechanism(s) underlying the variable effects on brain size, we performed a quantitative trait locus (QTL) analysis and found two regions of genomic significance that correlated with smaller brain size. We confirmed both QTLs with congenic lines. One of the two regions was small enough that we considered candidate genes and hypothesized Gpr63 might be a contributing locus for a number of reasons. We evaluated this hypothesis directly with precise variant creation using genome editing and provide evidence that Ttc21b and Gpr63 do indeed genetically interact. Thus, we have been able to combine classical QTL analysis and genome editing to directly test the resulting hypothesis.
Collapse
|
15
|
Yu W, Min D, Lin F, Zheng S, Tang L, He A, Hu H, Shen Z. SKA1 induces de novo MTX-resistance in osteosarcoma through inhibiting FPGS transcription. FEBS J 2019; 286:2399-2414. [PMID: 30851225 DOI: 10.1111/febs.14808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/22/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
De novo methotrexate (MTX)-resistance, whose underlying mechanism remains largely unknown, usually leads to very poor prognosis in patients with osteosarcoma (OS). In this study, we established the de novo MTX-resistant OS cell line SF-86 and identified the candidate gene spindle and kinetochore associated complex subunit 1 (SKA1) as potentially related to de novo MTX-resistance. Analysis of a cohort of 95 OS patients demonstrated that SKA1 overexpression significantly correlated with de novo MTX-resistance and poor 5-year survival. Mechanistically, SKA1 overexpression lead to a downregulation of folylpoly-γ-glutamate synthetase (FPGS), a key enzyme that converts MTX into its active form, MTX-PG. We further demonstrated that SKA1 interacts with DNA-directed RNA polymerase II subunit RPB3. ChIP analysis revealed that RPB3 binds the promoter region of the FPGS gene and triggers FPGS transcription upon MTX treatment in SW1353, a MTX-sensitive OS cell line lacking endogenous SKA1 expression. On the contrary, this process is blocked in SF-86 cells due to the formation of an inhibitory SKA1-RPB3 complex. Furthermore, downregulation of SKA1 levels restores MTX sensitivity in SF-86. Collectively, our study has established the de novo MTX-resistant cell line SF-86 and identified SKA1 as a novel regulator of FPGS, playing a key role in the development of de novo MTX-resistance in OS.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, China
| | - Daliu Min
- East Campus, Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, China
| | - Feng Lin
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, China
| | - Shuier Zheng
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, China
| | - Lina Tang
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, China
| | - Aina He
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, China
| | - Haiyan Hu
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, China
| | - Zan Shen
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, China
| |
Collapse
|
16
|
Radziejewska A, Chmurzynska A. Folate and choline absorption and uptake: Their role in fetal development. Biochimie 2018; 158:10-19. [PMID: 30529042 DOI: 10.1016/j.biochi.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022]
Abstract
SCOPE In this review, we attempt to assess how choline and folate transporters affect fetal development. We focus on how the expression of these transporters in response to choline and folate intake affects transport effectiveness. We additionally describe allelic variants of the genes encoding these transporters and their phenotypic effects. METHODS AND RESULTS We made an extensive review of recent articles describing role of choline and folate - with particularly emphasize on their transporters - in fetal development. Folate and choline are necessary for the proper functioning of the cell and body. During pregnancy, the requirements of these nutrients increase because of elevated maternal demand and the rapid division of fetal cells. The concentrations of folate and choline in cells depend on food intake, the absorption of nutrients, and the cellular transport system, which is tissue-specific and developmentally regulated. Relatively few studies have investigated the role of choline transporters in fetal development. CONCLUSIONS In this review we show relations between functioning of folate and choline transporters and fetal development.
Collapse
Affiliation(s)
- Anna Radziejewska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland
| | - Agata Chmurzynska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland.
| |
Collapse
|
17
|
Pharmacogenetic analysis of high-dose methotrexate treatment in children with osteosarcoma. Oncotarget 2018; 8:9388-9398. [PMID: 27566582 PMCID: PMC5354739 DOI: 10.18632/oncotarget.11543] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/09/2016] [Indexed: 01/08/2023] Open
Abstract
Inter-individual differences in toxic symptoms and pharmacokinetics of high-dose methotrexate (MTX) treatment may be caused by genetic variants in the MTX pathway. Correlations between polymorphisms and pharmacokinetic parameters and the occurrence of hepato- and myelotoxicity were studied. Single nucleotide polymorphisms (SNPs) of the ABCB1, ABCC1, ABCC2, ABCC3, ABCC10, ABCG2, GGH, SLC19A1 and NR1I2 genes were analyzed in 59 patients with osteosarcoma. Univariate association analysis and Bayesian network-based Bayesian univariate and multilevel analysis of relevance (BN-BMLA) were applied. Rare alleles of 10 SNPs of ABCB1, ABCC2, ABCC3, ABCG2 and NR1I2 genes showed a correlation with the pharmacokinetic values and univariate association analysis. The risk of toxicity was associated with five SNPs in the ABCC2 and NR1I2 genes. Pharmacokinetic parameters were associated with four SNPs of the ABCB1, ABCC3, NR1I2, and GGH genes, and toxicity was shown to be associated with ABCC1 rs246219 and ABCC2 rs717620 using the univariate and BN-BMLA method. BN-BMLA analysis detected relevant effects on the AUC0-48 in the following SNPs: ABCB1 rs928256, ABCC3 rs4793665, and GGH rs3758149. In both univariate and multivariate analyses the SNPs ABCB1 rs928256, ABCC3 rs4793665, GGH rs3758149, and NR1I2 rs3814058 SNPs were relevant. These SNPs should be considered in future dose individualization during treatment.
Collapse
|
18
|
Voegeli R, Monneuse JM, Schoop R, Summers B, Rawlings AV. The effect of photodamage on the female Caucasian facial stratum corneum corneome using mass spectrometry-based proteomics. Int J Cosmet Sci 2017; 39:637-652. [PMID: 28865110 DOI: 10.1111/ics.12426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of photodamage on facial stratum corneum (SC) is still poorly understood. OBJECTIVE To describe the SC proteome from tape strippings of Caucasian SC from photoexposed cheek and photoprotected post-auricular (PA) site, a global analysis of photodamage on the skin will be developed leading to a better understanding of keratinocyte signalling pathways and identification of new molecular targets for the treatment of photoaged skin. METHODS Female Caucasian subjects had nine consecutive tape strippings taken from their cheeks and PA site. Proteins were extracted and the trypsin-digested peptides were analysed by nanochromatography coupled to a high-resolution mass spectrometer. Data-dependent acquisition allowed protein identification that was processed by Paragon algorithm of Protein Pilot software. RESULTS Changes in the levels of epidermal differentiation proteins were apparent indicating poor epidermal differentiation and SC maturation (keratins, cornified envelope (CE) proteins) on photoexposed cheeks. Differences in protease-anti-protease balance were observed for corneodesmolysis (favouring desquamation) and filaggrinolysis (favouring reduced filaggrin processing). 12R-LOX, a CE maturation enzyme, was reduced in photodamaged skin but not transglutaminases. Changes in signal keratinocyte transduction pathway markers were demonstrated especially by reduced levels of downstream signalling markers such as calreticulin (unfolded protein response; UPR) and increased level of stratifin (target of rapamycin; mTOR). Evidence for impaired proteostasis was apparent by reduced levels of a key proteasomal subunit (subunit beta type-6). Finally, key antioxidant proteins were upregulated except catalase. CONCLUSION Clear examples of poor keratinocyte differentiation and associated metabolic and signalling pathways together with reduced SC maturation were identified in photodamaged facial SC. Corneocyte immaturity was evident with changes in CE proteins. Particularly, the reduction in 12R-LOX is a novel finding in photodamaged skin and supports the lack of SC maturation. Moreover, filaggrinolysis was reduced, whereas corneodesmolysis was enhanced. From our results, we propose that there is a poor cross-talk between the keratinocyte endoplasmic reticulum UPR, proteasome network and autophagy machinery that possibly leads to impaired keratinocyte proteostasis. Superimposed on these aberrations is an apparently enhanced mTOR pathway that also contributes to reduced SC formation and maturation. Our results clearly indicate a corneocyte scaffold disorder in photodamaged cheek SC.
Collapse
Affiliation(s)
- R Voegeli
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - J-M Monneuse
- Phylogene S.A., 62, Route Nationale 113, 30620, Bernis, France
| | - R Schoop
- DSM Nutritional Products Ltd., Wurmisweg 571, 4303, Kaiseraugst, Switzerland
| | - B Summers
- Photobiology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Medunsa 0204, Pretoria, South Africa
| | - A V Rawlings
- AVR Consulting Ltd., 26 Shavington Way, Northwich, Cheshire CW9 8FH, UK
| |
Collapse
|
19
|
One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 2017; 8:23955-23977. [PMID: 28177894 PMCID: PMC5410357 DOI: 10.18632/oncotarget.15053] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer-related metabolism has recently emerged as one of the “hallmarks of cancer”. It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors – methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets.
Collapse
|
20
|
Sadahiro S, Suzuki T, Tanaka A, Okada K, Saito G, Miyakita H, Ogimi T, Nagase H. Gene expression levels of gamma-glutamyl hydrolase in tumor tissues may be a useful biomarker for the proper use of S-1 and tegafur-uracil/leucovorin in preoperative chemoradiotherapy for patients with rectal cancer. Cancer Chemother Pharmacol 2017; 79:1077-1085. [PMID: 28417167 PMCID: PMC5438825 DOI: 10.1007/s00280-017-3295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022]
Abstract
Purpose Preoperative chemoradiotherapy (CRT) using 5-fluorouracil (5-FU)-based chemotherapy is the standard of care for rectal cancer. The effect of additional chemotherapy during the period between the completion of radiotherapy and surgery remains unclear. Predictive factors for CRT may differ between combination chemotherapy with S-1 and with tegafur-uracil/leucovorin (UFT/LV). Methods The subjects were 54 patients with locally advanced rectal cancer who received preoperative CRT with S-1 or UFT/LV. The pathological tumor response was assessed according to the tumor regression grade (TRG). The expression levels of 18 CRT-related genes were determined using RT-PCR assay. Results A pathological response (TRG 1-2) was observed in 23 patients (42.6%). In a multivariate logistic regression analysis for pathological response, the overall expression levels of four genes, HIF1A, MTHFD1, GGH and TYMS, were significant, and the accuracy rate of the predictive model was 83.3%. The effects of the gene expression levels of GGH on the response differed significantly according to the treatment regimen. The total pathological response rate of both high-GGH patients in the S-1 group and low-GGH patients in the UFT/LV group was 58.3%. Conclusion Additional treatment with 5-FU-based chemotherapy during the interval between radiotherapy and surgery is not beneficial in patients who have received 5-FU-based CRT. The expression levels of four genes, HIF1A, MTHFD1, GGH and TYMS, in tumor tissues can predict the response to preoperative CRT including either S-1 or UFT/LV. In particular, the gene expression level of GGH in tumor tissues may be a useful biomarker for the appropriate use of S-1 and UFT/LV in CRT.
Collapse
Affiliation(s)
- Sotaro Sadahiro
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - T Suzuki
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - A Tanaka
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - K Okada
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - G Saito
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - H Miyakita
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - T Ogimi
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - H Nagase
- Applied Pharmacology Lab., Taiho Pharmaceutical Co., Ltd., 224-2 Ebisuno Hiraishi, Kawauchi-cho, Tokushima, 771-0194, Japan
| |
Collapse
|
21
|
Melling N, Rashed M, Schroeder C, Hube-Magg C, Kluth M, Lang D, Simon R, Möller-Koop C, Steurer S, Sauter G, Jacobsen F, Büscheck F, Wittmer C, Clauditz T, Krech T, Tsourlakis MC, Minner S, Huland H, Graefen M, Budäus L, Thederan I, Salomon G, Schlomm T, Wilczak W. High-Level γ-Glutamyl-Hydrolase (GGH) Expression is Linked to Poor Prognosis in ERG Negative Prostate Cancer. Int J Mol Sci 2017; 18:ijms18020286. [PMID: 28146062 PMCID: PMC5343822 DOI: 10.3390/ijms18020286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
γ-glutamyl-hydrolase (GGH) is a ubiquitously-expressed enzyme that regulates intracellular folate metabolism for cell proliferation, DNA synthesis, and repair. Employing GGH immunohistochemistry on a tissue microarray with 12,427 prostate cancers, we found that GGH expression was negative to low in normal prostate epithelium, whereas 88.3% of our 10,562 interpretable cancers showed GGH expression. GGH staining was considered as low intensity in 49.6% and as high intensity in 38.6% of cancers. High GGH expression was linked to the TMPRSS2:ERG-fusion positive subset of cancers (p < 0.0001), advanced pathological tumor stage, and high Gleason grade (p < 0.0001 each). Further analysis revealed that these associations were merely driven by the subset of ERG-negative cancers, High GGH expression was weakly linked to early biochemical recurrence in ERG negative cancers (p < 0.0001) and independent from established histo-pathological parameters. Moreover, GGH expression was linked to features of genetic instability, including presence of recurrent deletions at 3p, 5q, 6q, and 10q (PTEN, p ≤ 0.01 each), as well as to accelerated cell proliferation as measured by Ki67 immunohistochemistry (p < 0.0001). In conclusion, the results of our study identify GGH as an ERG subtype specific molecular marker with modest prognostic relevance, which may have clinical relevance if analyzed in combination with other molecular markers.
Collapse
Affiliation(s)
- Nathaniel Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Masoud Rashed
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Cornelia Schroeder
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Dagmar Lang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Lars Budäus
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Imke Thederan
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Georg Salomon
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
- Department of Urology, Section for translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.
| |
Collapse
|
22
|
Raz S, Stark M, Assaraf YG. Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist Updat 2016; 28:43-64. [PMID: 27620954 DOI: 10.1016/j.drup.2016.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 01/26/2023]
Abstract
Mammalians are devoid of autonomous biosynthesis of folates and hence must obtain them from the diet. Reduced folate cofactors are B9-vitamins which play a key role as donors of one-carbon units in the biosynthesis of purine nucleotides, thymidylate and amino acids as well as in a multitude of methylation reactions including DNA, RNA, histone and non-histone proteins, phospholipids, as well as intermediate metabolites. The products of these S-adenosylmethionine (SAM)-dependent methylations are involved in the regulation of key biological processes including transcription, translation and intracellular signaling. Folate-dependent one-carbon metabolism occurs in several subcellular compartments including the cytoplasm, mitochondria, and nucleus. Since folates are essential for DNA replication, intracellular folate cofactors play a central role in cancer biology and inflammatory autoimmune disorders. In this respect, various folate-dependent enzymes catalyzing nucleotide biosynthesis have been targeted by specific folate antagonists known as antifolates. Currently, antifolates are used in drug treatment of multiple human cancers, non-malignant chronic inflammatory disorders as well as bacterial and parasitic infections. An obligatory key component of intracellular folate retention and intracellular homeostasis is (anti)folate polyglutamylation, mediated by the unique enzyme folylpoly-γ-glutamate synthetase (FPGS), which resides in both the cytoplasm and mitochondria. Consistently, knockout of the FPGS gene in mice results in embryonic lethality. FPGS catalyzes the addition of a long polyglutamate chain to folates and antifolates, hence rendering them polyanions which are efficiently retained in the cell and are now bound with enhanced affinity by various folate-dependent enzymes. The current review highlights the crucial role that FPGS plays in maintenance of folate homeostasis under physiological conditions and delineates the plethora of the molecular mechanisms underlying loss of FPGS function and consequent antifolate resistance in cancer.
Collapse
Affiliation(s)
- Shachar Raz
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
23
|
Szabó I, Orbán E, Schlosser G, Hudecz F, Bánóczi Z. Cell-penetrating conjugates of pentaglutamylated methotrexate as potential anticancer drugs against resistant tumor cells. Eur J Med Chem 2016; 115:361-8. [PMID: 27031212 DOI: 10.1016/j.ejmech.2016.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 12/27/2022]
Abstract
The emerging resistance of tumor cells against methotrexate (MTX) is one of the major limitations of the MTX treatment of tumorous diseases. The disturbance in the polyglutamation which is a main step in the mechanism of methotrexate action is often the reason of the resistance. Delivery of polyglutamylated MTX into cells may evade the mechanisms that are responsible for drug resistance. In this study conjugates of methotrexate and its pentaglutamylated derivatives with cell-penetrating peptides - penetratin and octaarginine - were investigated. The cellular-uptake and in vitro cytostatic activity of conjugates were examined on breast cancer cell cultures (MDA-MB-231 as resistant and MCF-7 as sensitive cell culture). These cell cultures showed very different behaviour towards the conjugates. Although the presence of pentaglutamyl moiety significantly decreased the internalisation of conjugates, some of them were significantly active in vitro. All of the conjugates were able to penetrate in some extent into both cell types, but only the conjugates of penetratin showed in vitro cytostatic activity. The most effective conjugates were the MTX-Glu5-Penetratin(desMet) and MTX-Glu5-GFLG-Penetratin(desMet). The latter was effective on both cell cultures while the former was active only on the resistant tumor cells. Our results suggest that the translocation of polyglutamylated MTX may be a new way to treat sensitive and more importantly resistant tumors. While both penetratin and octaarginine peptides were successfully used to deliver several kinds of cargos earlier in our case the activity of penetratin conjugates was more pronounced.
Collapse
Affiliation(s)
- Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | - Erika Orbán
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | - Ferenc Hudecz
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary; Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary
| | - Zoltán Bánóczi
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary; Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary.
| |
Collapse
|
24
|
Abstract
The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metalation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to allow the discrimination of network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
25
|
Glucocorticoid receptor status is a principal determinant of variability in the sensitivity of non-small-cell lung cancer cells to pemetrexed. J Thorac Oncol 2015; 9:519-26. [PMID: 24736075 DOI: 10.1097/jto.0000000000000111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pemetrexed is an S-phase targeted drug in front-line or maintenance therapy of advanced nonsquamous non-small-cell lung cancer (NSCLC) but methods are needed for predicting the drug response. Dexamethasone is typically administered the day before, the day of, and the day after pemetrexed. As dexamethasone strongly regulates many genes including p53 through the glucocorticoid receptor (GR), we hypothesized that dexamethasone influences tumor response to pemetrexed. METHODS Eight nonsquamous NSCLC cell line models with varied p53 and GRα/GRβ status were used for gene expression and cell-cycle analyses and for loss- or gain-of-function experiments. RESULTS In three cell lines dexamethasone profoundly, but reversibly, suppressed the fraction of S-phase cells. Dexamethasone also reversibly repressed expression of thymidylate synthase and dihydrofolate reductase, which are primary targets of pemetrexed but are also quintessential S-phase enzymes as well as the S-phase-dependent expression of thymidine kinase 1. Dexamethasone also decreased expression of the major pemetrexed transporters, the reduced folate carrier and the proton coupled folate transporter. Only cells expressing relatively high GRα showed these dexamethasone effects, regardless of p53 status. In cells expressing low GRα, the dexamethasone response was rescued by ectopic GRα. Further, depletion of p53 did not attenuate the dexamethasone effects. The presence of dexamethasone during pemetrexed treatment protected against pemetrexed cytotoxicity in only the dexamethasone responsive cells. CONCLUSIONS The results predict that in nonsquamous NSCLC tumors, reversible S-phase suppression by dexamethasone, possibly combined with a reduction in the drug transporters, attenuates responsiveness to pemetrexed and that GR status is a principal determinant of tumor variability of this response.
Collapse
|
26
|
Sakamori Y, Kim YH, Yoshida H, Nakaoku T, Nagai H, Yagi Y, Ozasa H, Mishima M. Effect of liver toxicity on clinical outcome of patients with non-small-cell lung cancer treated with pemetrexed. Mol Clin Oncol 2014; 3:334-340. [PMID: 25798263 DOI: 10.3892/mco.2014.452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/15/2013] [Indexed: 11/06/2022] Open
Abstract
Liver toxicity (LT) is a common side effect of pemetrexed (PEM); however, the effect of LT on clinical outcome has not been investigated in patients with non-small-cell lung cancer (NSCLC) treated with PEM. Between June, 2009 and June, 2012, a total of 95 chemo-naive NSCLC patients received a PEM-containing regimen in our hospital. We reviewed the medical records of those 95 patients and evaluated the incidence of LT. Furthermore, we investigated the association between LT and clinical outcome. In this analysis, LT was defined as any grade of aspartate aminotransferase or alanine aminotransferase elevation. A total of 67 patients (70.5%) developed LT, which occurred mostly during the first treatment cycle. Among these, 10 patients (10.5%) required a delay in treatment or a dose reduction from the subsequent cycle and PEM discontinuation was required in 1 patient. The response rate (RR) was 43.3 and 21.4% in patients with and in those without LT, respectively (P=0.0387). The median progression-free survival (PFS) and overall survival (OS) were 6.3 and 24.2 months in patients with LT and 2.9 and 18.3 months in patients without LT, respectively (P<0.0001 for PFS and P=0.2426 for OS). The multivariate analysis demonstrated that LT exerted a significant positive effect on PFS (hazard ratio = 0.341; P<0.0001). In conclusion, LT was frequently observed in NSCLC patients treated with PEM; however, it was generally easily manageable. The improvement in RR and PFS observed in patients with LT suggested that LT may be a useful predictor of a favorable outcome in this patient population.
Collapse
Affiliation(s)
- Yuichi Sakamori
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kansai 606-8507, Japan
| | - Young Hak Kim
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kansai 606-8507, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kansai 606-8507, Japan
| | - Takashi Nakaoku
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kansai 606-8507, Japan
| | - Hiroki Nagai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kansai 606-8507, Japan
| | - Yoshitaka Yagi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kansai 606-8507, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kansai 606-8507, Japan
| | - Michiaki Mishima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kansai 606-8507, Japan
| |
Collapse
|
27
|
Chuankhayan P, Kao TT, Lin CC, Guan HH, Nakagawa A, Fu TF, Chen CJ. Structural Insights into the Hydrolysis and Polymorphism of Methotrexate Polyglutamate by Zebrafish γ-Glutamyl Hydrolase. J Med Chem 2013; 56:7625-35. [DOI: 10.1021/jm401013e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phimonphan Chuankhayan
- Life
Science Group, Scientific Research
Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Tseng-Ting Kao
- Department of Medical Laboratory Science
and Biotechnology, College of
Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Chih Lin
- Life
Science Group, Scientific Research
Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Hsiang Guan
- Life
Science Group, Scientific Research
Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Atsushi Nakagawa
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tzu-Fun Fu
- Department of Medical Laboratory Science
and Biotechnology, College of
Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Jung Chen
- Life
Science Group, Scientific Research
Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department
of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
| |
Collapse
|
28
|
γ-Glutamyl hydrolase modulation and folate influence chemosensitivity of cancer cells to 5-fluorouracil and methotrexate. Br J Cancer 2013; 109:2175-88. [PMID: 24045662 PMCID: PMC3798974 DOI: 10.1038/bjc.2013.579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND γ-Glutamyl hydrolase (GGH) regulates intracellular folate and antifolates for optimal nucleotide biosynthesis and antifolate-induced cytotoxicity, respectively. The modulation of GGH may therefore affect chemosensitivity of cancer cells, and exogenous folate levels may further modify this effect. METHODS We generated a novel model of GGH modulation in human HCT116 and MDA-MB-435 cancer cells and investigated the effect of GGH modulation on chemosensitivity to 5-fluorouracil (5FU) and methotrexate (MTX) at different folate concentrations in vitro and in vivo. RESULTS Overexpression of GGH significantly decreased chemosensitivity of MDA-MB-435 cells to 5FU and MTX at all folate concentrations as expected. In contrast, in HCT116 cells this predicted effect was observed only at very high folate concentration, and as the folate concentration decreased this effect became null or paradoxically increased. This in vitro observation was confirmed in vivo. Inhibition of GGH significantly increased chemosensitivity of both cancer cells to 5FU at all folate concentrations. Unexpectedly, GGH inhibition significantly decreased chemosensitivity of both cancer cells to MTX at all folate concentrations. In both GGH modulation systems and cell lines, the magnitude of chemosensitivity effect incrementally increased as folate concentration increased. CONCLUSION Modulation of GGH affects chemosensitivity of cancer cells to 5FU and MTX, and exogenous folate levels can further modify the effects.
Collapse
|
29
|
Xiao S, Diao H, Zhao F, Li R, He N, Ye X. Differential gene expression profiling of mouse uterine luminal epithelium during periimplantation. Reprod Sci 2013; 21:351-62. [PMID: 23885106 DOI: 10.1177/1933719113497287] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uterine luminal epithelium (LE) is critical for establishing uterine receptivity. Microarray analysis of gestation day 3.5 (D3.5, preimplantation) and D4.5 (postimplantation) LE from natural pregnant mice identified 382 upregulated and 245 downregulated genes in the D4.5 LE. Gene Ontology annotation grouped 186 upregulated and 103 downregulated genes into 22 and 15 enriched subcategories, respectively, in regulating DNA-dependent transcription, metabolism, cell morphology, ion transport, immune response, apoptosis, signal transduction, and so on. Signaling pathway analysis revealed 99 genes in 21 significantly changed signaling pathways, with 14 of these pathways involved in metabolism. In situ hybridization confirmed the temporal expression of 12 previously uncharacterized genes, including Atp6v0a4, Atp6v0d2, F3, Ggh, Tmprss11d, Tmprss13, Anpep, Fxyd4, Naip5, Npl, Nudt19, and Tpm1 in the periimplantation uterus. This study provides a comprehensive picture of the differentially expressed genes in the periimplantation LE to help understand the molecular mechanism of LE transformation upon establishment of uterine receptivity.
Collapse
Affiliation(s)
- Shuo Xiao
- 1Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Silva IH, Nogueira-Silva C, Figueiredo T, Lombo L, Faustino I, Catarino R, Nogueira A, Pereira D, Medeiros R. The impact of GGH -401C>T polymorphism on cisplatin-based chemoradiotherapy response and survival in cervical cancer. Gene 2013; 512:247-50. [DOI: 10.1016/j.gene.2012.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
|
31
|
Gonen N, Assaraf YG. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resist Updat 2012; 15:183-210. [DOI: 10.1016/j.drup.2012.07.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/25/2012] [Accepted: 07/11/2012] [Indexed: 01/19/2023]
|
32
|
Smit EF, Socinski MA, Mullaney BP, Myrand SP, Scagliotti GV, Lorigan P, Reck M, Ciuleanu T, von Pawel J, Karaseva NA, Szczesna A, Ohannesian D, Powell E, Hozak RR, Hong S, Guba SC, Thatcher N. Biomarker analysis in a phase III study of pemetrexed-carboplatin versus etoposide-carboplatin in chemonaive patients with extensive-stage small-cell lung cancer. Ann Oncol 2011; 23:1723-9. [PMID: 22186609 DOI: 10.1093/annonc/mdr563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Clinical results of a randomized phase III trial comparing pemetrexed-carboplatin (PC) with etoposide-carboplatin (EC) in chemonaive patients with extensive-stage disease small-cell lung cancer (ED-SCLC) resulted in trial closure for futility; biomarker analyses using immunohistochemistry (IHC) and single-nucleotide polymorphisms (SNPs) are described herein. PATIENTS AND METHODS Thymidylate synthase (TS), excision repair cross complementing-1 (ERCC1), glycinamide ribonucleotide formyltransferase (GARFT), and folylpolyglutamate synthetase (FPGS) were investigated using IHC (n=395). SNPs were genotyped for TS, FPGS, γ-glutamyl hydrolase (GGH), methylenetetrahydrofolate reductase (MTHFR), folate receptor-α FR-α, and solute carrier 19A1 (SLC19A1; n=611). RESULTS None of the IHC biomarkers (folate pathway or ERCC1) were found to be predictive or prognostic in this setting. rs2838952 (adjacent to SLC19A1) had significant treatment-independent association with overall survival (OS; hazard ratio 0.590, P=0.01). Nine GGH-associated SNPs interacted with rs3788205 (SLC19A1) for OS on the PC arm. rs12379987 (FPGS) interacted with treatment for OS (interaction P=0.036). CONCLUSION Potential ERCC1 and folate pathway IHC biomarkers failed to predict outcome in either study arm in ED-SCLC. SNPs in regions including FPGS and SLC19A1 and interacting SNPs in GGH and SLC19A1 were associated with differences in OS; however, none of these SNPs predicted for greater survival with PC over EC.
Collapse
Affiliation(s)
- E F Smit
- Department of Pulmonary Diseases, Vrije University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lyons PJ, Fricker LD. Carboxypeptidase O is a glycosylphosphatidylinositol-anchored intestinal peptidase with acidic amino acid specificity. J Biol Chem 2011; 286:39023-32. [PMID: 21921028 DOI: 10.1074/jbc.m111.265819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The first metallocarboxypeptidase (CP) was identified in pancreatic extracts more than 80 years ago and named carboxypeptidase A (CPA; now known as CPA1). Since that time, seven additional mammalian members of the CPA subfamily have been described, all of which are initially produced as proenzymes, are activated by endoproteases, and remove either C-terminal hydrophobic or basic amino acids from peptides. Here we describe the enzymatic and structural properties of carboxypeptidase O (CPO), a previously uncharacterized and unique member of the CPA subfamily. Whereas all other members of the CPA subfamily contain an N-terminal prodomain necessary for folding, bioinformatics and expression of both human and zebrafish CPO orthologs revealed that CPO does not require a prodomain. CPO was purified by affinity chromatography, and the purified enzyme was able to cleave proteins and synthetic peptides with greatest activity toward acidic C-terminal amino acids unlike other CPA-like enzymes. CPO displayed a neutral pH optimum and was inhibited by common metallocarboxypeptidase inhibitors as well as citrate. CPO was modified by attachment of a glycosylphosphatidylinositol membrane anchor to the C terminus of the protein. Immunocytochemistry of Madin-Darby canine kidney cells stably expressing CPO showed localization to vesicular membranes in subconfluent cells and to the plasma membrane in differentiated cells. CPO is highly expressed in intestinal epithelial cells in both zebrafish and human. These results suggest that CPO cleaves acidic amino acids from dietary proteins and peptides, thus complementing the actions of well known digestive carboxypeptidases CPA and CPB.
Collapse
Affiliation(s)
- Peter J Lyons
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
34
|
Cheng HL, Chiou SS, Liao YM, Chen YL, Wu SM. Genotyping of single nucleotide polymorphism in γ-glutamyl hydrolase gene by capillary electrophoresis. Electrophoresis 2011; 32:2021-7. [DOI: 10.1002/elps.201000422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 12/14/2022]
|
35
|
Correlation between polymorphisms of the reduced folate carrier gene (SLC19A1) and survival after pemetrexed-based therapy in non-small cell lung cancer: a North Central Cancer Treatment Group-based exploratory study. J Thorac Oncol 2010; 5:1346-53. [PMID: 20651609 DOI: 10.1097/jto.0b013e3181ec18c4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To correlate polymorphisms in genes involved in the transport, activation, and inactivation of pemetrexed with the outcome of patients with advanced non-small cell lung cancer (NSCLC) treated with pemetrexed. EXPERIMENTAL DESIGN Data from a phase II NSCLC trial evaluating the optimal schedule of gemcitabine and pemetrexed were used. All patients with available DNA were genotyped for polymorphisms in FPGS, GGH, and SLC19A1 genes. Patients with various genotypes were compared for efficacy and adverse events resulting from pemetrexed. RESULTS Fifty-four patients had genotype results for all polymorphisms studied. Patients with the homozygous variant genotypes for SLC19A1 IVS4(2117) C>T, IVS5(9148) C>A, and wild-type genotype for exon6(2522) C>T had a significantly better overall survival compared with their counterparts (median overall survival in months: 8.9 [CC] versus 14.0 [CT] versus 16.7 [TT]; 9.4 [CC] versus 10.3 [CA] versus 22.7 [AA]; and 22.7 [CC] versus 10.3 [CT] versus 9.4 [TT] respectively; all log rank p = 0.03). Patients with the heterozygous TC genotype for GGH IVS5(1042) T>C had greater rates of confirmed response + stable disease compared with the TT genotype (85% versus 60%; odds ratio = 4.0; p = 0.06). A greater risk for grade 3/4 SGPT (ALT) elevation was observed in patients heterozygous (GA) for the FPGS IVS1 (28) G>A polymorphism compared with the GG genotype (43% versus 13%; odds ratio = 5.0, p = 0.07). All results were largely consistent within patients with nonsquamous (n = 40) histology. CONCLUSION Polymorphisms in SLC1A91 seem to predict for survival differences in pemetrexed-treated NSCLC. Additionally, polymorphisms in GGH and FPGS have marginal associations with response and adverse event. These results should be validated in larger prospective studies using pemetrexed.
Collapse
|
36
|
Akhtar TA, Orsomando G, Mehrshahi P, Lara-Núñez A, Bennett MJ, Gregory JF, Hanson AD. A central role for gamma-glutamyl hydrolases in plant folate homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:256-66. [PMID: 21070406 DOI: 10.1111/j.1365-313x.2010.04330.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most cellular folates carry a short poly-γ-glutamate tail, and this tail is believed to affect their efficacy and stability. The tail can be removed by γ-glutamyl hydrolase (GGH; EC 3.4.19.9), a vacuolar enzyme whose role in folate homeostasis remains unclear. In order to probe the function of GGH, we modulated its level of expression and subcellular location in Arabidopsis plants and tomato fruit. Three-fold overexpression of GGH in vacuoles caused extensive deglutamylation of folate polyglutamates and lowered the total folate content by approximately 40% in Arabidopsis and tomato. No such effects were seen when GGH was overexpressed to a similar extent in the cytosol. Ablation of either of the major Arabidopsis GGH genes (AtGGH1 and AtGGH2) alone did not significantly affect folate status. However, a combination of ablation of one gene plus RNA interference (RNAi)-mediated suppression of the other (which lowered total GGH activity by 99%) increased total folate content by 34%. The excess folate accumulated as polyglutamate derivatives in the vacuole. Taken together, these results suggest a model in which: (i) folates continuously enter the vacuole as polyglutamates, accumulate there, are hydrolyzed by GGH, and exit as monoglutamates; and (ii) GGH consequently has an important influence on polyglutamyl tail length and hence on folate stability and cellular folate content.
Collapse
Affiliation(s)
- Tariq A Akhtar
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Organista-Nava J, Gómez-Gómez Y, Saavedra-Herrera MV, Rivera-Ramírez AB, Terán-Porcayo MA, Alarcón-Romero LDC, Illades-Aguiar B, Leyva-Vázquez MA. Polymorphisms of the gamma-glutamyl hydrolase gene and risk of relapse to acute lymphoblastic leukemia in Mexico. Leuk Res 2010; 34:728-32. [PMID: 20197200 DOI: 10.1016/j.leukres.2009.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/29/2009] [Accepted: 11/29/2009] [Indexed: 11/28/2022]
Abstract
This study evaluated the association of -401C/T and +452C/T polymorphisms of gamma-glutamyl hydrolase and the risk of relapse to acute lymphoblastic leukemia. Genotyping was performed in 70 children with acute lymphoblastic leukemia and 140 healthy children. An association between the -401C/T polymorphism and the risk of relapse was found (p=0.028), patients with the -401T/T genotype have 10.83 (95% CI 1.30-90.14) more chance of a relapse of leukemia. No association was found between the +452C/T polymorphism and the risk of relapse. Therefore, our investigation suggests that the -401C/T polymorphism in the gamma-glutamyl hydrolase may be a factor involved in the generation of relapse to disease in patients with ALL.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Ciudad Universitaria, Chilpancingo, Guerrero, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jin M, Kawakami K, Fukui Y, Tsukioka S, Oda M, Watanabe G, Takechi T, Oka T, Minamoto T. Different histological types of non-small cell lung cancer have distinct folate and DNA methylation levels. Cancer Sci 2009; 100:2325-30. [PMID: 19764999 PMCID: PMC11158336 DOI: 10.1111/j.1349-7006.2009.01321.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant DNA methylation is a commonly observed epigenetic change in lung cancer. Folate has been suggested to play a role in the homeostasis of DNA methylation and has also been implicated in cancer chemotherapy. We investigated a possible role for folate in DNA methylation by measuring folate concentrations in tumors and adjacent normal tissues from 72 non-small cell lung cancer (NSCLC) patients. These were compared to DNA methylation levels and to clinicopathological features. Folate concentrations were determined as the sum of 5,10-methylenetetrahydrofolate and tetrahydrofolate. The MethyLight assay was used to quantitate methylation in promoter regions of P16(CDKN2A), APC, CDH13, RARB, RASSF1, RUNX3, and MYOD1. Methylation of LINE-1 repeats was used as a surrogate for global methylation. Folate levels in tumors correlated positively with LINE-1, CDH13, and RUNX3 methylation. Folate concentrations and methylation of LINE-1, RASSF1, and RUNX3 were significantly higher in adenocarcinoma compared to squamous cell carcinoma (SCC). Two sets of array-based data retrieved from the Gene Expression Omnibus consistently showed that expression of FOLR1, a folate transport enzyme, and GGH, an enzyme that prevents folate retention, were higher and lower, respectively, in adenocarcinomas compared to SCC. This was independently validated by quantitative RT-PCR in 26 adenocarcinomas and 13 SCC. Our results suggest that folate metabolism plays a role in aberrant DNA methylation in NSCLC. The histological subtype differences in folate concentration and DNA methylation observed here were associated with distinct expression patterns for folate metabolizing enzymes. These findings may have clinical applications for histology-directed chemotherapy with fluoropyrimidine and anti-folates in NSCLC.
Collapse
Affiliation(s)
- Mingji Jin
- Division of Translational and Clinical Oncology, Molecular and Cellular Targeting Translational Oncology Center, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sadahiro S, Suzuki T, Maeda Y, Tanaka A, Ogoshi K, Kamijo A, Murayama C, Tsukioka S, Sakamoto E, Fukui Y, Oka T. Molecular determinants of folate levels after leucovorin administration in colorectal cancer. Cancer Chemother Pharmacol 2009; 65:735-42. [DOI: 10.1007/s00280-009-1079-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
|
40
|
Vergote I, Calvert H, Kania M, Kaiser C, Zimmermann AH, Sehouli J. A randomised, double-blind, phase II study of two doses of pemetrexed in the treatment of platinum-resistant, epithelial ovarian or primary peritoneal cancer. Eur J Cancer 2009; 45:1415-23. [DOI: 10.1016/j.ejca.2008.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 11/27/2022]
|
41
|
Kao TT, Chang WN, Wu HL, Shi GY, Fu TF. Recombinant zebrafish {gamma}-glutamyl hydrolase exhibits properties and catalytic activities comparable with those of mammalian enzyme. Drug Metab Dispos 2009; 37:302-9. [PMID: 19005029 DOI: 10.1124/dmd.108.024042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A cDNA encoding for zebrafish gamma-glutamyl hydrolase (gammaGH) was cloned and inserted into a pET43.1a vector via SmaI and EcoRI sites and expressed in Rosetta (DE3) cells as a Nus-His-tag fusion enzyme (NH-zgammaGH). After induction with isopropyl thiogalactoside, the enzyme was purified with a Ni-Sepharose column, and approximately 8 mg of pure enzyme was obtained per liter of culture. The primary sequence of the recombinant zgammaGH was similar to mammalian gammaGH. Thrombin digestion of this NH-zgammaGH fusion protein resulted in zgammaGH with approximately 2-fold higher catalytic activity compared with the NH-zgammaGH fusion enzyme. This recombinant zgammaGH is active and exhibits comparable endopeptidase activity with folate substrate and antifolate drug methotrexate. Use of this recombinant zgammaGH significantly increased efficiency in folylpolyglutamate hydrolysis for folate analysis compared with current protocols.
Collapse
Affiliation(s)
- Tseng-Ting Kao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Hall SL, Hester S, Griffin JL, Lilley KS, Jackson AP. The organelle proteome of the DT40 lymphocyte cell line. Mol Cell Proteomics 2009; 8:1295-305. [PMID: 19181659 DOI: 10.1074/mcp.m800394-mcp200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major challenge in eukaryotic cell biology is to understand the roles of individual proteins and the subcellular compartments in which they reside. Here, we use the localization of organelle proteins by isotope tagging technique to complete the first proteomic analysis of the major organelles of the DT40 lymphocyte cell line. This cell line is emerging as an important research tool because of the ease with which gene knockouts can be generated. We identify 1090 proteins through the analysis of preparations enriched for integral membrane or soluble and peripherally associated proteins and localize 223 proteins to the endoplasmic reticulum, Golgi, lysosome, mitochondrion, or plasma membrane by matching their density gradient distributions to those of known organelle residents. A striking finding is that within the secretory and endocytic pathway a high proportion of proteins are not uniquely localized to a single organelle, emphasizing the dynamic steady-state nature of intracellular compartments in eukaryotic cells.
Collapse
Affiliation(s)
- Stephanie L Hall
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Majumdar D, Alexander MD, Coward JK. Synthesis of isopeptide epoxide peptidomimetics. J Org Chem 2009; 74:617-27. [PMID: 19086784 DOI: 10.1021/jo801907p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two epoxide-containing peptidomimetics of the isopeptide, glutamyl-gamma-glutamate, have been synthesized via a route that should be generally applicable to the synthesis of isopeptide analogues in which an oxirane replaces the scissile peptide bond. Enzymes that catalyze the hydrolysis of peptides and isopeptides are often susceptible to inactivation by electrophilic substrate analogues. In this research, an epoxide was installed as an electrophilic replacement of the scissile isopeptide bond. The C-terminal glutamyl mimic was accessed by the stereospecific synthesis of suitably substituted cyclopentenes, 8 and 10, as surrogates for either the L- or D-enantiomer. The enantiomeric cyclopentenes were further elaborated to incorporate an appended sulfone that was reacted with a suitably protected glutamyl-gamma-semialdehyde in a Julia-Kocienski olefination reaction. This olefination afforded predominantly the desired E-olefin isosteres of L-glutamyl-gamma-D-glutamate and L-glutamyl-gamma-L-glutamate, following which peracid-mediated epoxidation and deprotection provided the epoxide-containing peptidomimetics, 4 and 5.
Collapse
Affiliation(s)
- Debatosh Majumdar
- Departments of Medicinal Chemistry and Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
44
|
Wang Y, Ao X, Vuong H, Konanur M, Miller FR, Goodison S, Lubman DM. Membrane glycoproteins associated with breast tumor cell progression identified by a lectin affinity approach. J Proteome Res 2008; 7:4313-25. [PMID: 18729497 DOI: 10.1021/pr8002547] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The membrane glycoprotein component of the cellular proteome represents a promising source for potential disease biomarkers and therapeutic targets. Here we describe the development of a method that facilitates the analysis of membrane glycoproteins and apply it to the differential analysis of breast tumor cells with distinct malignant phenotypes. The approach combines two membrane extraction procedures, and enrichment using ConA and WGA lectin affinity columns, prior to digestion and analysis by LC-MS/MS. The glycoproteins are identified and quantified by spectral counting. Although the distribution of glycoprotein expression as a function of MW and p I was very similar between the two related cell lines tested, the approach enabled the identification of several distinct membrane glycoproteins with an expression index correlated with either a precancerous (MCF10AT1), or a malignant, metastatic cellular phenotype (MCF10CA1a). Among the proteins associated with the malignant phenotype, Gamma-glutamyl hydrolase, CD44, Galectin-3-binding protein, and Syndecan-1 protein have been reported as potential biomarkers of breast cancer.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Low expression of gamma-glutamyl hydrolase mRNA in primary colorectal cancer with the CpG island methylator phenotype. Br J Cancer 2008; 98:1555-61. [PMID: 18414409 PMCID: PMC2391094 DOI: 10.1038/sj.bjc.6604346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The CpG island methylator phenotype (CIMP+) in colorectal cancer (CRC) is defined as concomitant and frequent hypermethylation of CpG islands within gene promoter regions. We previously demonstrated that CIMP+ was associated with elevated concentrations of folate intermediates in tumour tissues. In the present study, we investigated whether CIMP+ was associated with a specific mRNA expression pattern for folate- and nucleotide-metabolising enzymes. An exploratory study was conducted on 114 CRC samples from Australia. mRNA levels for 17 genes involved in folate and nucleotide metabolism were measured by real-time RT-PCR. CIMP+ was determined by real-time methylation-specific PCR and compared to mRNA expression. Candidate genes showing association with CIMP+ were further investigated in a replication cohort of 150 CRC samples from Japan. In the exploratory study, low expression of γ-glutamyl hydrolase (GGH) was strongly associated with CIMP+ and CIMP+-related clinicopathological and molecular features. Trends for inverse association between GGH expression and the concentration of folate intermediates were also observed. Analysis of the replication cohort confirmed that GGH expression was significantly lower in CIMP+ CRC. Promoter hypermethylation of GGH was observed in only 5.6% (1 out of 18) CIMP+ tumours and could not account for the low expression level of this gene. CIMP+ CRC is associated with low expression of GGH, suggesting involvement of the folate pathway in the development and/or progression of this phenotype. Further studies of folate metabolism in CIMP+ CRC may help to elucidate the aetiology of these tumours and to predict their response to anti-folates and 5-fluorouracil/leucovorin.
Collapse
|
46
|
Underhill C, Goldstein D, Gorbounova VA, Biakhov MY, Bazin IS, Granov DA, Hossain AM, Blatter J, Kaiser C, Ma D. A randomized phase II trial of pemetrexed plus irinotecan (ALIRI) versus leucovorin-modulated 5-FU plus irinotecan (FOLFIRI) in first-line treatment of locally advanced or metastatic colorectal cancer. Oncology 2008; 73:9-20. [PMID: 18334829 DOI: 10.1159/000120626] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 07/31/2007] [Indexed: 01/27/2023]
Abstract
BACKGROUND This multicenter, randomized trial compared overall response rate between pemetrexed plus irinotecan (ALIRI) and leucovorin-modulated 5-fluorouracil plus irinotecan (FOLFIRI) in patients with advanced colorectal cancer. Secondary objectives included overall and progression-free survival, duration of response, toxicities, and biomarkers. PATIENTS AND METHODS ALIRI patients received pemetrexed 500 mg/m(2) and irinotecan 350 mg/m(2) with vitamin supplementation on day 1 of each 21-day cycle. FOLFIRI patients received irinotecan 180 mg/m(2) on days 1, 15, 29; on days 1, 2, 15, 16, 29, 30, patients received leucovorin 200 mg/m(2), bolus 5-fluorouracil 400 mg/m(2), and 5-fluorouracil 600 mg/m(2) as 22-hour infusion. RESULTS Of 132 patients randomly assigned, 130 patients (64 = ALIRI, 66 = FOLFIRI) received > or =1 dose of treatment. Response rates (ALIRI = 20.0%, FOLFIRI = 33.3%) were not significantly different between arms (p = 0.095). Progression-free survival was 5.7 months for ALIRI and 7.7 months for FOLFIRI (p < 0.001). Neutropenia, fatigue, diarrhea, nausea, and vomiting were the major toxicities. There were 5 drug-related deaths (ALIRI = 4, FOLFIRI = 1). Biomarker analysis failed to reveal that any of the 18 preselected genes were clearly associated with tumor response. CONCLUSIONS Neither efficacy nor safety improved on the ALIRI arm compared to the FOLFIRI arm. Progression-free survival on FOLFIRI was significantly longer compared to ALIRI. Potential biomarkers capable of predicting response to either regimen in advanced or metastatic colorectal carcinoma need further characterization.
Collapse
|
47
|
Coward JK, McGuire JJ. Mechanism‐Based Inhibitors of Folylpoly‐γ‐Glutamate Synthetase and γ‐Glutamyl Hydrolase: Control of Folylpoly‐γ‐Glutamate Homeostasis as a Drug Target. FOLIC ACID AND FOLATES 2008; 79:347-73. [DOI: 10.1016/s0083-6729(08)00412-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther 2007; 6:404-17. [PMID: 17308042 DOI: 10.1158/1535-7163.mct-06-0343] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pemetrexed is a new-generation antifolate, approved for the treatment of mesothelioma and non-small cell lung cancer, currently being evaluated for the treatment of a variety of other solid tumors. This review traces the history of antifolates that led to the development of pemetrexed and describes the unique properties of this agent that distinguish it from other antifolates. These include (a) its very rapid conversion to active polyglutamate derivatives in cells that build to high levels and are retained for long intervals to achieve prolonged and potent inhibition of its major target enzyme thymidylate synthase, (b) its high affinity for three folate transporters, and (c) its marked sensitivity to the level of physiologic folates in cells. The latter results in the unique and paradoxical finding that when transport mediated by the major folate transporter (the reduced folate carrier) is impaired, pemetrexed activity is preserved. This is due to concurrent contraction of competing cellular physiologic folates and utilization of a novel second transport carrier for which pemetrexed has high affinity, recently identified as the proton-coupled folate transporter (PCFT). Laboratory studies are reviewed that raise the possibility of new approaches to the use of folic acid supplementation in clinical regimens with pemetrexed.
Collapse
Affiliation(s)
- Shrikanta Chattopadhyay
- Departments of Medicine and Molecular Pharmacology, The Albert Einstein College of Medicine Cancer Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
49
|
Abstract
Folates play a key role in one-carbon metabolism essential for the biosynthesis of purines, thymidylate and hence DNA replication. The antifolate methotrexate has been rationally-designed nearly 60 years ago to potently block the folate-dependent enzyme dihydrofolate reductase (DHFR) thereby achieving temporary remissions in childhood acute leukemia. Recently, the novel antifolates raltitrexed and pemetrexed that target thymidylate synthase (TS) and glycineamide ribonucleotide transformylase (GARTF) were introduced for the treatment of colorectal cancer and malignant pleural mesothelioma. (Anti)folates are divalent anions which predominantly use the reduced folate carrier (RFC) for their cellular uptake. (Anti)folates are retained intracellularly via polyglutamylation catalyzed by folylpoly-gamma-glutamate synthetase (FPGS). As the intracellular concentration of antifolates is critical for their pharmacologic activity, polyglutamylation is a key determinant of antifolate cytotoxicity. However, anticancer drug resistance phenomena pose major obstacles towards curative cancer chemotherapy. Pre-clinical and clinical studies have identified a plethora of mechanisms of antifolate-resistance; these are frequently associated with qualitative and/or quantitative alterations in influx and/or efflux transporters of (anti)folates as well as in folate-dependent enzymes. These include inactivating mutations and/or down-regulation of the RFC and various alterations in the target enzymes DHFR, TS and FPGS. Furthermore, it has been recently shown that members of the ATP-binding cassette (ABC) superfamily including multidrug resistance proteins (MRP/ABCC) and breast cancer resistance protein (BCRP/ABCG2) are low affinity, high capacity ATP-driven (anti)folate efflux transporters. This transport activity is in addition to their established facility to extrude multiple cytotoxic agents. Hence, by actively extruding antifolates, overexpressed MRPs and/or BCRP confer antifolate resistance. Moreover, down-regulation of MRPs and/or BCRP results in decreased folate efflux thereby leading to expansion of the intracellular folate pool and antifolate resistance. This chapter reviews and discusses the panoply of molecular modalities of antifolate-resistance in pre-clinical tumor cell systems in vitro and in vivo as well as in cancer patients. Currently emerging novel strategies for the overcoming of antifolate-resistance are presented. Finally, experimental evidence is provided that the identification and characterization of the molecular mechanisms of antifolate-resistance may prove instrumental in the future development of rationally-based novel antifolates and strategies that could conceivably overcome drug-resistance phenomena.
Collapse
Affiliation(s)
- Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|