1
|
Eggermont L, Lumen N, Van Praet C, Delanghe J, Rottey S, Vermassen T. A comprehensive view of N-glycosylation as clinical biomarker in prostate cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189239. [PMID: 39672278 DOI: 10.1016/j.bbcan.2024.189239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alterations in the prostate cancer (PCa) N-glycome have gained attention as a potential biomarker. This comprehensive review explores the diversity of N-glycosylation patterns observed in PCa-related cell lines, tissue, serum and urine, focusing on prostate-specific antigen (PSA) and the total pool of glycoproteins. Within the context of PCa, altered N-glycosylation patterns are a mechanism of immune escape and a disruption in normal glycoprotein distribution and trafficking. Glycoproteins with PCa-induced N-glycosylation patterns tend to accumulate in prostate tissue and the bloodstream, thereby diminishing N-glycan proportions in urine. Based on literary observations, aberrations in N-glycan branching are probably a characteristic of metabolic reprogramming and (chronic) inflammation. Changes in (core) fucosylation, specific N-glycosylation structures (such as N,N'-diacetyllactosamine) and high-mannose glycans otherwise are more likely indicators of cancer development and progression. Further investigation into these PCa-specific alterations holds promise in the discovery of new diagnostic, prognostic and response prediction biomarkers in PCa.
Collapse
Affiliation(s)
- Lissa Eggermont
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Nicolaas Lumen
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Urology, Ghent University Hospital, Ghent, Belgium; Uro-Oncology research group, Dept. Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Charles Van Praet
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Urology, Ghent University Hospital, Ghent, Belgium; Uro-Oncology research group, Dept. Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Joris Delanghe
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sylvie Rottey
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Drug Research Unit Ghent, Ghent University Hospital, Ghent, Belgium
| | - Tijl Vermassen
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
2
|
Kekki H, Montoya Perez I, Taimen P, Boström PJ, Gidwani K, Pettersson K. Lectin-nanoparticle concept for free PSA glycovariant providing superior cancer specificity. Clin Chim Acta 2024; 559:119689. [PMID: 38677453 DOI: 10.1016/j.cca.2024.119689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Using lectins to target cancer-associated modifications of PSA glycostructure for identification of clinically significant prostate cancers, e.g., Gleason score (GS) ≥ 7, from benign and indolent cancers (GS 6), is highly promising yet technically challenging. From previous findings to quantify increased PSA fucosylation in urine, we set out to construct a robust, specific test concept suitable for plasma samples. METHODS Macrophage galactose-binding lectin (MGL) coupled to 100 nm Eu3 + -nanoparticles was used to probe PSA captured from cancer cell lines, seminal plasma, and plasma samples from 249 patients with a clinical suspicion of prostate cancer onto 3 mm dense spots of free PSA antibody fab fragments. Results were compared to four kallikrein tests: tPSA, fPSA, iPSA and hK2. RESULTS The fPSAMGLglycovariant provided superior discrimination of the GS ≥ 7 and benign + GS 6 groups (p 0.0003) compared to fPSA (NS). The corresponding AUC in ROC analysis was 0.70 compared to 0.66 for tPSA. In contrast to all four kallikrein tests, the fPSAMGLGV was independent of prostate gland volume. Using a logistic regression analysis the fPSAMGLGV significantly improved on the four-kallikrein model. CONCLUSIONS Due to Eu-nanoparticles and a dense fPSA capture spot, the fPSAMGL glycovariant identifies an fPSA subform with the highest cancer specificity compared to the four conventional kallikreins.
Collapse
Affiliation(s)
- H Kekki
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland.
| | - I Montoya Perez
- Department of Diagnostic Radiology, University of Turku, Turku, Finland; Department of Computing, University of Turku, Turku, Finland
| | - P Taimen
- Institute of Biomedicine, Department of Pathology, University of Turku, Turku University Hospital, Turku, Finland
| | - P J Boström
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - K Gidwani
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland
| | - K Pettersson
- Biotechnology Unit, Department of Life Technologies, University of Turku, Finland
| |
Collapse
|
3
|
Wu J, Liu J, Sun H, Xing T, Liu X, Song D. Absolute quantification methods for Prostate-Specific antigen by Isotope-Dilution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124112. [PMID: 38691944 DOI: 10.1016/j.jchromb.2024.124112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Prostate-specific antigen (PSA) is a diagnostic marker for prostate cancer; however, because it is a macromolecular glycoprotein with complex and diverse isoforms, it is difficult to standardize clinical PSA detection results. To overcome this limitation, herein, naturally extracted PSA was characterized as free PSA (fPSA), and the PSA solution was successfully quantified by amino acid analysis coupled with isotope-dilution mass spectrometry (AAA-IDMS) and enzymatic hydrolysis-IDMS; the results could be traced to the International System of Units (SI) through absolutely quantified amino acids and peptides. After protein hydrolysis or digestion condition optimization, amino acids and signature peptides were detected by liquid chromatography-mass spectrometry with the multiple reaction monitoring mode. The mass concentrations of PSA obtained through AAA-IDMS and enzymatic hydrolysis-IDMS were (75.3 ± 1.5) µg/g (k = 2) and (74.7 ± 1.7) µg/g (k = 2), respectively. The PSA weighted average mass concentration was (75.0 ± 1.6) µg/g (k = 2). The consistency assessment between the two methods was successfully validated, ensuring absolute quantitative accuracy. This study lays the foundation for the development of high-order reference materials for the clinical detection of PSA, which can improve the accuracy, reliability, and consistency of clinical PSA test results.
Collapse
Affiliation(s)
- Jianhui Wu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China; School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianyi Liu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China; School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haofeng Sun
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China; School of Chemical and Engineering, Nanjing University of Science and Technology, Jiangsu 210094, China
| | - Tongtong Xing
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China; School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Liu
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dewei Song
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
4
|
Hartig J, Young LEA, Grimsley G, Mehta AS, Ippolito JE, Leach RJ, Angel PM, Drake RR. The glycosylation landscape of prostate cancer tissues and biofluids. Adv Cancer Res 2024; 161:1-30. [PMID: 39032948 DOI: 10.1016/bs.acr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.
Collapse
Affiliation(s)
- Jordan Hartig
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - Joseph E Ippolito
- Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Robin J Leach
- University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Peggi M Angel
- Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
5
|
White MEH, Sinn LR, Jones DM, de Folter J, Aulakh SK, Wang Z, Flynn HR, Krüger L, Tober-Lau P, Demichev V, Kurth F, Mülleder M, Blanchard V, Messner CB, Ralser M. Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics. Nat Biomed Eng 2024; 8:233-247. [PMID: 37474612 PMCID: PMC10963274 DOI: 10.1038/s41551-023-01067-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.
Collapse
Affiliation(s)
- Matthew E H White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ludwig R Sinn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Marc Jones
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Joost de Folter
- Software Engineering and Artificial Intelligence Technology Platform, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ziyue Wang
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High-throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Precision Proteomic Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
6
|
Rahman SFA, Arshad MKM, Gopinath SCB, Fathil MFM, Sarry F, Ibau C, Elmazria O, Hage-Ali S. Interdigitated impedimetric-based Maackia amurensis lectin biosensor for prostate cancer biomarker. Mikrochim Acta 2024; 191:118. [PMID: 38296851 DOI: 10.1007/s00604-024-06189-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/01/2024] [Indexed: 02/02/2024]
Abstract
Highly specific detection of tumor-associated biomarkers remains a challenge in the diagnosis of prostate cancer. In this research, Maackia amurensis (MAA) was used as a recognition element in the functionalization of an electrochemical impedance-spectroscopy biosensor without a label to identify cancer-associated aberrant glycosylation prostate-specific antigen (PSA). The lectin was immobilized on gold-interdigitated microelectrodes. Furthermore, the biosensor's impedance response was used to assess the establishment of a complex binding between MAA and PSA-containing glycans. With a small sample volume, the functionalized interdigitated impedimetric-based (IIB) biosensor exhibited high sensitivity, rapid response, and repeatability. PSA glycoprotein detection was performed by measuring electron transfer resistance values within a concentration range 0.01-100 ng/mL, with a detection limit of 3.574 pg/mL. In this study, the ability of MAA to preferentially recognize α2,3-linked sialic acid in serum PSA was proven, suggesting a potential platform for the development of lectin-based, miniaturized, and cost effective IIB biosensors for future disease detection.
Collapse
Affiliation(s)
- Siti Fatimah Abd Rahman
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mohd Khairuddin Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia.
- Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Centre of Excellence for Micro System Technology (MiCTEC), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
| | | | - Frédéric Sarry
- Université de Lorraine, CNRS, IJL, F-54000, Nancy, France
| | - Conlathan Ibau
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
| | - Omar Elmazria
- Université de Lorraine, CNRS, IJL, F-54000, Nancy, France
| | - Sami Hage-Ali
- Université de Lorraine, CNRS, IJL, F-54000, Nancy, France
| |
Collapse
|
7
|
Benidir T, Lone Z, Wood A, Abdallah N, Campbell R, Bajic P, Purysko A, Nguyen JK, Kaouk J, Haber GP, Eltemamy M, Stein R, Haywood S, Klein EA, Almassi N, Campbell SC, Abouassaly R, Weight CJ. Using IsoPSA With Prostate Imaging Reporting and Data System Score May Help Refine Biopsy Decision Making in Patients With Elevated PSA. Urology 2023; 176:115-120. [PMID: 36965817 DOI: 10.1016/j.urology.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
OBJECTIVE To assess how IsoPSA, a structure-based serum assay which has been prospectively validated in detecting clinically significant prostate cancer (csPCa), can help the biopsy decision process when combined with the prostate imaging reporting and data systems (PI-RADS). MATERIALS AND METHODS This was a single-center retrospective review of prospectively collected data on patients receiving IsoPSA testing for elevated PSA (>4.0ng/mL). Patients were included if they had received an IsoPSA test and prostate MRI within 1 year of IsoPSA testing, and subsequently underwent prostate biopsy. Multivariable logistic regression was used to identify predictors of (csPCa, ie, GG ≥ 2) on biopsy. Predictive probabilities for csPCa at biopsy were generated using IsoPSA and various PI-RADS scores. RESULTS Two hundred and 7 patients were included. Twenty-two percent had csPCa. Elevated IsoPSA ratio (defined as ≥6.0) (OR: 5.06, P = .015) and a PI-RADS 4-5 (OR: 6.37, P <.001) were significant predictors of csPCa. The combination of elevated IsoPSA ratio and PI-RADS 4-5 lesion had the highest area under the curve (AUC) (AUC: 0.83, P <.001). The predicted probability of csPCa when a patient had a negative or equivocal MRI (PI-RADS 1-3) and a low IsoPSA ratio (≤6) was <5%. CONCLUSION The combination of PI-RADS with IsoPSA ratios may help refine the biopsy decision-making process. In our cohort, a negative or equivocal MRI with a low IsoPSA may provide a low enough predicted probability to omit biopsy in such patients.
Collapse
Affiliation(s)
- Tarik Benidir
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH.
| | - Zaeem Lone
- School of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Andrew Wood
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Nour Abdallah
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Rebecca Campbell
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Petar Bajic
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Andrei Purysko
- Department of Radiology, Imaging Institute, Cleveland Clinic, OH
| | - Jane K Nguyen
- Department of Pathology, Robert J. Tomisch Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Jihad Kaouk
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | | | - Mohamed Eltemamy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Robert Stein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Samuel Haywood
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Eric A Klein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Nima Almassi
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Steven C Campbell
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | - Robert Abouassaly
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland, OH
| | | |
Collapse
|
8
|
Olejnik B, Ferens-Sieczkowska M. Seminal Plasma Glycoproteins as Potential Ligands of Lectins Engaged in Immunity Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10489. [PMID: 36078205 PMCID: PMC9518496 DOI: 10.3390/ijerph191710489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15-20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important for successful fertilization. In recent years, more attention has been paid to male infertility factors, including the impact of seminal plasma components on regulation of the female immune response to allogenic sperm, embryo and fetal antigens. Directing this response to the tolerogenic pathway is crucial to achieve a healthy pregnancy. According to the fetoembryonic defense hypothesis, the regulatory mechanism may be associated with the interaction of lectins and immunomodulatory glycoepitopes. Such interactions may involve lectins of dendritic cells and macrophages, recruited to the cervical region immediately after intercourse. Carbohydrate binding receptors include C type lectins, such as DC-SIGN and MGL, as well as galectins and siglecs among others. In this article we discuss the expression of the possible lectin ligands, highly fucosylated and high mannose structures, which may be recognized by DC-SIGN, glycans of varying degrees of sialylation, which may differ in their interaction with siglecs, as well as T and Tn antigens in O-glycans.
Collapse
|
9
|
Liu S, Yu Y, Wang Y, Zhu B, Han B. COLGALT1 is a potential biomarker for predicting prognosis and immune responses for kidney renal clear cell carcinoma and its mechanisms of ceRNA networks. Eur J Med Res 2022; 27:122. [PMID: 35842702 PMCID: PMC9287979 DOI: 10.1186/s40001-022-00745-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background As precision medicine gradually played an inaccessible role in cancer treatment, there was an urgent need to explore biomarkers or signatures for predicting cancer prognosis. Currently, little was known about the associations between COLGALT1 and kidney renal clear cell carcinoma (KIRC). Hence, this study was performed to reveal its roles in KIRC and to identify potential mechanisms of competing endogenous RNA (ceRNA) networks. Methods R 4.1.1 software was utilized to conduct bioinformatics analyses with the data derived from online databases. Difference analysis, survival analysis, univariate/multivariate cox regression analysis and correlation analysis were carried out successively in this article. Besides, we also investigated potential effects and mechanisms of COLGALT1 in KIRC. Results COLGALT1 expression was overexpressed in KIRC samples compared with the normal samples and it was associated with poor OS (P < 0.001). COLGALT1 was also found to be significantly related to clinicopathological characteristics such as grade, T, N, M, stage and Cox regression analysis with univariate and multivariate data suggested it might be an independent prognostic parameter in KIRC (P < 0.001). Furthermore, Seven significantly enriched pathways were identified. Interestingly, correlation analyses revealed an association between COLGALT1 and microsatellite instability (MSI), tumor mutational burden (TMB) and immunity (P < 0.001). In addition, we used TIDE and TCIA databases to predict the immune response of COLGALT1 in KIRC and it suggested low expression of COLGALT1 is more likely to benefit from immunotherapy. Besides, we identified a ceRNA network of SLC16A1-AS1/hsa-mir-502-3p/COLGALT1 for its potential mechanism. Finally, experiments in vitro indicated that COLGALT1 was significantly related to cell proliferation. Conclusions COLGALT1 could act as a valid immune-related prognostic indicator for KIRC and participated in a ceRNA network of SLC16A1-AS1/hsa-mir-502-3p/COLGALT1, offering one potential biomarker to investigate the mechanism and clinical therapeutic value of KIRC. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00745-5.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Jiangsu Province, Nantong, 226001, China.,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong), Jiangsu Province, Nantong, 226001, China.
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China. .,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
10
|
Elevated IsoPSA Selects for Clinically Significant Prostate Cancer Without a Preference for Any Particular Adverse Histopathologic or Radiographic Feature. Urology 2022; 168:150-155. [DOI: 10.1016/j.urology.2022.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 01/04/2023]
|
11
|
Haga Y, Ueda K. Glycosylation in cancer: its application as a biomarker and recent advances of analytical techniques. Glycoconj J 2022; 39:303-313. [DOI: 10.1007/s10719-022-10043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
12
|
Lamarre M, Tremblay T, Bansept MA, Robitaille K, Fradet V, Giguère D, Boudreau D. A glycan-based plasmonic sensor for prostate cancer diagnosis. Analyst 2021; 146:6852-6860. [PMID: 34623365 DOI: 10.1039/d1an00789k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostate cancer affects thousands of men who undergo clinical screening tests every year. The main biomarker used for the diagnosis of prostate cancer, prostate specific antigen (PSA), presents limitations that justify investigating new biomarkers to improve reliability. Antibodies against the tumor-associated carbohydrate antigen (Tn), or TACA, develop early in carcinogenesis, making them an interesting alternative as a target for prostate cancer diagnostics. In this work, the Tn antigen was synthesized and immobilized on a surface plasmon resonance sensor coated with a polydopamine/polyethylene oxide mixed layer used both as an anchoring surface for Tn capture moieties and to minimize surface fouling. The sensor could be regenerated and reused at least 60 times without any significant loss in sensitivity. Anti-Tn antibodies were detected in the 0-10 nM concentration range with detection limits of 0.1 and 0.3 nM in spiked buffer solutions and diluted human blood serum samples, respectively. Finally, as a proof-of-concept, this carbohydrate-based sensor was used to successfully discriminate blood serum samples from prostate cancer-free and prostate cancer patients.
Collapse
Affiliation(s)
- Mathieu Lamarre
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| | - Thomas Tremblay
- Department of Chemistry, Université Laval, Québec, QC, Canada.
| | - Marc-Antoine Bansept
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| | - Karine Robitaille
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Oncology Division, Quebec, QC, Canada
| | - Vincent Fradet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Oncology Division, Quebec, QC, Canada.,Faculty of Medicine, Department of Surgery, Université Laval, Québec, QC, Canada.,Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Denis Giguère
- Department of Chemistry, Université Laval, Québec, QC, Canada.
| | - Denis Boudreau
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| |
Collapse
|
13
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
14
|
Abd Rahman SF, Md Arshad MK, Gopinath SCB, Fathil MFM, Sarry F, Ibau C. Glycosylated biomarker sensors: advancements in prostate cancer diagnosis. Chem Commun (Camb) 2021; 57:9640-9655. [PMID: 34473143 DOI: 10.1039/d1cc03080a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer is currently diagnosed using the conventional gold standard methods using prostate-specific antigen (PSA) as the selective biomarker. However, lack of precision in PSA screening has resulted in needless biopsies and delays the treatment of potentially fatal prostate cancer. Thus, identification of glycans as novel biomarkers for the early detection of prostate cancer has attracted considerable attention due to their reliable diagnostic platform compared with the current PSA systems. Therefore, biosensing technologies that provide point-of-care diagnostics have demonstrated the ability to detect various analytes, including glycosylated micro- and macro-molecules, thereby enabling versatile detection methodologies. This highlight article discusses recent advances in the biosensor-based detection of prostate cancer glycan biomarkers and the innovative strategies for the conjugation of nanomaterials adapted to biosensing platforms. Finally, the article is concluded with prospects and challenges of prostate cancer biosensors and recommendations to overcome the issues associated with prostate cancer diagnosis.
Collapse
Affiliation(s)
- Siti Fatimah Abd Rahman
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.
| | - Mohd Khairuddin Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia. .,Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia. .,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | | | - Frédéric Sarry
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Conlathan Ibau
- Institute of Nano Optoelectronics Research and Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
15
|
Abd Rahman SF, Khairuddin Md Arshad M, Gopinath SC, Faris Mohamad Fathil M, Sarry F, Md Nor MN. Impedimetric Lectin Biosensor for Prostate Cancer Detection. 2021 IEEE INTERNATIONAL CONFERENCE ON SENSORS AND NANOTECHNOLOGY (SENNANO) 2021. [DOI: 10.1109/sennano51750.2021.9642659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Glycosylation: Rising Potential for Prostate Cancer Evaluation. Cancers (Basel) 2021; 13:cancers13153726. [PMID: 34359624 PMCID: PMC8345048 DOI: 10.3390/cancers13153726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Aberrant protein glycosylation is a well-known hallmark of cancer and is associated with differential expression of enzymes such as glycosyltransferases and glycosidases. The altered expression of the enzymes triggers cancer cells to produce glycoproteins with specific cancer-related aberrations in glycan structures. Increasing number of data indicate that glycosylation patterns of PSA and other prostate-originated proteins exert a potential to distinguish between benign prostate disease and cancer as well as among different stages of prostate cancer development and aggressiveness. This review summarizes the alterations in glycan sialylation, fucosylation, truncated O-glycans, and LacdiNAc groups outlining their potential applications in non-invasive diagnostic procedures of prostate diseases. Further research is desired to develop more general algorithms exploiting glycobiology data for the improvement of prostate diseases evaluation. Abstract Prostate cancer is the second most commonly diagnosed cancer among men. Alterations in protein glycosylation are confirmed to be a reliable hallmark of cancer. Prostate-specific antigen is the biomarker that is used most frequently for prostate cancer detection, although its lack of sensitivity and specificity results in many unnecessary biopsies. A wide range of glycosylation alterations in prostate cancer cells, including increased sialylation and fucosylation, can modify protein function and play a crucial role in many important biological processes in cancer, including cell signalling, adhesion, migration, and cellular metabolism. In this review, we summarize studies evaluating the prostate cancer associated glycosylation related alterations in sialylation, mainly α2,3-sialylation, core fucosylation, branched N-glycans, LacdiNAc group and presence of truncated O-glycans (sTn, sT antigen). Finally, we discuss the great potential to make use of glycans as diagnostic and prognostic biomarkers for prostate cancer.
Collapse
|
17
|
Song J, Ma S, Sokoll LJ, Eguez RV, Höti N, Zhang H, Mohr P, Dua R, Patil D, May KD, Williams S, Arnold R, Sanda MG, Chan DW, Zhang Z. A panel of selected serum protein biomarkers for the detection of aggressive prostate cancer. Theranostics 2021; 11:6214-6224. [PMID: 33995654 PMCID: PMC8120218 DOI: 10.7150/thno.55676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/05/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Current PSA-based tests used to detect prostate cancer (PCa) lack sufficient specificity, leading to significant overdetection and overtreatment. Our previous studies showed that serum fucosylated PSA (Fuc-PSA) and soluble TEK receptor tyrosine kinase (Tie-2) had the ability to predict aggressive (AG) PCa. Additional biomarkers are needed to address this significant clinical problem. Methods: A comprehensive Pubmed search followed by multiplex immunoassays identified candidate biomarkers associated with AG PCa. Subsequently, multiplex and lectin-based immunoassays were applied to a case-control set of sera from subjects with AG PCa, low risk PCa, and non-PCa (biopsy negative). These candidate biomarkers were further evaluated for their ability as panels to complement the prostate health index (phi) in detecting AG PCa. Results: When combined through logistic regression, two panel of biomarkers achieved the best performance: 1) phi, Fuc-PSA, SDC1, and GDF-15 for the detection of AG from low risk PCa and 2) phi, Fuc-PSA, SDC1, and Tie-2 for the detection of AG from low risk PCa and non-PCa, with noticeable improvements in ROC analysis over phi alone (AUCs: 0.942 vs 0.872, and 0.934 vs 0.898, respectively). At a fixed sensitivity of 95%, the panels improved specificity with statistical significance in detecting AG from low risk PCa (76.0% vs 56%, p=0.029), and from low risk PCa and non-PCa (78.2% vs 65.5%, p=0.010). Conclusions: Multivariate panels of serum biomarkers identified in this study demonstrated clinically meaningful improvement over the performance of phi, and warrant further clinical validation, which may contribute to the management of PCa.
Collapse
Affiliation(s)
- Jin Song
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Shiyong Ma
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lori J. Sokoll
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rodrigo V. Eguez
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Naseruddin Höti
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hui Zhang
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Phaedre Mohr
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Renu Dua
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Dattatraya Patil
- Department of Urology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kristen Douglas May
- Department of Urology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sierra Williams
- Department of Urology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rebecca Arnold
- Department of Urology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Martin G. Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel W. Chan
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zhen Zhang
- Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
18
|
Vermassen T, Van Den Broeck A, Lumen N, Callewaert N, Rottey S, Delanghe J. Tissue N-linked glycosylation as potential prognostic biomarker for biochemical recurrence-free survival. Biomarkers 2021; 26:275-285. [PMID: 33657946 DOI: 10.1080/1354750x.2021.1891290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Only few biomarkers have been evaluated for their prognostic value following radical prostatectomy. We explored if tissue N-glycosylation shows prognostic properties for biochemical recurrence (BCR)-free survival. MATERIALS AND METHODS Tissue N-glycosylation profile was determined from 82 prostate cancer (PCa) patients and prognostic features were compared to clinical and biochemical parameters for BCR-free survival. RESULTS Majority presented with Gleason score 3 + 4 (41%), extensive local disease (62%) and without pelvic lymph nodes invasion (83%). Several parameters (low T stage, low Gleason score, low EAU risk groups for BCR, absence of positive surgical margins, high ratio of fucosylated triantennary structures on total of multiantennary structures [3AFc/MA], low ratio of fucosylated biantennary with core-branched N-acetylglucosamine on total of biantennary structures, and high ratio of triantennary structures on total of multiantennary structures) proved to have a univariate beneficial effect on BCR-free survival. Multivariate analysis proved positive surgical margins and 3AFc/MA to be independent prognosticators. CONCLUSIONS Tissue N-glycans are a powerful prognostic tool and can be an asset in PCa as the ratio of 3AFc/MA is independently associated with BCR-free survival. This could be of clinical use in guiding patients following radical prostatectomy, e.g. referral to adjuvant radiotherapy. Further elaboration of this biomarker is warranted.
Collapse
Affiliation(s)
- Tijl Vermassen
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | | | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Department for Molecular Biomedical Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Joris Delanghe
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Moran AB, Domínguez-Vega E, Nouta J, Pongracz T, de Reijke TM, Wuhrer M, Lageveen-Kammeijer GSM. Profiling the proteoforms of urinary prostate-specific antigen by capillary electrophoresis - mass spectrometry. J Proteomics 2021; 238:104148. [PMID: 33618028 DOI: 10.1016/j.jprot.2021.104148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Early detection of prostate cancer may lead to the overdiagnosis and overtreatment of patients as well as missing significant cancers. The current diagnostic approach uses elevated serum concentrations of prostate-specific antigen (PSA) as an indicator of risk. However, this test has been widely criticized as it shows poor specificity and sensitivity. In order to improve early detection and diagnosis, several studies have investigated whether different PSA proteoforms are correlated to prostate cancer. Until now, studies and methodologies for the comprehensive characterization of PSA proteoforms from biofluids are scarce. For this purpose, we developed an intact protein assay to analyze PSA by capillary electrophoresis-electrospray ionization-mass spectrometry after affinity purification from patients' urine. Here, we determined six proteolytic cleavage variants. In regard to glycosylation, tri-, di-, mono- and non-sialylated complex-type N-glycans were found on non-cleaved PSA, as well as the non-glycosylated variant. The performance of the intact protein assay was assessed using a pooled sample, obtaining an inter-day variability of 15%. Furthermore, urinary patient samples were analyzed by intact protein analysis and a bottom-up approach (glycopeptide analysis). This combined approach revealed complimentary information on both levels, demonstrating the benefit of using two orthogonal techniques to provide a thorough profile of urinary PSA. SIGNIFICANCE: The detection of clinically relevant prostate cancer requires a more specific and sensitive biomarker and, in this case, several PSA proteoforms may be able to aid or improve the current PSA test. However, a comprehensive analysis of the intact PSA proteoform profile is still lacking. This study investigated the PSA proteoforms present in urine and, in particular, determined the relative contribution of cleaved PSA and non-cleaved PSA forms to the total glycosylation profile. Importantly, intact protein analysis did not require further sample treatment before being measured by CE-ESI-MS. Furthermore, its glycosylation was also assessed in a bottom-up approach to provide complementary information. Overall, these results represent an important basis for future characterization and biomarker studies.
Collapse
Affiliation(s)
- Alan B Moran
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Elena Domínguez-Vega
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Jan Nouta
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Tamas Pongracz
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Theo M de Reijke
- Amsterdam UMC, location Academic Medical Center, Department of Urology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | | |
Collapse
|
20
|
Characterisation of the main PSA glycoforms in aggressive prostate cancer. Sci Rep 2020; 10:18974. [PMID: 33149259 PMCID: PMC7643140 DOI: 10.1038/s41598-020-75526-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Serum levels of prostate specific antigen (PSA) are commonly used for prostate cancer (PCa) detection. However, their lack of specificity to distinguish benign prostate pathologies from PCa, or indolent from aggressive PCa have prompted the study of new non-invasive PCa biomarkers. Aberrant glycosylation is involved in neoplastic progression and specific changes in PSA glycosylation pattern, as the reduction in the percentage of α2,6-sialic acid (SA) are associated with PCa aggressiveness. In this study, we have characterised the main sialylated PSA glycoforms from blood serum of aggressive PCa patients and have compared with those of standard PSA from healthy individuals’ seminal plasma. PSA was immunoprecipitated and α2,6-SA were separated from α2,3-SA glycoforms using SNA affinity chromatography. PSA N-glycans were released, labelled and analysed by hydrophilic interaction liquid chromatography combined with exoglycosidase digestions. The results showed that blood serum PSA sialylated glycoforms containing GalNAc residues were largely increased in aggressive PCa patients, whereas the disialylated core fucosylated biantennary structures with α2,6-SA, which are the major PSA glycoforms in standard PSA from healthy individuals, were markedly reduced in aggressive PCa. The identification of these main PSA glycoforms altered in aggressive PCa opens the way to design specific strategies to target them, which will be useful to improve PCa risk stratification.
Collapse
|
21
|
Sapoń K, Maziarz D, Janas T, Sikorski AF, Janas T. Cholera Toxin Subunit B for Sensitive and Rapid Determination of Exosomes by Gel Filtration. MEMBRANES 2020; 10:membranes10080172. [PMID: 32751790 PMCID: PMC7464461 DOI: 10.3390/membranes10080172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
We developed a sensitive fluorescence-based assay for determination of exosome concentration. In our assay, Cholera toxin subunit B (CTB) conjugated to a fluorescence probe and a gel filtration technique (size-exclusion chromatography) are used. Exosomal membranes are particularly enriched in raft-forming lipids (cholesterol, sphingolipids, and saturated phospholipids) and in GM1 ganglioside. CTB binds specifically and with high affinity to exosomal GM1 ganglioside residing in rafts only, and it has long been the probe of choice for membrane rafts. The CTB-gel filtration assay allows for detection of as little as 3 × 108 isolated exosomes/mL in a standard fluorometer, which has a sensitivity comparable to other methods using advanced instrumentation. The linear quantitation range for CTB-gel filtration assay extends over one order of magnitude in exosome concentration. Using 80 nM fluorescence-labeled CTB, we quantitated 3 × 108 to 6 × 109 exosomes/mL. The assay ranges exhibited linear fluorescence increases versus exosome concentration (r2 = 0.987). The assay was verified for exosomal liposomes. The assay is easy to use, rapid, and does not require any expensive or sophisticated instrumentation.
Collapse
Affiliation(s)
- Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland; (K.S.); (D.M.); (T.J.)
| | - Dominika Maziarz
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland; (K.S.); (D.M.); (T.J.)
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland; (K.S.); (D.M.); (T.J.)
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, 51-124 Wroclaw, Poland;
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland; (K.S.); (D.M.); (T.J.)
- Correspondence: ; Tel.: +48-77-4016050; Fax: +48-77-4016051
| |
Collapse
|
22
|
Cong M, Ou X, Huang J, Long J, Li T, Liu X, Wang Y, Wu X, Zhou J, Sun Y, Shang Q, Chen G, Ma H, Xie W, Piao H, Yang Y, Gao Z, Xu X, Tan Z, Chen C, Zeng N, Wu S, Kong Y, Liu T, Wang P, You H, Jia J, Zhuang H. A Predictive Model Using N-Glycan Biosignatures for Clinical Diagnosis of Early Hepatocellular Carcinoma Related to Hepatitis B Virus. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:415-423. [PMID: 32522092 DOI: 10.1089/omi.2020.0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early diagnosis of hepatic cancer is a major public health challenge. While changes in serum N-glycans have been observed as patients progress from liver fibrosis/cirrhosis to hepatocellular carcinoma (HCC), the predictive performance of N-glycans is yet to be determined for HCC early diagnosis as well as differential diagnosis from liver fibrosis/cirrhosis. In a total sample of 247 patients with hepatitis B virus-related liver disease, we characterized and compared the serum N-glycans in very early/early and intermediate/advanced stages of HCC and those with liver fibrosis/cirrhosis. Additionally, we performed a retrospective timeline analysis of the serum N-glycans 6 and 12 months before a diagnosis of the very early/early stage of HCC (EHCC). A predictive model was built, named hereafter as Glycomics-EHCC, incorporating the glycan peaks (GPs) 1, 2, and 4. The model showed a larger area under the receiver operating characteristic curve compared with a traditional model with the α-fetoprotein (0.936 vs. 0.731, respectively). The Glycomics-EHCC model had a sensitivity of 84.6% and specificity of 85.0% at a cutoff value of -0.39 to distinguish EHCC from liver fibrosis/cirrhosis. Moreover, the Glycomics-EHCC model was able to forecast a future EHCC diagnosis with a sensitivity and specificity over 90% and 85%, respectively, using the serum N-glycan biosignatures 6 or 12 months earlier when the patients were suffering from liver fibrosis/cirrhosis before being diagnosed with EHCC. This serum glycomic biosignature model warrants further clinical studies in independent population samples and offers promise to forecast EHCC and its differential diagnosis from liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Min Cong
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiang Long
- Department of Oncology Minimally Invasive Interventional Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Li
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xueen Liu
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanhong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Qinghua Shang
- Department of Liver Diseases, The No. 88 Hospital of the People's Liberation Army, Taian, China
| | - Guofeng Chen
- Second Liver Cirrhosis Diagnosis and Treatment Center, 302 Military Hospital of China, Beijing, China
| | - Hui Ma
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Piao
- Department of Infectious Diseases, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yongping Yang
- Center of Therapeutic Research for Liver Cancer, Beijing 302 Hospital, Beijing, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyuan Xu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | | | | | - Na Zeng
- Clinical Epidemiology and Evidence-Based Medicine Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shanshan Wu
- Clinical Epidemiology and Evidence-Based Medicine Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and Evidence-Based Medicine Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hui Zhuang
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
23
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Gomes C, Almeida A, Barreira A, Calheiros J, Pinto F, Abrantes R, Costa A, Polonia A, Campos D, Osório H, Sousa H, Pinto-de-Sousa J, Kolarich D, Reis CA. Carcinoembryonic antigen carrying SLe X as a new biomarker of more aggressive gastric carcinomas. Am J Cancer Res 2019; 9:7431-7446. [PMID: 31695778 PMCID: PMC6831293 DOI: 10.7150/thno.33858] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Malignant transformation of gastric cells is accompanied by the deregulated expression of glycosyltransferases leading to the biosynthesis of tumor-associated glycans such as the sialyl-Lewis X antigen (SLex). SLex presence on cell surface glycoconjugates increases the invasive capacity of gastric cancer cells and is associated with tumor metastasis. ST3Gal IV enzyme is involved in the synthesis of SLex antigen and overexpressed in gastric carcinomas. Herein, we identified the glycoproteins carrying SLex in gastric cancer cells overexpressing ST3Gal IV enzyme and evaluated their biomarker potential for gastric carcinoma. Methods: SLex modified glycoproteins were identified applying western blot and mass spectrometry. Immunoprecipitation, proximity ligation assay (PLA), E-selectin binding assay and CRISPR/cas9 knockout experiments were performed to characterize the presence of SLex on the identified glycoprotein. Protein N-glycans of the SLex protein carrier were in deep analyzed by porous-graphitized-carbon liquid-chromatography and tandem mass spectrometry glycomics. In silico expression analysis of α2-3 sialyltransferase ST3Gal IV and SLex protein carrier was performed and the conjoint expression of the SLex modified glycoproteins evaluated by immunohistochemistry and PLA in a series of gastric carcinomas. Results: Carcinoembryonic antigen (CEA; CEACAM5) was identified and validated by different methodologies as a major carrier of SLex. N-glycomics of CEA revealed that complex N-glycans are capped with α2-3 linked sialic acid (Neu5Acα2-3Galβ1-4GlcNAc). Data set analysis of ST3Gal IV and CEA showed that ST3Gal IV expression was associated with patient´s poor survival, whereas CEA did not show any prognostic value. The co-expression of both CEA and SLeX was observed in 86,3% of gastric carcinoma cases and 74,5% of the total cases displayed the conjoint CEA+SLexin situ PLA expression. This expression was associated with clinicopathological features of the tumors, including infiltrative pattern of tumor growth, presence of venous invasion and patient's poor survival. CEA immunoprecipitation from gastric carcinoma tissues also confirmed the presence of SLex. Conclusion: CEA is the major glycoprotein carrying SLex in gastric carcinoma and the conjoint detection of CEA-SLex is associated with aggressive tumor features highlighting its PLA detection as a biomarker of gastric cancer patient prognosis for theranostic applications.
Collapse
|
25
|
Sydyakina Y, Sivakova A, Komar A, Galkin A. Prostat-Specific Antigen: Biochemical, Molecular-Biological, and Analytical Aspects. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.2.164790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Tkac J, Gajdosova V, Hroncekova S, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Prostate-specific antigen glycoprofiling as diagnostic and prognostic biomarker of prostate cancer. Interface Focus 2019; 9:20180077. [PMID: 30842876 PMCID: PMC6388024 DOI: 10.1098/rsfs.2018.0077] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
The initial part of this review details the controversy behind the use of a serological level of prostate-specific antigen (PSA) for the diagnostics of prostate cancer (PCa). Novel biomarkers are in demand for PCa diagnostics, outperforming traditional PSA tests. The review provides a detailed and comprehensive summary that PSA glycoprofiling can effectively solve this problem, thereby considerably reducing the number of unnecessary biopsies. In addition, PSA glycoprofiling can serve as a prognostic PCa biomarker to identify PCa patients with an aggressive form of PCa, avoiding unnecessary further treatments which are significantly life altering (incontinence or impotence).
Collapse
Affiliation(s)
- Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Veronika Gajdosova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Stefania Hroncekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| |
Collapse
|
27
|
Vermassen T, De Bruyne S, Himpe J, Lumen N, Callewaert N, Rottey S, Delanghe J. N-Linked Glycosylation and Near-Infrared Spectroscopy in the Diagnosis of Prostate Cancer. Int J Mol Sci 2019; 20:ijms20071592. [PMID: 30934974 PMCID: PMC6479798 DOI: 10.3390/ijms20071592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Performing a prostate biopsy is the most robust and reliable way to diagnose prostate cancer (PCa), and to determine the disease grading. As little to no biochemical markers for prostate tissue exist, we explored the possibilities of tissue N-glycosylation and near-infrared spectroscopy (NIR) in PCa diagnosis. Methods: Tissue specimens from 100 patients (benign prostate hyperplasia (BPH), n = 50; and PCa, n = 50) were obtained. The fresh-frozen tissue was dispersed and a tissue N-glycosylation profile was determined. Consequently, the formalin-fixed paraffin-embedded slides were analyzed using NIR spectroscopy. A comparison was made between the benign and malignant tissue, and between the various Gleason scores. Results: A difference was observed for the tissue of N-glycosylation between the benign and malignant tissue. These differences were located in the fycosylation ratios and the total amount of bi- and tetra-antennary structures (all p < 0.0001). These differences were also present between various Gleason scores. In addition, the NIR spectra revealed changes between the benign and malignant tissue in several regions. Moreover, spectral ranges of 1055–1065 nm and 1450–1460 nm were significantly different between the Gleason scores (p = 0.0042 and p = 0.0195). Conclusions: We have demonstrated biochemical changes in the N-glycan profile of prostate tissue, which allows for the distinction between malignant and benign tissue, as well as between various Gleason scores. These changes can be correlated to the changes observed in the NIR spectra. This could possibly further improve the histological assessment of PCa diagnosis, although further method validation is needed.
Collapse
Affiliation(s)
- Tijl Vermassen
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Sander De Bruyne
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Jonas Himpe
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Nico Callewaert
- Unit for Medical Biotechnology, Inflammation Research Center, VIB⁻Ghent University, 9052 Zwijnaarde, Belgium.
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Joris Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
- Department of Clinical Chemistry, Ghent University Hospital, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Vermassen T, Callewaert N, Rottey S, Delanghe JR. Prostate Protein N-Glycosylation Profiling by Means of DNA Sequencer-Assisted Fluorophore-Assisted Carbohydrate Electrophoresis. Methods Mol Biol 2019; 1972:235-250. [PMID: 30847796 DOI: 10.1007/978-1-4939-9213-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis allows for accurate profiling of the asparagine-linked (N-) glycosylation patterns, a posttranslational modification present on many soluble and membrane proteins. This technique has been extensively tested to identify N-glycosylation patterns associated with serum proteins. Here we describe the use of DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis to identify the N-glycosylation patterns of prostate proteins in urine.
Collapse
Affiliation(s)
- Tijl Vermassen
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
- Drug Research Unit Ghent, Ghent University Hospital, Ghent, Belgium
| | | | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
- Drug Research Unit Ghent, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| |
Collapse
|
29
|
Tkac J, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Glycomics of prostate cancer: updates. Expert Rev Proteomics 2018; 16:65-76. [PMID: 30451032 DOI: 10.1080/14789450.2019.1549993] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Prostate cancer (PCa) is a life-threatening disease affecting millions of men. The current best PCa biomarker (level of prostate-specific antigen in serum) lacks specificity for PCa diagnostics and this is why novel PCa biomarkers in addition to the conventional ones based on biomolecules such as DNA, RNA and proteins need to be identified. Areas covered: This review details the potential of glycans-based biomarkers to become diagnostic, prognostic, predictive and therapeutic PCa biomarkers with a brief description of the innovative approaches applied to glycan analysis to date. Finally, the review covers the possibility to use exosomes as a rich source of glycans for future innovative and advanced diagnostics of PCa. The review covers updates in the field since 2016. Expert commentary: The summary provided in this review paper suggests that glycan-based biomarkers can offer high-assay accuracy not only for diagnostic purposes but also for monitoring/surveillance of the PCa disease.
Collapse
Affiliation(s)
- Jan Tkac
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Tomas Bertok
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Michal Hires
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Eduard Jane
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Lenka Lorencova
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Peter Kasak
- c Center for Advanced Materials , Qatar University , Doha , Qatar
| |
Collapse
|
30
|
Damborský P, Koczula KM, Gallotta A, Katrlík J. Lectin-based lateral flow assay: proof-of-concept. Analyst 2018; 141:6444-6448. [PMID: 27767199 DOI: 10.1039/c6an01746k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lateral flow assays (LFAs) enable the simple and rapid detection and quantification of analytes and is popular for point-of-care (PoC), point-of-use and outdoor testing applications. LFAs typically depend on antibody or nucleic acid based recognition. We present the innovative concept of a LFA using lectins in the role of the biorecognition element. Lectins are a special kind of glycan-binding protein and the lectin-based LFA herein described was developed for the determination of the glycosylation of free prostate specific antigen (PSA). PSA is routinely used as a biomarker of prostate cancer (PCa) and the glycosylation status of PSA is a more specific marker of disease progress than only the PSA level. Using the lectin-based LFA we were able to detect α-2,6 sialic acid present in fPSA using Sambucus nigra (SNA) lectin. As a negative control, we employed Maackia amurensis lectin II (MAA II) which specifically binds α-2,3 sialic acid. The novel approach presented here can be applied to a wide range of biomarkers that have a significant impact on clinical diagnosis and prognosis, providing an alternative to standard lectin-based assays. The assay uses commercial components and is easily performed by applying a sample to the sampling pad on the lectin-based LFA strip, with results obtained within 10 minutes.
Collapse
Affiliation(s)
- Pavel Damborský
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84105, Slovakia.
| | - Katarzyna M Koczula
- Xeptagen SpA, Italy, VEGA Science Park - Building Auriga, Via delle Industrie, 9 - 30175 Marghera (VE), Italy.
| | - Andrea Gallotta
- Xeptagen SpA, Italy, VEGA Science Park - Building Auriga, Via delle Industrie, 9 - 30175 Marghera (VE), Italy.
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84105, Slovakia.
| |
Collapse
|
31
|
Totten SM, Adusumilli R, Kullolli M, Tanimoto C, Brooks JD, Mallick P, Pitteri SJ. Multi-lectin Affinity Chromatography and Quantitative Proteomic Analysis Reveal Differential Glycoform Levels between Prostate Cancer and Benign Prostatic Hyperplasia Sera. Sci Rep 2018; 8:6509. [PMID: 29695737 PMCID: PMC5916935 DOI: 10.1038/s41598-018-24270-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
Currently prostate-specific antigen is used for prostate cancer (PCa) screening, however it lacks the necessary specificity for differentiating PCa from other diseases of the prostate such as benign prostatic hyperplasia (BPH), presenting a clinical need to distinguish these cases at the molecular level. Protein glycosylation plays an important role in a number of cellular processes involved in neoplastic progression and is aberrant in PCa. In this study, we systematically interrogate the alterations in the circulating levels of hundreds of serum proteins and their glycoforms in PCa and BPH samples using multi-lectin affinity chromatography and quantitative mass spectrometry-based proteomics. Specific lectins (AAL, PHA-L and PHA-E) were used to target and chromatographically separate core-fucosylated and highly-branched protein glycoforms for analysis, as differential expression of these glycan types have been previously associated with PCa. Global levels of CD5L, CFP, C8A, BST1, and C7 were significantly increased in the PCa samples. Notable glycoform-specific alterations between BPH and PCa were identified among proteins CD163, C4A, and ATRN in the PHA-L/E fraction and among C4BPB and AZGP1 glycoforms in the AAL fraction. Despite these modest differences, substantial similarities in glycoproteomic profiles were observed between PCa and BPH sera.
Collapse
Affiliation(s)
- Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ravali Adusumilli
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Majlinda Kullolli
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Cheylene Tanimoto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
32
|
Kammeijer GSM, Nouta J, de la Rosette JJMCH, de Reijke TM, Wuhrer M. An In-Depth Glycosylation Assay for Urinary Prostate-Specific Antigen. Anal Chem 2018; 90:4414-4421. [PMID: 29502397 PMCID: PMC5885261 DOI: 10.1021/acs.analchem.7b04281] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The concentration of prostate-specific antigen (PSA) in serum is used as an early detection method of prostate cancer (PCa); however, it shows low sensitivity, specificity, and a poor predictive value. Initial studies suggested the glycosylation of PSA to be a promising marker for a more specific yet noninvasive PCa diagnosis. Recent studies on the molecular features of PSA glycosylation (such as antenna modification and core fucosylation) were not successful in demonstrating its potential for an improved PCa diagnosis, probably due to the lack of analytical sensitivity and specificity of the applied assays. In this study, we established for the first time a high-performance PSA Glycomics Assay (PGA), allowing differentiation of α2,6- and α2,3-sialylated isomers, the latter one being suggested to be a hallmark of aggressive types of cancer. After affinity purification from urine and tryptic digestion, PSA samples were analyzed by CE-ESI-MS (capillary electrophoresis-electrospray ionization coupled to mass spectrometry). Based on positive controls, an average interday relative standard deviation of 14% for 41 N-glycopeptides was found. The assay was further verified by analyzing PSA captured from patients' urine samples. A total of 67 N-glycopeptides were identified from the PSA pooled from the patients. In summary, the first PGA successfully established in this study allows an in-depth relative quantitation of PSA glycoforms from urine. The PGA is a promising tool for the determination of potential glycomic biomarkers for the differentiation between aggressive PCa, indolent PCa, and benign prostate hyperplasia in larger cohort studies.
Collapse
Affiliation(s)
- Guinevere S M Kammeijer
- Leiden University Medical Center , Center for Proteomics and Metabolomics , 2300 RC Leiden , The Netherlands
| | - Jan Nouta
- Leiden University Medical Center , Center for Proteomics and Metabolomics , 2300 RC Leiden , The Netherlands
| | | | - Theo M de Reijke
- Academic Medical Center , Department of Urology , 1105 AZ Amsterdam , The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center , Center for Proteomics and Metabolomics , 2300 RC Leiden , The Netherlands
| |
Collapse
|
33
|
Sun W, Liu Y, Zhang K. An approach for N-linked glycan identification from MS/MS spectra by target-decoy strategy. Comput Biol Chem 2018; 74:391-398. [PMID: 29580737 DOI: 10.1016/j.compbiolchem.2018.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Glycan structure determination serves as an essential step for the thorough investigation of the structure and function of protein. Currently, appropriate sample preparation followed by tandem mass spectrometry has emerged as the dominant technique for the characterization of glycans and glycopeptides. Although extensive efforts have been made to the development of computational approaches for the automated interpretation of glycopeptide spectra, the previously appeared methods lack a reasonable quality control strategy for the statistical validation of reported results. In this manuscript, we introduced a novel method that constructed a decoy glycan database based on the glycan structures in the target database, and searched the experimental spectra against both the target and decoy databases to find the best matched glycans. Specifically, a two-layer scoring scheme for calculating a normalized matching score is applied in the search procedure which enables the unbiased ranking of the matched glycans. Experimental analysis showed that our proposed method can report more structures with high confidence compared with previous approaches.
Collapse
Affiliation(s)
- Weiping Sun
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada.
| | - Yi Liu
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada
| | - Kaizhong Zhang
- Department of Computer Science, University of Western Ontario, London, ON N6A5B7, Canada
| |
Collapse
|
34
|
The Single-parameter, Structure-based IsoPSA Assay Demonstrates Improved Diagnostic Accuracy for Detection of Any Prostate Cancer and High-grade Prostate Cancer Compared to a Concentration-based Assay of Total Prostate-specific Antigen: A Preliminary Report. Eur Urol 2017; 72:942-949. [DOI: 10.1016/j.eururo.2017.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/17/2017] [Indexed: 12/23/2022]
|
35
|
Goč S, Jankovič M. Human Serum Low Molecular Mass Prostate-specific Antigen As Biomarker. J Med Biochem 2017; 36:322-330. [PMID: 30581329 PMCID: PMC6294081 DOI: 10.1515/jomb-2017-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 11/15/2022] Open
Abstract
Background Prostate-specific antigen (PSA) is a glycoprotein tumor marker known to exist as numerous glycospecies. Investigations on its glycobiochemical properties aimed at their use in the preparation of adjuncts in determining PSA concentration for clinical purposes have accumulated a lot of data on its structural properties. In this study, we reconsidered unexplored ubiquitously present low molecular mass species of PSA regarding to molecular mass, origin and pathophysiological source specificity in order to evaluate them as biomarkers. Methods Data on low molecular mass PSA-immunoreactive species from sera of subjects with prostate cancer (PCa), benign prostatic hyperplasia (BPH), breast cancer (BCa), and urine of healthy males obtained by on-chip immunoaffinity chromatography combined with mass spectrometry were analyzed. Results The results obtained indicated PSA species common to BCa, PCa, and BPH at 12-13 kDa, 17-19 kDa and 21-24 kDa. The striking difference in predominant frequencies made the profile characteristic in each examined pathophysiological condition. On the other hand, paired groups of prostatic and extraprostatic PSA contained rare species with small differences among groups concerning individual species. Low molecular mass PSA also included rare species unique for each group of samples. Conclusion The results obtained revealed that uniformity of low molecular mass PSA-immunoreactive species in sera prevails over diversity related to cancer and non-cancer conditions, but at the same time some of them are molecules with biomarker potential for BPH detection.
Collapse
Affiliation(s)
- Sanja Goč
- Department for Immunochemistry and Glycobiology, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Miroslava Jankovič
- Department for Immunochemistry and Glycobiology, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
36
|
Höti N, Yang S, Aiyetan P, Kumar B, Hu Y, Clark D, Eroglu AU, Shah P, Johnson T, Chowdery WH, Zhang H, Rodriguez R. Overexpression of Exportin-5 Overrides the Inhibitory Effect of miRNAs Regulation Control and Stabilize Proteins via Posttranslation Modifications in Prostate Cancer. Neoplasia 2017; 19:817-829. [PMID: 28881308 PMCID: PMC5587889 DOI: 10.1016/j.neo.2017.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/21/2023] Open
Abstract
Although XPO5 has been characterized to have tumor-suppressor features in the miRNA biogenesis pathway, the impact of altered expression of XPO5 in cancers is unexplored. Here we report a novel "oncogenic" role of XPO5 in advanced prostate cancer. Using prostate cancer models, we found that excess levels of XPO5 override the inhibitory effect of the canoncial miRNA-mRNA regulation, resulting in a global increase in proteins expression. Importantly, we found that decreased expression of XPO5 could promote an increase in proteasome degradation, whereas overexpression of XPO5 leads to altered protein posttranslational modification via hyperglycosylation, resulting in cellular protein stability. We evaluated the therapeutic advantage of targeting XPO5 in prostate cancer and found that knocking down XPO5 in prostate cancer cells suppressed cellular proliferation and tumor development without significantly impacting normal fibroblast cells survival. To our knowledge, this is the first report describing the oncogenic role of XPO5 in overriding the miRNAs regulation control. Furthermore, we believe that these findings will provide an explanation as to why, in some cancers that express higher abundance of mature miRNAs, fail to suppress their potential protein targets.
Collapse
Affiliation(s)
- Naseruddin Höti
- Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD; Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Shuang Yang
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Paul Aiyetan
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Binod Kumar
- Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Yingwei Hu
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - David Clark
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Arife Unal Eroglu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Punit Shah
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Tamara Johnson
- Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Wasim H Chowdery
- Department of Urology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Hui Zhang
- Department of Pathology, Division of Clinical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ronald Rodriguez
- Department of Urology, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
37
|
Belicky S, Černocká H, Bertok T, Holazova A, Réblová K, Paleček E, Tkac J, Ostatná V. Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry 2017. [PMID: 28651174 DOI: 10.1016/j.bioelechem.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent decades, it has become clear that most of human proteins are glycosylated and that protein glycosylation plays an important role in health and diseases. At present, simple, fast and inexpensive methods are sought for clinical applications and particularly for improved diagnostics of various diseases, including cancer. We propose a label- and reagent-free electrochemical method based on chronopotentiometric stripping (CPS) analysis and a hanging mercury drop electrode for the detection of interaction of sialylated protein biomarker a prostate specific antigen (PSA) with two important lectins: Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA). Incubation of PSA-modified electrode with specific SNA lectin resulted in an increase of CPS peak H of the complex as compared to this peak of individual PSA. By adjusting polarization current and temperature, PSA-MAA interaction can be either eliminated or distinguished from the more abundant PSA-SNA complex. CPS data were in a good agreement with the data obtained by complementary methods, namely surface plasmon resonance and fluorescent lectin microarray. It can be anticipated that CPS will find application in glycomics and proteomics.
Collapse
Affiliation(s)
- Stefan Belicky
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Hana Černocká
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Alena Holazova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Kamila Réblová
- CEITEC Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Emil Paleček
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Veronika Ostatná
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
38
|
Liu Y, Zhao Y, Zhu Z, Xing Z, Ma H, Wei Q. Ultrasensitive immunosensor for prostate specific antigen using biomimetic polydopamine nanospheres as an electrochemiluminescence superquencher and antibody carriers. Anal Chim Acta 2017; 963:17-23. [DOI: 10.1016/j.aca.2017.01.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 01/04/2023]
|
39
|
Vermassen T, D'Herde K, Jacobus D, Van Praet C, Poelaert F, Lumen N, Callewaert N, Decaestecker K, Villeirs G, Hoebeke P, Van Belle S, Rottey S, Delanghe J. Release of urinary extracellular vesicles in prostate cancer is associated with altered urinary N-glycosylation profile. J Clin Pathol 2017; 70:838-846. [PMID: 28360190 DOI: 10.1136/jclinpath-2016-204312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
AIM Nowadays, extracellular vesicles are of great interest in prostate cancer (PCa) research. Asparagine (N)-linked glycosylation could play a significant role in the pathological mechanism of these vesicles. We investigated if prostatic protein N-glycosylation profiles were related to urinary vesicle-associated prostate-specific antigen (PSA) extractability and if this parameter showed diagnostic potential for PCa. METHODS Urinary extracellular vesicles were visualised using transmission electron microscopy. Urinary extracellular vesicles extraction by means of n-butanol allowed determination of urinary vesicle-associated PSA extractability. Diagnostic value was assessed between benign prostate hyperplasia (BPH; n=122) and patients with PCa (n=85). Additionally, correlation with urine N-glycosylation was assessed. RESULTS Urinary extracellular vesicles with a diameter of approximately 100 nm were more abundantly present in urine of patients with PCa versus patients with BPH resulting in a higher vesicle-associated PSA extraction ratio (p<0.001). Next, vesicle-associated PSA extraction ratio was correlated to biantennary core-fucosylation (p=0.003). Finally, vesicle-associated PSA extraction ratio proved beneficial in PCa diagnosis, next to serum PSA and the urinary glycosylation marker (p=0.021). CONCLUSIONS The urinary vesicle-associated PSA extraction ratio is increased in PCa which is a direct result of the abundant presence of extracellular vesicles in urine of patients with PCa. The urinary vesicle-associated PSA extraction ratio was associated with changes in N-glycoforms and showed diagnostic potential. Further research is warranted to unravel the pathological link between N-glycosylation and extracellular vesicles in cancer, as well as to assess the prognostic value of this biomarker.
Collapse
Affiliation(s)
- Tijl Vermassen
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Katharina D'Herde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Dominique Jacobus
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | | | - Filip Poelaert
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Unit for Medical Biotechnology, Inflammation Research Center, VIB-Ghent University, Ghent, Belgium
| | | | - Geert Villeirs
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Piet Hoebeke
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Simon Van Belle
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Joris Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
40
|
Sharma S, Zapatero-Rodríguez J, O'Kennedy R. Prostate cancer diagnostics: Clinical challenges and the ongoing need for disruptive and effective diagnostic tools. Biotechnol Adv 2017; 35:135-149. [DOI: 10.1016/j.biotechadv.2016.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/20/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023]
|
41
|
Sweet Strategies in Prostate Cancer Biomarker Research: Focus on a Prostate Specific Antigen. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0397-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Ishikawa T, Yoneyama T, Tobisawa Y, Hatakeyama S, Kurosawa T, Nakamura K, Narita S, Mitsuzuka K, Duivenvoorden W, Pinthus JH, Hashimoto Y, Koie T, Habuchi T, Arai Y, Ohyama C. An Automated Micro-Total Immunoassay System for Measuring Cancer-Associated α2,3-linked Sialyl N-Glycan-Carrying Prostate-Specific Antigen May Improve the Accuracy of Prostate Cancer Diagnosis. Int J Mol Sci 2017; 18:ijms18020470. [PMID: 28241428 PMCID: PMC5344002 DOI: 10.3390/ijms18020470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 11/16/2022] Open
Abstract
The low specificity of the prostate-specific antigen (PSA) for early detection of prostate cancer (PCa) is a major issue worldwide. The aim of this study to examine whether the serum PCa-associated α2,3-linked sialyl N-glycan-carrying PSA (S2,3PSA) ratio measured by automated micro-total immunoassay systems (μTAS system) can be applied as a diagnostic marker of PCa. The μTAS system can utilize affinity-based separation involving noncovalent interaction between the immunocomplex of S2,3PSA and Maackia amurensis lectin to simultaneously determine concentrations of free PSA and S2,3PSA. To validate quantitative performance, both recombinant S2,3PSA and benign-associated α2,6-linked sialyl N-glycan-carrying PSA (S2,6PSA) purified from culture supernatant of PSA cDNA transiently-transfected Chinese hamster ovary (CHO)-K1 cells were used as standard protein. Between 2007 and 2016, fifty patients with biopsy-proven PCa were pair-matched for age and PSA levels, with the same number of benign prostatic hyperplasia (BPH) patients used to validate the diagnostic performance of serum S2,3PSA ratio. A recombinant S2,3PSA- and S2,6PSA-spiked sample was clearly discriminated by μTAS system. Limit of detection of S2,3PSA was 0.05 ng/mL and coefficient variation was less than 3.1%. The area under the curve (AUC) for detection of PCa for the S2,3PSA ratio (%S2,3PSA) with cutoff value 43.85% (AUC; 0.8340) was much superior to total PSA (AUC; 0.5062) using validation sample set. Although the present results are preliminary, the newly developed μTAS platform for measuring %S2,3PSA can achieve the required assay performance specifications for use in the practical and clinical setting and may improve the accuracy of PCa diagnosis. Additional validation studies are warranted.
Collapse
Affiliation(s)
- Tomokazu Ishikawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Diagnostics Research Laboratories, Wako Pure Chemical Industries, Hyogo 661-0963, Japan.
| | - Tohru Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Tatsuo Kurosawa
- Diagnostics Research Laboratories, Wako Pure Chemical Industries, Hyogo 661-0963, Japan.
| | - Kenji Nakamura
- Diagnostics Research Laboratories, Wako Pure Chemical Industries, Hyogo 661-0963, Japan.
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.
| | - Koji Mitsuzuka
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | - Yasuhiro Hashimoto
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.
| | - Yoichi Arai
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| |
Collapse
|
43
|
Farina-Gomez N, Barrabes S, Gomez-Lopez JE, Gonzalez M, Puerta A, Navarro-Calderon D, Albers-Acosta E, Olivier C, Diez-Masa JC, Peracaula R, de Frutos M. Sample preparation of serum to allow capillary electrophoresis analysis of prostate specific antigen isoforms. J Pharm Biomed Anal 2017; 134:220-227. [DOI: 10.1016/j.jpba.2016.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022]
|
44
|
Damborský P, Zámorová M, Katrlík J. Determining the binding affinities of prostate-specific antigen to lectins: SPR and microarray approaches. Proteomics 2016; 16:3096-3104. [DOI: 10.1002/pmic.201500466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 10/26/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Pavel Damborský
- Department of Glycobiotechnology; Center for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Bratislava Slovakia
| | - Martina Zámorová
- Department of Glycobiotechnology; Center for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Bratislava Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology; Center for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Bratislava Slovakia
| |
Collapse
|
45
|
Goč S, Janković M. On-Chip Mass Spectrometry-Based Immunoassay as a Tool for the Detection of Molecular Species from Prostate-Specific Antigen in Female Serum. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1161047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Barrabés S, Farina-Gomez N, Llop E, Puerta A, Diez-Masa JC, Perry A, de Llorens R, de Frutos M, Peracaula R. Comparative analysis of prostate-specific antigen by two-dimensional gel electrophoresis and capillary electrophoresis. Electrophoresis 2016; 38:408-416. [DOI: 10.1002/elps.201600432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Sílvia Barrabés
- Biology Department, Faculty of Science; University of Girona; Girona Spain
| | - Noemi Farina-Gomez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry; Spanish Research Council (IQOG-CSIC); Madrid Spain
| | - Esther Llop
- Biology Department, Faculty of Science; University of Girona; Girona Spain
| | - Angel Puerta
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry; Spanish Research Council (IQOG-CSIC); Madrid Spain
| | - Jose Carlos Diez-Masa
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry; Spanish Research Council (IQOG-CSIC); Madrid Spain
| | - Antoinette Perry
- Cancer Biology and Therapeutics Laboratory, School of Biomedical and Biomolecular Science; University College Dublin; Dublin Ireland
| | - Rafael de Llorens
- Biology Department, Faculty of Science; University of Girona; Girona Spain
| | - Mercedes de Frutos
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry; Spanish Research Council (IQOG-CSIC); Madrid Spain
| | - Rosa Peracaula
- Biology Department, Faculty of Science; University of Girona; Girona Spain
| |
Collapse
|
47
|
Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J. Aberrant sialylation of a prostate-specific antigen: Electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta 2016; 934:72-9. [PMID: 27506346 DOI: 10.1016/j.aca.2016.06.043] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022]
Abstract
Electrochemical detection method allowing to detect prostate-specific antigen (PSA), a biomarker of prostate cancer (PCa), with PSA glycoprofiling was applied in an analysis of PCa serum samples for the first time. Electrochemical impedance spectroscopy (EIS) as a label-free method with immobilized anti-PSA was applied for PSA detection and lectins to glycoprofile captured PSA on the same surface. A proper choice of blocking agent providing high selectivity of biosensor detection with the immobilized anti-PSA antibody was done. The biosensor could detect PSA down to 100 ag/mL with a linear concentration working range from 100 ag/mL up to 1 μg/mL, i.e. 10 orders of concentration magnitude and the sensitivity of (5.5 ± 0.2)%/decade. The results showed that a commercial carbo-free blocking solution was the best one, reducing non-specific binding 55-fold when compared to the immunosensor surface without any blocking agent applied, while allowing to detect PSA. The biosensor response obtained after addition of lectin (i.e. proportional to the amount of a particular glycan on PSA) divided by the biosensor response obtained after incubation with a sample (i.e. proportional to the PSA level in the sample) was applied to distinguish serum samples of PCa patients from those of healthy individuals. The results showed that Maackia amurensis agglutinin (MAA) recognizing α-2,3-terminal sialic acid can be applied to distinguish between these two sets of samples since the MAA/PSA response obtained from the analysis of the PCa samples was significantly higher (5.3-fold) compared to the MAA/PSA response obtained by the analysis of samples from healthy individuals. Thus, combined analysis of serological PSA levels together with PSA glycoprofiling of aberrant glycosylation of PSA (i.e. increase in the level of α-2,3-terminal sialic acid) has a potential to improve detection of PCa.
Collapse
Affiliation(s)
- Dominika Pihikova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Petra Kubanikova
- Private Urological Ambulance, Piaristicka 6, Trencin, 911 01, Slovak Republic
| | - Roman Sokol
- Private Urological Ambulance, Piaristicka 6, Trencin, 911 01, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic.
| |
Collapse
|
48
|
Llop E, Ferrer-Batallé M, Barrabés S, Guerrero PE, Ramírez M, Saldova R, Rudd PM, Aleixandre RN, Comet J, de Llorens R, Peracaula R. Improvement of Prostate Cancer Diagnosis by Detecting PSA Glycosylation-Specific Changes. Am J Cancer Res 2016; 6:1190-204. [PMID: 27279911 PMCID: PMC4893645 DOI: 10.7150/thno.15226] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022] Open
Abstract
New markers based on PSA isoforms have recently been developed to improve prostate cancer (PCa) diagnosis. However, novel approaches are still required to differentiate aggressive from non-aggressive PCa to improve decision making for patients. PSA glycoforms have been shown to be differentially expressed in PCa. In particular, changes in the extent of core fucosylation and sialylation of PSA N-glycans in PCa patients compared to healthy controls or BPH patients have been reported. The objective of this study was to determine these specific glycan structures in serum PSA to analyze their potential value as markers for discriminating between BPH and PCa of different aggressiveness. In the present work, we have established two methodologies to analyze the core fucosylation and the sialic acid linkage of PSA N-glycans in serum samples from BPH (29) and PCa (44) patients with different degrees of aggressiveness. We detected a significant decrease in the core fucose and an increase in the α2,3-sialic acid percentage of PSA in high-risk PCa that differentiated BPH and low-risk PCa from high-risk PCa patients. In particular, a cut-off value of 0.86 of the PSA core fucose ratio, could distinguish high-risk PCa patients from BPH with 90% sensitivity and 95% specificity, with an AUC of 0.94. In the case of the α2,3-sialic acid percentage of PSA, the cut-off value of 30% discriminated between high-risk PCa and the group of BPH, low-, and intermediate-risk PCa with a sensitivity and specificity of 85.7% and 95.5%, respectively, with an AUC of 0.97. The latter marker exhibited high performance in differentiating between aggressive and non-aggressive PCa and has the potential for translational application in the clinic.
Collapse
|
49
|
Zaslavsky BY, Uversky VN, Chait A. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein–partner interactions in vitro and in vivo by solvent interaction analysis method. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:622-44. [DOI: 10.1016/j.bbapap.2016.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/29/2022]
|
50
|
Farina-Gomez N, Puerta A, Gonzalez M, Diez-Masa JC, de Frutos M. Impact of capillary conditioning and background electrolyte composition on capillary electrophoresis analysis of prostate specific antigen isoforms. J Chromatogr A 2016; 1443:254-61. [DOI: 10.1016/j.chroma.2016.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/26/2022]
|