1
|
Li Y, Xu J, Liu X, Wang X, Zhao C, He K. Development and validation of an integrated prognostic model for all-cause mortality in heart failure: a comprehensive analysis combining clinical, electrocardiographic, and echocardiographic parameters. BMC Cardiovasc Disord 2025; 25:221. [PMID: 40140751 PMCID: PMC11938561 DOI: 10.1186/s12872-025-04642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Accurate risk prediction in heart failure remains challenging due to its complex pathophysiology. We aimed to develop and validate a comprehensive prognostic model integrating demographic, electrocardiographic, echocardiographic, and biochemical parameters. METHODS We conducted a retrospective cohort study of 445 heart failure patients. The cohort was randomly divided into training (n = 312) and validation (n = 133) sets. Feature selection was performed using LASSO regression followed by backward stepwise Cox regression. A nomogram was constructed based on independent predictors. Model performance was assessed through discrimination, calibration, and decision curve analyses. Random survival forest analysis was conducted to validate variable importance. RESULTS During a median follow-up of 4.14 years, 142 deaths (31.91%) occurred. Our model development followed a systematic approach: initial feature selection using LASSO regression identified 15 potential predictors, which were further refined to nine independent predictors through backward stepwise Cox regression. The final predictors included age, NYHA class, left ventricular systolic dysfunction, atrial septal defect, aortic valve annulus calcification, tricuspid regurgitation severity, QRS duration, T wave offset, and NT-proBNP. The integrated model demonstrated good discrimination for 2-, 3-, and 5-year mortality prediction in both training (AUCs: 0.726, 0.755, 0.809) and validation cohorts (AUCs: 0.686, 0.678, 0.706). Calibration plots and decision curve analyses confirmed the model's reliability and clinical utility across different time horizons. A nomogram was constructed for individualized risk prediction. Kaplan-Meier analyses of individual predictors revealed significant stratification of survival outcomes, while restricted cubic spline analyses demonstrated non-linear relationships between continuous variables and mortality risk. Random survival forest analysis identified the top five predictors (age, NT-proBNP, QRS duration, tricuspid regurgitation severity, NYHA), which were compared with our nine-variable model, confirming the superior performance of the integrated model across all time points. CONCLUSIONS Our integrated prognostic model showed robust performance in predicting all-cause mortality in heart failure patients. The model's ability to provide individualized risk estimates through a nomogram may facilitate clinical decision-making and patient stratification. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yahui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jiayu Xu
- First Medical Center of People's Liberation Army General Hospital, Beijing, 100853, China
| | - Xuhui Liu
- Department of Neurology, The Second Hospital of Lanzhou University, 82 Chenyimen, Chengguan District, Lanzhou, Gansu, 730030, China
| | - Xujie Wang
- Department of Emergency ICU, The Affiliated Hospital of Qinghai University, Xining, China
| | - Chunxia Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| | - Kunlun He
- Medical Innovation Research Division of People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Gou D, Min C, Peng X, Wu H, Zhang L, Chen Y, Tao M. Associating factors of cognitive frailty among older people with chronic heart failure: Based on LASSO-logistic regression. J Adv Nurs 2025; 81:1399-1411. [PMID: 39078209 DOI: 10.1111/jan.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
AIM To analyse factors associated with cognitive frailty among older chronic heart failure patients in China. DESIGN A cross-sectional design. METHODS Between August 2021 and November 2022, a total of 421 chronic heart failure patients (age ≥60 years) were randomly selected from the cardiology department of the affiliated hospital of Zunyi Medical University. The FRAIL scale, Mini-Mental State Examination, 15-item Geriatric Depression Scale, Social Support Rating Scale, Short-form Mini Nutritional Assessment and Pittsburgh Sleep Quality Index were utilized for measurement and evaluation. The demographic and clinical characteristics of patients were collected. To select initial variables, the Least Absolute Shrinkage Selection Operator was applied, and then logistic regression analysis was used to confirm associating factors. RESULTS Among 421 elderly people with chronic heart failure, 83 cases (19.7%) showed cognitive frailty. Of 31 variables, seven were selected by Least Absolute Shrinkage Selection Operator regression. Finally, multivariate logistic regression revealed that the age, monthly salary, drinking, NYHA classification, length of hospital stay, depression and malnutrition risk/malnutrition were independently associated with cognitive frailty. CONCLUSION The high proportion of cognitive frailty in older people with chronic heart failure should be concerned. Additionally, in the setting of cognitive frailty, efforts to diagnose it and develop interventions to prevent or reverse cognitive frailty status among older chronic heart failure patients are necessary. IMPACT The findings of our study highlight the necessity to evaluate cognitive frailty in older people with chronic heart failure and provide a new perspective and scientific basis for medical staff to develop individualized and specific interventions to prevent or reverse cognitive frailty status. REPORTING METHOD This study has been reported in compliance with STROBE reporting guidelines for cross-sectional studies. PATIENT OR PUBLIC CONTRIBUTION No Patient or Public Contribution.
Collapse
Affiliation(s)
- Dengqun Gou
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, P. R. China
| | - Changhang Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, P. R. China
| | - Xiaofeng Peng
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, P. R. China
| | - Hemei Wu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, P. R. China
| | - Lu Zhang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, P. R. China
| | - Yu Chen
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, P. R. China
| | - Ming Tao
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, P. R. China
| |
Collapse
|
3
|
Fonseka O, Gare SR, Chen X, Zhang J, Alatawi NH, Ross C, Liu W. Molecular Mechanisms Underlying Heart Failure and Their Therapeutic Potential. Cells 2025; 14:324. [PMID: 40072053 PMCID: PMC11899429 DOI: 10.3390/cells14050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies. Hypertrophy and fibrosis are significant characteristics of pathological cardiac remodeling, contributing to HF. The mechanisms involved in the development of cardiac remodeling and consequent HF are multifactorial, and in this review, the key underlying mechanisms are discussed. These have been divided into the following categories thusly: (i) mitochondrial dysfunction, including defective dynamics, energy production, and oxidative stress; (ii) cardiac lipotoxicity; (iii) maladaptive endoplasmic reticulum (ER) stress; (iv) impaired autophagy; (v) cardiac inflammatory responses; (vi) programmed cell death, including apoptosis, pyroptosis, and ferroptosis; (vii) endothelial dysfunction; and (viii) defective cardiac contractility. Preclinical data suggest that there is merit in targeting the identified pathways; however, their clinical implications and outcomes regarding treating HF need further investigation in the future. Herein, we introduce the molecular mechanisms pivotal in the onset and progression of HF, as well as compounds targeting the related mechanisms and their therapeutic potential in preventing or rescuing HF. This, therefore, offers an avenue for the design and discovery of novel therapies for the treatment of HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (O.F.); (S.R.G.); (X.C.); (J.Z.); (N.H.A.)
| |
Collapse
|
4
|
Meng X, Du W, Sun Z. Fine particulate matter‑induced cardiac developmental toxicity (Review). Exp Ther Med 2025; 29:6. [PMID: 39534282 PMCID: PMC11552469 DOI: 10.3892/etm.2024.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Fine particulate matter (PM2.5) has become an important risk factor threatening human health. Epidemiological and toxicological investigations have revealed that PM2.5 not only leads to cardiovascular dysfunction, but it also gives rise to various adverse health effects on the human body, such as cardiovascular and cerebrovascular diseases, cancers, neurodevelopmental disorders, depression and autism. PM2.5 is able to penetrate both respiratory and placental barriers, thereby resulting in negative effects on fetal development. A large body of epidemiological evidences has suggested that gestational exposure to PM2.5 increases the incidence of congenital diseases in offspring, including congenital heart defects. In addition, animal model studies have revealed that gestational exposure to PM2.5 can disrupt normal heart development in offspring, although the potential molecular mechanisms have yet to be fully elucidated. The aim of the present review was to provide a brief overview of what is currently known regarding the molecular mechanisms underlying cardiac developmental toxicity in offspring induced by gestational exposure to PM2.5.
Collapse
Affiliation(s)
- Xiangjiang Meng
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Weiyuan Du
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Zongli Sun
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| |
Collapse
|
5
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Zhang L, Han H, Xu A, Sathe A, Fu S, Zhao J, Cai W, Yang Y, Liu J, Bai H, Ben J, Zhu X, Li X, Yang Q, Wang Z, Gu Y, Xing C, Schiattarella GG, Cheng SY, Zhang H, Chen Q. Lysozyme 1 Inflamed CCR2 + Macrophages Promote Obesity-Induced Cardiac Dysfunction. Circ Res 2024; 135:596-613. [PMID: 39056179 DOI: 10.1161/circresaha.124.324106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.
Collapse
Affiliation(s)
- Lai Zhang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, China (L.Z.)
| | - Huian Han
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Andi Xu
- Department of Pathology, Nanjing Drum Tower Hospital, China (A.X.)
| | - Adwait Sathe
- Eugene McDermott Center for Human Growth and Development (A.S., C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Siying Fu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jiaqi Zhao
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Wenhan Cai
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Yaqing Yang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jinting Liu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Hui Bai
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jingjing Ben
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Xudong Zhu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Xiaoyu Li
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Qing Yang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Zidun Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China (Z.W.)
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine (Y.G.), Nanjing Medical University, Jiangsu, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development (A.S., C.X.), University of Texas Southwestern Medical Center, Dallas
- Department of Bioinformatics (C.X.), University of Texas Southwestern Medical Center, Dallas
- Department of Population and Data Sciences (C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité - Universitätsmedizin Berlin, Germany (G.G.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (G.G.S.)
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (G.G.S.)
| | - Steven Yan Cheng
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Hanwen Zhang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
7
|
Zhou HH, Tang YL, Xu TH, Cheng B. C-reactive protein: structure, function, regulation, and role in clinical diseases. Front Immunol 2024; 15:1425168. [PMID: 38947332 PMCID: PMC11211361 DOI: 10.3389/fimmu.2024.1425168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
C-reactive protein (CRP) is a plasma protein that is evolutionarily conserved, found in both vertebrates and many invertebrates. It is a member of the pentraxin superfamily, characterized by its pentameric structure and calcium-dependent binding to ligands like phosphocholine (PC). In humans and various other species, the plasma concentration of this protein is markedly elevated during inflammatory conditions, establishing it as a prototypical acute phase protein that plays a role in innate immune responses. This feature can also be used clinically to evaluate the severity of inflammation in the organism. Human CRP (huCRP) can exhibit contrasting biological functions due to conformational transitions, while CRP in various species retains conserved protective functions in vivo. The focus of this review will be on the structural traits of CRP, the regulation of its expression, activate complement, and its function in related diseases in vivo.
Collapse
Affiliation(s)
- Hai-Hong Zhou
- Centre for Translational Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
- Centre for Translational Medicine, Gansu Provincial Cancer Hospital, Lanzhou, China
- Centre for Translational Medicine, Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou, China
| | - Yu-Long Tang
- Ministry of Education (MOE), Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tian-Hao Xu
- Ministry of Education (MOE), Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bin Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Chang LH, Chang TT, Chu CH, Huang CC, Lin LY. Soluble tumor necrosis factor receptor type 1 is an alternative marker of urinary albumin-creatinine ratio and estimated glomerular filtration rate for predicting the decline of renal function in subjects with type 2 diabetes mellitus. Clin Chim Acta 2024; 558:117880. [PMID: 38555050 DOI: 10.1016/j.cca.2024.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Urinary albumin-creatinine ratio (UACR) and estimated glomerular filtration rates (eGFR) help predict worsening diabetic kidney disease (DKD) but have their limitations. Soluble tumor necrosis factor receptor type 1 (sTNFR1) is a biomarker of DKD. The predictive abilities of sTNFR1 and UACR plus eGFR have not been compared. METHODS This prospective cohort study included patients with type 2 diabetes (T2D) to identify the risk factors of worsening DKD. Renal events were defined as > 30 % loss in eGFR based on consecutive tests after 6 months. The associations of sTNFR1, UACR, and eGFR levels and the risks of renal events were tested using a Cox regression model and the area under the curve (AUC) was compared between sTNFR1 levels and UACR plus eGFR using receiver-operating characteristic (ROC) analysis. The accuracy of stratification was evaluated using Kaplan-Meier analysis. RESULTS Levels of sTNFR1 and UACR were associated with risks of > 30 % decline in eGFR after adjusting for relevant factors. The association between sTNFR1 levels and renal outcomes was independent of UACR and eGFR at baseline. The AUC of sTNFR1 level was comparable with that of combined UACR and eGFR (0.73 vs. 0.71, respectively, p = 0.72) and the results persisted for quartile groups of sTNFR1 and risk categories of Kidney Disease: Improving Global Outcomes (KDIGO) (0.70 vs. 0.71, respectively, p = 0.84). Both stratifications by sTNFR1 levels and KDIGO were accurate. CONCLUSION sTNFR1 could be an alternative marker for identifying patients with diabetes at risk of declining renal function.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Division of Endocrinology and Metabolism, Department of Medicine, Yeezen General Hospital, Taoyuan, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Huei Chu
- Department of Otorhinolaryngology-Head and Neck Surgery, Mackay Memorial Hospital, Taipei, Taiwan; Department of Audiology and Speech Language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Chin-Chou Huang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Yu Lin
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
9
|
Chi K, Yang S, Zhang Y, Zhao Y, Zhao J, Chen Q, Ge Y, Liu J. Exploring the mechanism of Tingli Pill in the treatment of HFpEF based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37727. [PMID: 38640300 PMCID: PMC11029988 DOI: 10.1097/md.0000000000037727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/21/2024] Open
Abstract
To explore the mechanism of action of Tingli Pill (TLP) in the treatment of heart failure with preserved ejection fraction (HFpEF) by using network pharmacology and molecular docking technology. The active components and targets of TLP were screened using the TCMSP and UniProt databases. HFpEF-related targets were identified using the OMIM and GeneCards databases. Drug-disease intersection targets were obtained via Venny 2.1.0, as well as establishing the "component-target" network and screening out the core active components. Construct a protein-protein interaction network of intersecting targets using the STRING database as well as Cytoscape software and filter the core targets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of core targets were performed using the Metascape database. The core active components of TLP for HFpEF were quercetin, kaempferol, β-sitosterol, isorhamnetin and hederagenin. The core targets of TLP for HFpEF were JUN, MAPK1, TP53, AKT1, RELA, TNF, MAPK14, and IL16. Gene ontology enrichment analysis obtained 1528 biological processes, 85 cell components, and 140 molecular functions. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis yielded 1940 signaling pathways, mainly involved in lipid and atherosclerosis, regulation of apoptotic signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, oxidative stress, TNF signaling pathway, and IL-17 signaling pathway. TLP has the characteristics of multi-component, multi-target, and multi-pathway in the treatment of HFpEF. This study lays the foundation for revealing the pharmacodynamic substances and mechanism of TLP in the treatment of HFpEF.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Saisai Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yao Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongfa Zhao
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiahe Zhao
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| | - Qiuhan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuan Ge
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Wang Y, Yu J, Ou C, Zhao Y, Chen L, Cai W, Wang H, Huang S, Hu J, Sun G, Li L. miRNA-146a-5p Inhibits Hypoxia-Induced Myocardial Fibrosis Through EndMT. Cardiovasc Toxicol 2024; 24:133-145. [PMID: 38180639 DOI: 10.1007/s12012-023-09818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Cardiac Vascular disease particularly myocardial infarction (MI) is a threat to health worldwide. microRNAs (miRNAs) have been shown to regulate myocardial fibrosis. Therefore, it is potential to investigate the mechanism of miRNA and fibrosis following myocardial infarction. Hypoxia human cardiac microvascular endothelial cells (HCMECs) were selected for the vitro experimental model. The miR-146a-5p expression was tested via RT-qPCR. The level of endothelial-to-mesenchymal transition (EndMT) and fibrosis markers were detected by Western blotting and immunofluorescence. Then, the inflammation, cell viability and apoptosis were investigated. The target was predicted by an online database and verified by a dual-luciferase activity assay. An MI mouse model was created to validate that miR-146a-5p regulates cardiac fibrosis in vivo. MI mouse was transfected with miR-146a-5p lentivirus. Subsequently, its effect on cardiac fibrosis of infarcted hearts was assessed by In situ hybridization (ISH), Immunohistochemistry (IHC), Triphenylterazolium chloride (TTC) staining and Masson staining. Herein, we confirmed that miR-146a-5p was down-regulated in hypoxia HCMECs. Overexpression of miR-146a-5p inhibited hypoxia-induced cardiac fibrosis following myocardial infarction by inhibiting EndMT in HCMECs. Thioredoxin-interacting protein (TXNIP) was a target that was negatively regulated by miR-146a-5p. Up-regulation of miR-146a-5p inhibited cardiac fibrosis via regulating EndMT by targeting TXNIP, and it also regulated EndMT to inhibit cardiac fibrosis in vivo.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China.
| | - Jie Yu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No. 212 Daguan Rd, Kunming, 650032, Yunnan, China.
| | - Chunxia Ou
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Yue Zhao
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Lixing Chen
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Wenke Cai
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No. 212 Daguan Rd, Kunming, 650032, Yunnan, China
| | - Huawei Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Shiying Huang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Jie Hu
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Guihu Sun
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| |
Collapse
|
11
|
Karna S, Kang KW. An Overview of the Mechanism behind Excessive Volume of Pericardial Fat in Heart Failure. J Obes Metab Syndr 2023; 32:322-329. [PMID: 38036419 PMCID: PMC10786210 DOI: 10.7570/jomes23042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Heart failure (HF) is a clinical syndrome characterized by myocardial dysfunction leading to inefficient blood filling or ejection. Regardless of the etiology, various mechanisms, including adipokine hypersecretion, proinflammatory cytokines, stem cell proliferation, oxidative stress, hyperglycemic toxicity, and autonomic nervous system dysregulation in the pericardial fat (PCF), contribute to the development of HF. PCF has been directly associated with cardiovascular disease, and an increased PCF volume is associated with HF. The PCF acts as neuroendocrine tissue that is closely linked to myocardial function and acts as an energy reservoir. This review aims to summarize each mechanism associated with PCF in HF.
Collapse
Affiliation(s)
- Sandeep Karna
- Division of Cardiology, Cardiovascular Arrhythmia Center, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ki-Woon Kang
- Division of Cardiology, Cardiovascular Arrhythmia Center, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Wang Z, Xu J, Zhang Y, Chen C, Kong C, Tang L, Jiang Y, Yu R, Zong Q, Zhang L, Wang D. Prediction of acute kidney injury incidence following acute type A aortic dissection surgery with novel biomarkers: a prospective observational study. BMC Med 2023; 21:503. [PMID: 38110934 PMCID: PMC10729328 DOI: 10.1186/s12916-023-03215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a prevalent complication following acute type A aortic dissection (ATAAD) surgery and is closely associated with unfavorable prognostic outcomes. Hence, the development of a robust and efficient diagnostic approach to identify high-risk patients is of paramount importance. METHODS We conducted a prospective study involving 328 patients who underwent ATAAD surgery at our institution, comprising three distinct cohorts. In addition, 52 patients undergoing alternative cardiopulmonary surgeries and 37 healthy individuals were enrolled as control groups. Employing proteomic analysis, we initially identified plasma proteins potentially linked to AKI occurrence within the plasma proteomic cohort. Subsequent validation was performed in an independent cohort. Utilizing predictors derived from multivariate logistic regression analysis, a nomogram was meticulously formulated and its efficacy was validated in the model construction cohort. RESULTS Proteomics revealed significant elevation of plasma levels of S100A8/A9, pentraxin 3 (PTX3), and chitinase 3-like 1 (CHI3L1) immediately post-surgery in patients who developed ATAAD surgery-associated AKI (ASA-AKI). Receiver operating characteristic (ROC) curves demonstrated impressive predictive performance of S100A8/A9, PTX3, and CHI3L1 at 0 h post-surgery, yielding area under the curve (AUC) values of 0.823, 0.786, and 0.803, respectively, for ASA-AKI prediction. Furthermore, our findings exhibited positive correlations between plasma levels of S100A8/A9, PTX3, CHI3L1, and urinary neutrophil gelatinase-associated lipocalin (NGAL) at 0 h post-surgery, along with correlations between plasma S100A8/A9, CHI3L1 levels, and the Cleveland Clinic score. A logistic regression model incorporating plasma S100A8/A9, PTX3, CHI3L1 levels, urinary NGAL levels, and the Cleveland Clinic score facilitated the construction of a predictive nomogram for ASA-AKI. This nomogram demonstrated robust discriminative ability, achieving an AUC of 0.963 in the model construction cohort. CONCLUSIONS Our study underscored the augmentation of plasma S100A8/A9, PTX3, and CHI3L1 levels immediately post-surgery in patients developing ASA-AKI. The incorporation of these three biomarkers, in conjunction with the Cleveland Clinic score and NGAL, into a nomogram demonstrated commendable predictive efficacy. This presents a practical tool for identifying patients at an elevated risk of AKI following ATAAD surgery.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingfang Xu
- Department of Nephrology, Ningbo First Hospital, Ningbo, China
| | - Yu Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Cheng Chen
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chuiyu Kong
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lu Tang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Jiang
- Department of Cardiovascular Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical, Beijing, China
| | - Ronghuang Yu
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiuyan Zong
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lifang Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Dongjin Wang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Kim SJ, Mesquita FCP, Hochman-Mendez C. New Biomarkers for Cardiovascular Disease. Tex Heart Inst J 2023; 50:e238178. [PMID: 37846107 PMCID: PMC10658139 DOI: 10.14503/thij-23-8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Early detection and treatment of cardiovascular disease are crucial for patient survival and long-term health. Despite advances in cardiovascular disease biomarkers, the prevalence of cardiovascular disease continues to increase worldwide as the global population ages. To address this problem, novel biomarkers that are more sensitive and specific to cardiovascular diseases must be developed and incorporated into clinical practice. Exosomes are promising biomarkers for cardiovascular disease. These small vesicles are produced and released into body fluids by all cells and carry specific information that can be correlated with disease progression. This article reviews the advantages and limitations of existing biomarkers for cardiovascular disease, such as cardiac troponin and cytokines, and discusses recent evidence suggesting the promise of exosomes as cardiovascular disease biomarkers.
Collapse
Affiliation(s)
- Stephanie J. Kim
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas
- Department of Biosciences, Rice University, Houston, Texas
| | | | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas
| |
Collapse
|
14
|
Ying W. Phenomic Studies on Diseases: Potential and Challenges. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:285-299. [PMID: 36714223 PMCID: PMC9867904 DOI: 10.1007/s43657-022-00089-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 01/23/2023]
Abstract
The rapid development of such research field as multi-omics and artificial intelligence (AI) has made it possible to acquire and analyze the multi-dimensional big data of human phenomes. Increasing evidence has indicated that phenomics can provide a revolutionary strategy and approach for discovering new risk factors, diagnostic biomarkers and precision therapies of diseases, which holds profound advantages over conventional approaches for realizing precision medicine: first, the big data of patients' phenomes can provide remarkably richer information than that of the genomes; second, phenomic studies on diseases may expose the correlations among cross-scale and multi-dimensional phenomic parameters as well as the mechanisms underlying the correlations; and third, phenomics-based studies are big data-driven studies, which can significantly enhance the possibility and efficiency for generating novel discoveries. However, phenomic studies on human diseases are still in early developmental stage, which are facing multiple major challenges and tasks: first, there is significant deficiency in analytical and modeling approaches for analyzing the multi-dimensional data of human phenomes; second, it is crucial to establish universal standards for acquirement and management of phenomic data of patients; third, new methods and devices for acquirement of phenomic data of patients under clinical settings should be developed; fourth, it is of significance to establish the regulatory and ethical guidelines for phenomic studies on diseases; and fifth, it is important to develop effective international cooperation. It is expected that phenomic studies on diseases would profoundly and comprehensively enhance our capacity in prevention, diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030 China
- Collaborative Innovation Center for Genetics and Development, Shanghai, 200043 China
| |
Collapse
|
15
|
Paparazzo E, Geracitano S, Lagani V, Citrigno L, Bartolomeo D, Aceto MA, Bruno F, Maletta R, Passarino G, Montesanto A. Thymic function and survival at advance ages in nursing home residents from Southern Italy. Immun Ageing 2023; 20:16. [PMID: 37038200 PMCID: PMC10084596 DOI: 10.1186/s12979-023-00340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Immunosenescence is a complex process characterized by an age-related remodelling of immune system. The prominent effects of the immunosenescence process is the thymic involution and, consequently, the decreased numbers and functions of T cells. Since thymic involution results in a collapse of the T-cell receptor (TCR) repertoire, a reliable biomarker of its activity is represented by the quantification of signal joint T-cell receptor rearrangement excision circles (sjTRECs) levels. Although it is reasonable to think that thymic function could play a crucial role on elderly survival, only a few studies investigated the relationship between an accurate measurement of human thymic function and survival at old ages. METHODS AND FINDINGS By quantifying the amount sjTRECs by real-time polymerase chain reaction (PCR), the decrease in thymic output in 241 nursing home residents from Calabria (Southern Italy) was evaluated to investigate the relationship between thymic function and survival at old ages. We found that low sjTREC levels were associated with a significant increased risk of mortality at older ages. Nursing home residents with lower sjTREC exhibit a near 2-fold increase in mortality risk compared to those with sjTREC levels in a normal range. CONCLUSION Thymic function failure is an independent predictor of mortality among elderly nursing home residents. sjTREC represents a biomarker of effective ageing as its blood levels could anticipate individuals at high risk of negative health outcomes. The identification of these subjects is crucial to manage older people's immune function and resilience, such as, for instance, to plan more efficient vaccinal campaigns in older populations.
Collapse
Affiliation(s)
- Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Vincenzo Lagani
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, 23952, Saudi Arabia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, King Abdullah University of Science and Technology KAUST, Thuwal, 23952, Saudi Arabia
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, Georgia
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Denise Bartolomeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Mirella Aurora Aceto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, Lamezia Terme (CZ), 88046, Italy
- Association for Neurogenetic Research (ARN), Lamezia Terme (CZ), 88046, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, Lamezia Terme (CZ), 88046, Italy
- Association for Neurogenetic Research (ARN), Lamezia Terme (CZ), 88046, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
16
|
Tousif S, Singh AP, Umbarkar P, Galindo C, Wheeler N, Coro AT, Zhang Q, Prabhu SD, Lal H. Ponatinib Drives Cardiotoxicity by S100A8/A9-NLRP3-IL-1β Mediated Inflammation. Circ Res 2023; 132:267-289. [PMID: 36625265 PMCID: PMC9898181 DOI: 10.1161/circresaha.122.321504] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND The tyrosine kinase inhibitor ponatinib is the only treatment option for chronic myelogenous leukemia patients with T315I (gatekeeper) mutation. Pharmacovigilance analysis of Food and Drug Administration and World Health Organization datasets has revealed that ponatinib is the most cardiotoxic agent among all Food and Drug Administration-approved tyrosine kinase inhibitors in a real-world scenario. However, the mechanism of ponatinib-induced cardiotoxicity is unknown. METHODS The lack of well-optimized mouse models has hampered the in vivo cardio-oncology studies. Here, we show that cardiovascular comorbidity mouse models evidence a robust cardiac pathological phenotype upon ponatinib treatment. A combination of multiple in vitro and in vivo models was employed to delineate the underlying molecular mechanisms. RESULTS An unbiased RNA sequencing analysis identified the enrichment of dysregulated inflammatory genes, including a multifold upregulation of alarmins S100A8/A9, as a top hit in ponatinib-treated hearts. Mechanistically, we demonstrate that ponatinib activates the S100A8/A9-TLR4 (Toll-like receptor 4)-NLRP3 (NLR family pyrin domain-containing 3)-IL (interleukin)-1β signaling pathway in cardiac and systemic myeloid cells, in vitro and in vivo, thereby leading to excessive myocardial and systemic inflammation. Excessive inflammation was central to the cardiac pathology because interventions with broad-spectrum immunosuppressive glucocorticoid dexamethasone or specific inhibitors of NLRP3 (CY-09) or S100A9 (paquinimod) nearly abolished the ponatinib-induced cardiac dysfunction. CONCLUSIONS Taken together, these findings uncover a novel mechanism of ponatinib-induced cardiac inflammation leading to cardiac dysfunction. From a translational perspective, our results provide critical preclinical data and rationale for a clinical investigation into immunosuppressive interventions for managing ponatinib-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sultan Tousif
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Anand P. Singh
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Cristi Galindo
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA35294-1913, USA
| | - Nicholas Wheeler
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA35294-1913, USA
| | - Angelica Toro Coro
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Qinkun Zhang
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Sumanth D. Prabhu
- Division of Cardiology, Department of Medicine, Washington University in St. Louis
| | - Hind Lal
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
17
|
Song YK, Yuan HX, Jian YP, Chen YT, Liang KF, Liu XJ, Ou ZJ, Liu JS, Li Y, Ou JS. Pentraxin 3 in Circulating Microvesicles: a Potential Biomarker for Acute Heart Failure After Cardiac Surgery with Cardiopulmonary Bypass. J Cardiovasc Transl Res 2022; 15:1414-1423. [PMID: 35879589 DOI: 10.1007/s12265-022-10253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate whether pentraxin 3 (PTX3) in microvesicles (MVs) can be a valuable biomarker for the prediction of acute heart failure (AHF) after cardiac surgery with cardiopulmonary bypass (CPB). One hundred and twenty-four patients undergoing cardiac surgery with CPB were included and analyzed (29 with AHF and 95 without AHF). The concentrations of PTX3 in MVs isolated from plasma were measured by ELISA kits before, 12 h, and 3 days after surgery. Patients' demographics, medical history, surgical data, and laboratory results were collected. The levels of PTX3 in MVs were significantly elevated during perioperative surgery, which was increased more in the AHF group. The concentrations of PTX3 in MVs at postoperative 12 h were independent risk factors for AHF with the area under the ROC curve of 0.920. The concentration of PTX3 in MVs may be a novel biomarker for prediction of AHF after cardiac surgery.
Collapse
Affiliation(s)
- Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
18
|
Klimiuk A, Zalewska A, Knapp M, Skutnik-Radziszewska A, Maciejczyk M. Could inflammation contribute to salivary gland dysfunction in patients with chronic heart failure? Front Immunol 2022; 13:1005981. [PMID: 36300113 PMCID: PMC9589450 DOI: 10.3389/fimmu.2022.1005981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Heart failure (HF) is one of the leading causes of death worldwide. HF results not only in cardiovascular dysfunction, but also numerous pathologies in the oral cavity and salivary glands. The present study is the first to evaluate whether salivary inflammatory and anti-inflammatory factors may be related with the occurrence of hyposalivation in HF patients. We also evaluated the potential of salivary biomarkers in the diagnostics of HF. The study included 30 women with HF and 30 sex- and age-matched healthy controls. We demonstrated significantly higher levels of pro-inflammatory cytokines, anti-inflammatory cytokines, Th1, Th2, Th17, chemokines and growth factors in unstimulated saliva of HF patients compared to controls. However, the results do not indicate dominance of either branch of the immune response. The concentration of selected biomarkers is significantly higher in patients with HF and salivary gland dysfunction compared to patients with normal saliva secretion and healthy subjects (IL-1β, TNF-α, IL-7, IL-13, INF-γ, IL-12, IL-15, IL-5, IL-6, IL-9, IL-17, MCP-1/CCL-2, EOTAXIN/CCL11, RANTES/CCL5, GM-CSF, VEGF, FGF basic, PDFG-BB). Multivariate regression analysis showed that the content of salivary cytokines, chemokines and growth factors is highly dependent on salivary gland function, i.e. salivary flow rate, total protein content and amylase activity. Using receiver operating characteristic (ROC) analysis, we showed that salivary TNF-α, INF-γ, IL-12 and EOTAXIN/CCL11 differentiated patients with HF and hyposalivation with the highest sensitivity and specificity compared to patients with normal salivary secretion and controls. Interestingly, the content of some pro- and anti-inflammatory mediators in saliva significantly exceeds their concentration in plasma. In addition, salivary biomarker levels do not reflect their plasma content, which may suggest a different nature/severity of inflammatory changes at the central (blood) and local (salivary) levels. Although our study was purely observational, the significantly higher concentration of inflammatory parameters in saliva compared to plasma, as well as the lack of saliva-blood correlation, may suggest increased production/secretion of these compounds in salivary cells of HF patients. ROC analysis did not confirm the diagnostic utility of salivary cytokines and chemokines in the differential diagnosis of HF patients.
Collapse
Affiliation(s)
- Anna Klimiuk
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Mateusz Maciejczyk,
| |
Collapse
|
19
|
Feldtmann R, Kümmel A, Chamling B, Strohbach A, Lehnert K, Gross S, Loerzer L, Riad A, Lindner D, Westermann D, Fielitz J, Dörr M, Felix SB. Myeloid differentiation factor-2 activates monocytes in patients with dilated cardiomyopathy. Immunology 2022; 167:40-53. [PMID: 35502635 DOI: 10.1111/imm.13490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
Plasma levels of myeloid differentiation factor-2 (MD-2), a co-receptor of toll-like-receptor 4 (TLR4), independently predict mortality in patients with dilated cardiomyopathy (DCM). We tested whether monocyte-activation by MD-2 contributes to immune activation and inflammatory status in DCM patients. We found increased MD-2 plasma-levels in 25 patients with recent-onset DCM (1,250±80.7 ng/ml) compared to 25 age- and gender-matched healthy controls (793.4±52.0 ng/ml; p<0.001). Monocytes isolated from DCM-patients showed a higher expression (141.7±12.4 %; p=0.006 vs. controls) of the MD-2 encoding gene, LY96, and an increased NF-κB-activation. Further, the TLR4-activator lipopolysaccharide (LPS) caused a higher increase in interleukin (IL)-6 in monocytes from DCM-patients compared to controls (mean fluorescence intensity: 938.7±151.0 vs. 466.9±51.1; p=0.005). MD-2 increased IL-6 secretion in a TLR4/NF-κB-dependent manner in monocyte-like THP-1-cells as demonstrated by TLR4-siRNA and NF-κB-inhibition. Since endothelial cells (ECs) are responsible for recruiting monocytes to the site of inflammation, ECs were treated with MD-2 leading to an activation of Akt and increased secretion of monocyte-chemoattractant-protein-1 (MCP-1). Activation of ECs by MD-2 was accompanied by an increased expression of the adhesion-molecules CD54, CD106, and CD62E, resulting in an increased monocyte-recruitment, which was attenuated by CD54-inhibition. In addition, in murine WT but not LY96-KO bone marrow-derived macrophages LPS increased the amount of CD54 and CD49d/CD29. MD-2 facilitates a pro-inflammatory status of monocytes and EC-mediated monocyte-recruitment via TLR4/NF-κB. Elevated MD-2 plasma-levels are possibly involved in monocyte-related inflammation promoting disease-progression in DCM. Our results suggest that MD-2 contributes to increasing monocytic inflammatory activity and triggers recruitment of monocytes to ECs in DCM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rico Feldtmann
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Andreas Kümmel
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Bishwas Chamling
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Anne Strohbach
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Kristin Lehnert
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Stefan Gross
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Lisa Loerzer
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Alexander Riad
- DRK-Krankenhaus Teterow gGMBH, Internal Medicine, Teterow, Germany
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Dirk Westermann
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Jens Fielitz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany
| |
Collapse
|
20
|
Agra-Bermejo RM, Cacho-Antonio C, Gonzalez-Babarro E, Rozados-Luis A, Couselo-Seijas M, Gómez-Otero I, Varela-Román A, López-Canoa JN, Gómez-Rodríguez I, Pata M, Eiras S, González-Juanatey JR. A New Biomarker Tool for Risk Stratification in " de novo" Acute Heart Failure (OROME). Front Physiol 2022; 12:736245. [PMID: 35095543 PMCID: PMC8793744 DOI: 10.3389/fphys.2021.736245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Inflammation is one of the mechanisms involved in heart failure (HF) pathophysiology. Thus, the acute phase reactant protein, orosomucoid, was associated with a worse post-discharge prognosis in de novo acute HF (AHF). However, the presence of anti-inflammatory adipokine, omentin, might protect and reduce the severity of the disease. We wanted to evaluate the value of omentin and orosomucoid combination for stratifying the risk of these patients. Methods and Results: Two independent cohorts of patients admitted for de novo AHF in two centers were included in the study (n = 218). Orosomucoid and omentin circulating levels were determined by ELISA at discharge. Patients were followed-up for 317 (3-575) days. A predictive model was determined for the primary endpoint, death, and/or HF readmission. Differences in survival were evaluated using a Log-rank test. According to cut-off values of orosomucoid and omentin, patients were classified as UpDown (high orosomucoid and low omentin levels), equal (both proteins high or low), and DownUp (low orosomucoid and high omentin levels). The Kaplan Meier determined a worse prognosis for the UpDown group (Long-rank test p = 0.02). The predictive model that includes the combination of orosomucoid and omentin groups (OROME) + NT-proBNP values achieved a higher C-index = 0.84 than the predictive model with NT-proBNP (C-index = 0.80) or OROME (C-index = 0.79) or orosomucoid alone (C-index = 0.80). Conclusion: The orosomucoid and omentin determination stratifies de novo AHF patients into the high, mild, and low risk of rehospitalization and/or death for HF. Its combination with NT-proBNP improves its predictive value in this group of patients.
Collapse
Affiliation(s)
- Rosa M. Agra-Bermejo
- Cardiovascular Area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- CIBERCV: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Carla Cacho-Antonio
- Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- CIBERCV: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Adriana Rozados-Luis
- Traslational Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marinela Couselo-Seijas
- Traslational Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Inés Gómez-Otero
- Cardiovascular Area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- CIBERCV: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Alfonso Varela-Román
- Cardiovascular Area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- CIBERCV: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - José N López-Canoa
- Cardiovascular Area, Hospital Montecelo, Pontevedra, Spain
- Traslational Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - María Pata
- Biostatech, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sonia Eiras
- CIBERCV: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Traslational Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose R. González-Juanatey
- Cardiovascular Area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- CIBERCV: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
21
|
Ling Y, Weng H, Tang S. The relationship between IL-6 levels and the angiographic severity of coronary artery disease following percutaneous coronary intervention in acute coronary syndrome patients. BMC Cardiovasc Disord 2021; 21:578. [PMID: 34861824 PMCID: PMC8642871 DOI: 10.1186/s12872-021-02406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Background The present investigation was developed for the exploration of the association between IL-6 levels and acute coronary syndrome (ACS) findings upon angiographic evaluation. Methods A retrospective review of 346 patients suffering from chest discomfort that underwent coronary angiography was performed. The SYNergy between Percutaneous Coronary Intervention with TAXus and cardiac surgery (SYNTAX) score (SS) and SS II were used to gauge ACS severity, with ACS patients being stratified into two groups based on an SS value of 22 and the median SS II value. Associations between IL-6 levels and SS or SS II values were assessed through Spearman's correlation analyses, and independent predictors of intermediate-high SS or high SS II were identified via a multivariate logistic regression approach. A receiver operating characteristic (ROC) curve was employed to explore of the predictive value of IL-6 levels. Results IL-6 was positively correlated with both SS (r = 0.479, P < 0.001) and SS II (r = 0.305, P < 0.001). Moreover, IL-6 levels were independently predictive of intermediate-high SS and high SS II values. ROC curves further demonstrated that IL-6 was able to predict intermediate-high SS and high SS II, with area under the curve (AUC) values of 0.806 and 0.624, respectively. Conclusion IL-6 levels are closely linked to the extent of coronary artery disease in ACS patients undergoing percutaneous coronary intervention. IL-6 levels may thus serve as a valuable and non-invasive biomarker of high-risk ACS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02406-7.
Collapse
Affiliation(s)
- Yang Ling
- Department of Cardiology, Yijishan Hospital Affiliated To Wannan Medical College, 2# West Zhe Shan Road, Wuhu, 241000, China
| | - Hairong Weng
- Department of Emergency Intensive Care Unit, Yijishan Hospital Affiliated To Wannan Medical College, 2# West Zhe Shan Road, Wuhu, 241000, China
| | - Shengxing Tang
- Department of Cardiology, Yijishan Hospital Affiliated To Wannan Medical College, 2# West Zhe Shan Road, Wuhu, 241000, China.
| |
Collapse
|
22
|
García-Torre A, Bueno-García E, López-Martínez R, Rioseras B, Díaz-Molina B, Lambert JL, Quirós C, Alonso-Álvarez S, Alonso-Arias R, Moro-García MA. CMV Infection Is Directly Related to the Inflammatory Status in Chronic Heart Failure Patients. Front Immunol 2021; 12:687582. [PMID: 34456907 PMCID: PMC8387659 DOI: 10.3389/fimmu.2021.687582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
High levels of inflammation play an important role in chronic heart failure (CHF). Patients with CHF have elevated levels of pro-inflammatory cytokines circulating systemically, mainly TNF and IL-6. However, there are almost no studies that relate these levels to the functional status of patients in CHF, much less to their CMV serostatus. In this study, patients with CHF (n=40; age=54.9 ± 6.3; New York Heart Association functional classification (NYHA, I-III) and healthy controls (n=40; age=53.5 ± 7.1) were analyzed. The serum concentrations of nine pro- and anti-inflammatory cytokines were measured by Luminex® xMap Technology and the basal level of mRNA expression of some immune molecules was quantified by TaqMan™ Array in CD4+ T-lymphocytes. The concentration of these cytokines in culture supernatants in response to anti-CD3 and LPS was also measured. The percentage of CD28null T-cells was determined, as well as the antibody titer against CMV. We found a higher concentration of all cytokines studied in CHF serum compared to healthy controls, as well as a direct correlation between functional status in CHF patients and levels of inflammatory cytokines. Moreover, the highest cytokine concentrations were found in patients with higher concentrations of lymphocytes lacking CD28 molecule. The cytokine production was much higher in CMV+ patients, and the production of these cytokines was found mainly in the T-lymphocytes of CMV+ patients in response to anti-CD3. Anti-CMV antibody levels were positively correlated with cytokine levels. The baseline expression of specific mRNA of the main molecules involved in the Th1 response, as well as molecules related to the CD4+CD28 null subset was higher in CMV+ patients. The cytokine concentrations are higher in CHF CMV+ patients and these concentrations are related to the production of antibodies against CMV. These high levels of cytokines are also associated with the more differentiated CD28null lymphocyte populations. All this, together with the dynamics of the pathology itself, makes CMV+ patients present a worse functional status and possibly a worse evolution of the pathology.
Collapse
Affiliation(s)
- Alejandra García-Torre
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain
| | - Eva Bueno-García
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain
| | - Rocío López-Martínez
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz Rioseras
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Beatriz Díaz-Molina
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Section of Hemodynamics and Interventional Cardiology, Department of Cardiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - José Luis Lambert
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Section of Hemodynamics and Interventional Cardiology, Department of Cardiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Covadonga Quirós
- Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Clinical Biochemistry Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Sara Alonso-Álvarez
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Hematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marco A Moro-García
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias - ISPA, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
23
|
Ju C, Zhou J, Lee S, Tan MS, Liu T, Bazoukis G, Jeevaratnam K, Chan EW, Wong ICK, Wei L, Zhang Q, Tse G. Derivation of an electronic frailty index for predicting short-term mortality in heart failure: a machine learning approach. ESC Heart Fail 2021; 8:2837-2845. [PMID: 34080784 PMCID: PMC8318426 DOI: 10.1002/ehf2.13358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Frailty may be found in heart failure patients especially in the elderly and is associated with a poor prognosis. However, assessment of frailty status is time-consuming, and the electronic frailty indices developed using health records have served as useful surrogates. We hypothesized that an electronic frailty index developed using machine learning can improve short-term mortality prediction in patients with heart failure. METHODS AND RESULTS This was a retrospective observational study that included patients admitted to nine public hospitals for heart failure from Hong Kong between 2013 and 2017. Age, sex, variables in the modified frailty index, Deyo's Charlson co-morbidity index (≥2), neutrophil-to-lymphocyte ratio (NLR), and prognostic nutritional index at baseline were analysed. Gradient boosting, which is a supervised sequential ensemble learning algorithm with weak prediction submodels (typically decision trees), was applied to predict mortality. Variables were ranked in the order of importance with a total score of 100 and used to build the frailty models. Comparisons were made with decision tree and multivariable logistic regression. A total of 8893 patients (median: age 81, Q1-Q3: 71-87 years old) were included, in whom 9% had 30 day mortality and 17% had 90 day mortality. Prognostic nutritional index, age, and NLR were the most important variables predicting 30 day mortality (importance score: 37.4, 32.1, and 20.5, respectively) and 90 day mortality (importance score: 35.3, 36.3, and 14.6, respectively). Gradient boosting significantly outperformed decision tree and multivariable logistic regression. The area under the curve from a five-fold cross validation was 0.90 for gradient boosting and 0.87 and 0.86 for decision tree and logistic regression in predicting 30 day mortality. For the prediction of 90 day mortality, the area under the curve was 0.92, 0.89, and 0.86 for gradient boosting, decision tree, and logistic regression, respectively. CONCLUSIONS The electronic frailty index based on co-morbidities, inflammation, and nutrition information can readily predict mortality outcomes. Their predictive performances were significantly improved by gradient boosting techniques.
Collapse
Affiliation(s)
- Chengsheng Ju
- Research Department of Practice and Policy, School of PharmacyUniversity College LondonLondonUK
| | - Jiandong Zhou
- School of Data ScienceCity University of Hong KongHong Kong SARChina
| | - Sharen Lee
- Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, LKS Institute of Health SciencesChinese University of Hong KongHong Kong SARChina
| | | | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - George Bazoukis
- Second Department of CardiologyEvangelismos General HospitalAthensGreece
| | | | - Esther W.Y. Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Ian Chi Kei Wong
- Research Department of Practice and Policy, School of PharmacyUniversity College LondonLondonUK
- Centre for Safe Medication Practice and Research, Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Li Wei
- Research Department of Practice and Policy, School of PharmacyUniversity College LondonLondonUK
| | - Qingpeng Zhang
- School of Data ScienceCity University of Hong KongHong Kong SARChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
24
|
Viola M, de Jager SCA, Sluijter JPG. Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles? Int J Mol Sci 2021; 22:ijms22157831. [PMID: 34360595 PMCID: PMC8346058 DOI: 10.3390/ijms22157831] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
After myocardial infarction (MI), a strong inflammatory response takes place in the heart to remove the dead tissue resulting from ischemic injury. A growing body of evidence suggests that timely resolution of this inflammatory process may aid in the prevention of adverse cardiac remodeling and heart failure post-MI. The present challenge is to find a way to stimulate this process without interfering with the reparative role of the immune system. Extracellular vesicles (EVs) are natural membrane particles that are released by cells and carry different macromolecules, including proteins and non-coding RNAs. In recent years, EVs derived from various stem and progenitor cells have been demonstrated to possess regenerative properties. They can provide cardioprotection via several mechanisms of action, including immunomodulation. In this review, we summarize the role of the innate immune system in post-MI healing. We then discuss the mechanisms by which EVs modulate cardiac inflammation in preclinical models of myocardial injury through regulation of monocyte influx and macrophage function. Finally, we provide suggestions for further optimization of EV-based therapy to improve its potential for the treatment of MI.
Collapse
Affiliation(s)
- Margarida Viola
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands
| | - Saskia C. A. de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands
- Correspondence: (S.C.A.d.J.); (J.P.G.S.)
| | - Joost P. G. Sluijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands
- Correspondence: (S.C.A.d.J.); (J.P.G.S.)
| |
Collapse
|
25
|
Ghionzoli N, Gentile F, Del Franco AM, Castiglione V, Aimo A, Giannoni A, Burchielli S, Cameli M, Emdin M, Vergaro G. Current and emerging drug targets in heart failure treatment. Heart Fail Rev 2021; 27:1119-1136. [PMID: 34273070 PMCID: PMC9197912 DOI: 10.1007/s10741-021-10137-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
After initial strategies targeting inotropism and congestion, the neurohormonal interpretative model of heart failure (HF) pathophysiology has set the basis for current pharmacological management of HF, as most of guideline recommended drug classes, including beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists, blunt the activation of detrimental neurohormonal axes, namely sympathetic and renin–angiotensin–aldosterone (RAAS) systems. More recently, sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, combining inhibition of RAAS and potentiation of the counter-regulatory natriuretic peptide system, has been consistently demonstrated to reduce mortality and HF-related hospitalization. A number of novel pharmacological approaches have been tested during the latest years, leading to mixed results. Among them, drugs acting directly at a second messenger level, such as the soluble guanylate cyclase stimulator vericiguat, or other addressing myocardial energetics and mitochondrial function, such as elamipretide or omecamtiv-mecarbil, will likely change the therapeutic management of patients with HF. Sodium glucose cotransporter 2 inhibitors, initially designed for the management of type 2 diabetes mellitus, have been recently demonstrated to improve outcome in HF, although mechanisms of their action on cardiovascular system are yet to be elucidated. Most of these emerging approaches have shifted the therapeutic target from neurohormonal systems to the heart, by improving cardiac contractility, metabolism, fibrosis, inflammation, and remodeling. In the present paper, we review from a pathophysiological perspective current and novel therapeutic strategies in chronic HF.
Collapse
Affiliation(s)
- Nicolò Ghionzoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | | | - Anna Maria Del Franco
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
| | | | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Giannoni
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy.
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
26
|
Azimzadeh O, von Toerne C, Subramanian V, Sievert W, Multhoff G, Atkinson MJ, Tapio S. Data-Independent Acquisition Proteomics Reveals Long-Term Biomarkers in the Serum of C57BL/6J Mice Following Local High-Dose Heart Irradiation. Front Public Health 2021; 9:678856. [PMID: 34277544 PMCID: PMC8283568 DOI: 10.3389/fpubh.2021.678856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background and Purpose: Cardiotoxicity is a well-known adverse effect of radiation therapy. Measurable abnormalities in the heart function indicate advanced and often irreversible heart damage. Therefore, early detection of cardiac toxicity is necessary to delay and alleviate the development of the disease. The present study investigated long-term serum proteome alterations following local heart irradiation using a mouse model with the aim to detect biomarkers of radiation-induced cardiac toxicity. Materials and Methods: Serum samples from C57BL/6J mice were collected 20 weeks after local heart irradiation with 8 or 16 Gy X-ray; the controls were sham-irradiated. The samples were analyzed by quantitative proteomics based on data-independent acquisition mass spectrometry. The proteomics data were further investigated using bioinformatics and ELISA. Results: The analysis showed radiation-induced changes in the level of several serum proteins involved in the acute phase response, inflammation, and cholesterol metabolism. We found significantly enhanced expression of proinflammatory cytokines (TNF-α, TGF-β, IL-1, and IL-6) in the serum of the irradiated mice. The level of free fatty acids, total cholesterol, low-density lipoprotein (LDL), and oxidized LDL was increased, whereas that of high-density lipoprotein was decreased by irradiation. Conclusions: This study provides information on systemic effects of heart irradiation. It elucidates a radiation fingerprint in the serum that may be used to elucidate adverse cardiac effects after radiation therapy.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Section Radiation Biology, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Vikram Subramanian
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Sievert
- Department of Radiation Oncology, Center for Translational Cancer Research (TranslaTUM), Campus Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Center for Translational Cancer Research (TranslaTUM), Campus Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Radiation Biology, Technical University of Munich, Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute for Biological and Medical Imaging, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
27
|
An L, Chopp M, Zacharek A, Shen Y, Chen Z, Qian Y, Li W, Landschoot-Ward J, Liu Z, Venkat P. Cardiac Dysfunction in a Mouse Vascular Dementia Model of Bilateral Common Carotid Artery Stenosis. Front Cardiovasc Med 2021; 8:681572. [PMID: 34179145 PMCID: PMC8225957 DOI: 10.3389/fcvm.2021.681572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Cardiac function is associated with cognitive function. Previously, we found that stroke and traumatic brain injury evoke cardiac dysfunction in mice. In this study, we investigate whether bilateral common carotid artery stenosis (BCAS), a model that induces vascular dementia (VaD) in mice, induces cardiac dysfunction. Methods: Late-adult (6-8 months) C57BL/6J mice were subjected to sham surgery (n = 6) or BCAS (n = 8). BCAS was performed by applying microcoils (0.16 mm internal diameter) around both common carotid arteries. Cerebral blood flow and cognitive function tests were performed 21-28 days post-BCAS. Echocardiography was conducted in conscious mice 29 days after BCAS. Mice were sacrificed 30 days after BCAS. Heart tissues were isolated for immunohistochemical evaluation and real-time PCR assay. Results: Compared to sham mice, BCAS in mice significantly induced cerebral hypoperfusion and cognitive dysfunction, increased cardiac hypertrophy, as indicated by the increased heart weight and the ratio of heart weight/body weight, and induced cardiac dysfunction and left ventricular (LV) enlargement, indicated by a decreased LV ejection fraction (LVEF) and LV fractional shortening (LVFS), increased LV dimension (LVD), and increased LV mass. Cognitive deficits significantly correlated with cardiac deficits. BCAS mice also exhibited significantly increased cardiac fibrosis, increased oxidative stress, as indicated by 4-hydroxynonenal and NADPH oxidase-2, increased leukocyte and macrophage infiltration into the heart, and increased cardiac interleukin-6 and thrombin gene expression. Conclusions: BCAS in mice without primary cardiac disease provokes cardiac dysfunction, which, in part, may be mediated by increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Lulu An
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yi Shen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yu Qian
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Wei Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
28
|
张 凤, 赵 小, 冯 嵩, 安 金. [Change of serum levels of pentraxin-3 and syndecan-4 in children with chronic heart failure]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:513-518. [PMID: 34020743 PMCID: PMC8140338 DOI: 10.7499/j.issn.1008-8830.2101108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To study the change and significance of serum pentraxin-3 (PTX-3) and syndecan-4 in children with chronic heart failure (CHF). METHODS A total of 40 children with CHF who were admitted to the Department of Pediatrics of the First Affiliated Hospital of Zhengzhou University were enrolled as the heart failure group, and 30 children who underwent physical examination in the outpatient service during the same period of time were enrolled as the control group. The serum levels of PTX-3, syndecan-4, and N-terminal pro-brain natriuretic peptide (NT-proBNP) were compared between the two groups. RESULTS The children with CHF had significant reductions in the serum levels of PTX-3, syndecan-4, and NT-proBNP after treatment. The levels of these markers in children with CHF were significantly higher than the control group before and after treatment (P < 0.05). The CHF children with grade II/III/IV cardiac function had significantly higher serum levels of PTX-3 and syndecan-4 than the control group (P < 0.05). The levels of PTX-3 and syndecan-4 were related to the severity of cardiac function. Compared with the grade II cardiac function group, the grade IV cardiac function group had significant increases in the serum levels of PTX-3 and syndecan-4 (P < 0.05). The serum level of PTX-3 was positively correlated with that of syndecan-4 in children with CHF (rs=0.999, P < 0.05); the serum level of PTX-3 was positively correlated with NT-proBNP, left ventricular mass index (LVMI), and cardiac function grade (rs=0.726, 0.736, and 0.934 respectively, P < 0.05) and was negatively correlated with left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) (rs=-0.852 and -0.767 respectively, P < 0.05); the serum level of syndecan-4 was positively correlated with NT-proBNP, LVMI, and cardiac function grade (rs=0.733, 0.743, and 0.934 respectively, P < 0.05) and was negatively correlated with LVEF and LVFS (rs=-0.856 and -0.771 respectively, P < 0.05). CONCLUSIONS Serum PTX-3 and syndecan-4 may be involved in the development and progression of ventricular remodeling in children with CHF and may be used as markers for the diagnosis, cardiac function grading, and treatment outcome evaluation of children with heart failure.
Collapse
Affiliation(s)
- 凤华 张
- />郑州大学第一附属医院小儿内科, 河南郑州 450000Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - 小林 赵
- />郑州大学第一附属医院小儿内科, 河南郑州 450000Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - 嵩 冯
- />郑州大学第一附属医院小儿内科, 河南郑州 450000Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - 金斗 安
- />郑州大学第一附属医院小儿内科, 河南郑州 450000Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
29
|
Nakamura M, Imamura T, Hori M, Nakagaito M, Ueno H, Yokoyama S, Doi T, Fukahara K, Kinugawa K. Regulation of Angiopoietin-2 Before and After Mechanical Circulatory Support Therapy. ASAIO J 2021; 67:53-58. [PMID: 32740126 DOI: 10.1097/mat.0000000000001189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal bleeding (GIB) during mechanical circulatory support (MCS) is a major unsolved comorbidity. Inadequate activation of angiopoietin-2-related systems is considered as a major cause of GIB. However, the regulation of angiopoietin-2 remains unknown. Consecutive 20 patients who received continuous-flow MCS therapy (MCS group) and 12 with advanced heart failure (HF; HF group) were prospectively enrolled and their angiopoetin-2 levels were compared. Angiopoietin-2 level had a moderate correlation with log10 B-type natriuretic peptide (BNP; r = 0.39, p < 0.001). The MCS group had significantly higher angiopoietin-2 level divided by log10 BNP compared with the HF group (2.80 ± 0.20 vs. 1.88 ± 0.17, p < 0.001). Angiopoetin-2 had a moderate correlation with central venous pressure and C-reactive protein during the MCS support (r = 0.51 and r = 0.45, respectively). Higher angiopoietin-2 level divided by log10 BNP (> 4.3) was significantly associated with the occurrence of GIB with a hazard ratio of 296 (95% confidence interval 2.24-38620, p = 0.0224). Angiopoietin-2 was already elevated in the HF cohort and more elevated following MCS initiation. Among the MCS cohort, angiopoietin-2 was particularly elevated in patients with systemic congestion and inflammation and was associated with higher incidence of GIB.
Collapse
Affiliation(s)
| | | | - Masakazu Hori
- From the Second Department of Internal Medicine; and
| | | | - Hiroshi Ueno
- From the Second Department of Internal Medicine; and
| | - Shigeki Yokoyama
- Department of Cardiovascular Surgery, University of Toyama, Toyama, Japan
| | - Toshio Doi
- Department of Cardiovascular Surgery, University of Toyama, Toyama, Japan
| | - Kazuaki Fukahara
- Department of Cardiovascular Surgery, University of Toyama, Toyama, Japan
| | | |
Collapse
|
30
|
Pugliese NR, Fabiani I, Conte L, Nesti L, Masi S, Natali A, Colombo PC, Pedrinelli R, Dini FL. Persistent congestion, renal dysfunction and inflammatory cytokines in acute heart failure: a prognosis study. J Cardiovasc Med (Hagerstown) 2021; 21:494-502. [PMID: 32487865 DOI: 10.2459/jcm.0000000000000974] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Chronic kidney dysfunction (CKD) and persistent congestion influence heart failure prognosis, but little is known about the role of inflammation in this association. We assessed the relationship between inflammatory biomarkers, persistent congestion and CKD and their prognostic implications in patients with acute heart failure. METHODS We enrolled 97 hospitalised patients (mean age: 66 ± 12 years, ejection fraction: 30 ± 8%) with acute heart failure. Before discharge, congestion was assessed using a heart failure scoring system on the basis of Framingham criteria. Circulating levels of high-sensitivity C-reactive protein, TGF-β-1, IL-1, IL-6, IL-10, TNF-α, soluble tumour necrosis factor receptor type 1 and 2 were measured. Patients were divided into four groups according to the presence of CKD (estimated glomerular filtration rate <60 ml/min/1.73 m) and congestion (Framingham heart failure score ≥2). The primary end point was the combination of death and rehospitalisation for acute heart failure. RESULTS During a median follow-up of 32 months, 37 patients died and 14 were rehospitalised for acute heart failure. Patients with CKD and congestion had significantly higher TNF-α (P = 0.037), soluble tumour necrosis factor receptor type 1 (P = 0.0042) and soluble tumour necrosis factor receptor type 2 (P = 0.001), lower TGF-β-1 (P = 0.02) levels, and the worst outcome (P < 0.0001). Congestion (P = 0.01) and CKD (P = 0.02) were independent predictors of the end-point together with N-terminal prohormone of brain natriuretic peptide (P = 0.002) and TNF-α (P = 0.004). TNF-α attenuated the direct relation between CKD, congestion and outcome, explaining 40% of the difference in the outcome. CONCLUSION In patients hospitalised with acute heart failure, the prognostic impact of persistent congestion and CKD is associated with increased cytokine levels, which may also interfere with the outcome.
Collapse
Affiliation(s)
- Nicola R Pugliese
- Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | - Iacopo Fabiani
- Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa.,Laboratory of Metabolism, Nutrition and Atherosclerosis, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Conte
- Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa
| | - Lorenzo Nesti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa.,Laboratory of Metabolism, Nutrition and Atherosclerosis, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | - Andrea Natali
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa.,Laboratory of Metabolism, Nutrition and Atherosclerosis, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo C Colombo
- Division of Cardiology, Department of Medicine, Columbia University Medical Center-New York Presbyterian Hospital, New York, New York, USA
| | | | - Frank L Dini
- Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa
| |
Collapse
|
31
|
Berezin AE, Berezin AA, Lichtenauer M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. DISEASE MARKERS 2021; 2021:6644631. [PMID: 33520013 PMCID: PMC7819753 DOI: 10.1155/2021/6644631] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a global medical problem that characterizes poor prognosis and high economic burden for the health system and family of the HF patients. Although modern treatment approaches have significantly decreased a risk of the occurrence of HF among patients having predominant coronary artery disease, hypertension, and myocarditis, the mortality of known HF continues to be unacceptably high. One of the most important symptoms of HF that negatively influences tolerance to physical exercise, well-being, social adaptation, and quality of life is deep fatigue due to HF-related myopathy. Myopathy in HF is associated with weakness of the skeletal muscles, loss of myofibers, and the development of fibrosis due to microvascular inflammation, metabolic disorders, and mitochondrial dysfunction. The pivotal role in the regulation of myocardial and skeletal muscle rejuvenation, attenuation of muscle metabolic homeostasis, and protection against ischemia injury and apoptosis belongs to myokines. Myokines are defined as a wide spectrum of active molecules that are directly synthesized and released by both cardiac and skeletal muscle myocytes and regulate energy homeostasis in autocrine/paracrine manner. In addition, myokines have a large spectrum of pleiotropic capabilities that are involved in the pathogenesis of HF including cardiac remodeling, muscle atrophy, and cardiac cachexia. The aim of the narrative review is to summarize the knowledge with respect to the role of myokines in adverse cardiac remodeling, myopathy, and clinical outcomes among HF patients. Some myokines, such as myostatin, irisin, brain-derived neurotrophic factor, interleukin-15, fibroblast growth factor-21, and growth differential factor-11, being engaged in the regulation of the pathogenesis of HF-related myopathy, can be detected in peripheral blood, and the evaluation of their circulating levels can provide new insights to the course of HF and stratify patients at higher risk of poor outcomes prior to sarcopenic stage.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye 69035, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye 69096, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
32
|
Geesala R, Issuree PD, Maretzky T. The Role of iRhom2 in Metabolic and Cardiovascular-Related Disorders. Front Cardiovasc Med 2020; 7:612808. [PMID: 33330676 PMCID: PMC7732453 DOI: 10.3389/fcvm.2020.612808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic obesity is associated with metabolic imbalance leading to diabetes, dyslipidemia, and cardiovascular diseases (CVDs), in which inflammation is caused by exposure to inflammatory stimuli, such as accumulating sphingolipid ceramides or intracellular stress. This inflammatory response is likely to be prolonged by the effects of dietary and blood cholesterol, thereby leading to chronic low-grade inflammation and endothelial dysfunction. Elevated levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF) are predictive of CVDs and have been widely studied for potential therapeutic strategies. The release of TNF is controlled by a disintegrin and metalloprotease (ADAM) 17 and both are positively associated with CVDs. ADAM17 also cleaves most of the ligands of the epidermal growth factor receptor (EGFR) which have been associated with hypertension, atherogenesis, vascular dysfunction, and cardiac remodeling. The inactive rhomboid protein 2 (iRhom2) regulates the ADAM17-dependent shedding of TNF in immune cells. In addition, iRhom2 also regulates the ADAM17-mediated cleavage of EGFR ligands such as amphiregulin and heparin-binding EGF-like growth factor. Targeting iRhom2 has recently become a possible alternative therapeutic strategy in chronic inflammatory diseases such as lupus nephritis and rheumatoid arthritis. However, what role this intriguing interacting partner of ADAM17 plays in the vasculature and how it functions in the pathologies of obesity and associated CVDs, are exciting questions that are only beginning to be elucidated. In this review, we discuss the role of iRhom2 in cardiovascular-related pathologies such as atherogenesis and obesity by providing an evaluation of known iRhom2-dependent cellular and inflammatory pathways.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Priya D Issuree
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thorsten Maretzky
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
33
|
Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, Adámková V, Wohlfahrt P. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail 2020; 8:222-237. [PMID: 33319509 PMCID: PMC7835562 DOI: 10.1002/ehf2.13144] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
Aims The aim of the present paper was to provide an up‐to‐date view on epidemiology and risk factors of heart failure (HF) development after myocardial infarction. Methods and results Based on literature review, several clinical risk factors and biochemical, genetic, and imaging biomarkers were identified to predict the risk of HF development after myocardial infarction. Conclusions Heart failure is still a frequent complication of myocardial infarction. Timely identification of subjects at risk for HF development using a multimodality approach, and early initiation of guideline‐directed HF therapy in these patients, can decrease the HF burden.
Collapse
Affiliation(s)
- Dominik Jenča
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Stehlik
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vladimír Staněk
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiří Kettner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Faculty of Medicine, Dentistry of the Palacký University, Olomouc, Czech Republic
| | - Věra Adámková
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Wohlfahrt
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Centre for Cardiovascular Prevention, First Faculty of Medicine and Thomayer Hospital, Charles University, Videnska 800, Prague 4, 140 59, Czech Republic
| |
Collapse
|
34
|
Chen L, Li S, Ai L, Zhou J, Huang J, Xu F, Zeng X, Han J, Yin F, Zhu Y, Xie Y. The Correlation Between Heart Failure and Gut Microbiome Metabolites. INFECTIOUS MICROBES & DISEASES 2020; 2:136-143. [PMID: 38630083 PMCID: PMC7769059 DOI: 10.1097/im9.0000000000000042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) is a global public health problem, with morbidity and mortality increasing year by year. The gut microbiome actively affects the physiological and pathological activities of the human body in a variety of ways. More and more studies have suggested a strong correlation between HF and gut microbiome metabolites. Our review summarizes the specific alteration of these metabolites and their connection to the progression of HF, aiming at considering new approaches toward regulating the gut microbiome and using its metabolic pathways to treat HF, potentially decreasing the morbidity and mortality of HF as well as improving prognosis.
Collapse
Affiliation(s)
- Lina Chen
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Senhao Li
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Lanmu Ai
- College of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jun Zhou
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Junlin Huang
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Feng Xu
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Xiangyuan Zeng
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Jia Han
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Fangxue Yin
- Shulan International Medical College, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yixin Zhu
- Shulan International Medical College, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yifang Xie
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| |
Collapse
|
35
|
Tabucanon T, Wilcox J, Tang WHW. Does Weight Loss Improve Clinical Outcomes in Overweight and Obese Patients with Heart Failure? Curr Diab Rep 2020; 20:75. [PMID: 33231788 DOI: 10.1007/s11892-020-01367-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Obesity increases the risk of new onset heart failure (HF), and particularly HF with preserved ejection fraction (HFpEF). Despite the observations of favorable clinical outcomes in HF patients with obesity in general, sometimes referred to as the "obesity paradox," it is important to recognize that severe obesity is associated with worse clinical outcomes. This review summarizes the effects of obesity treatment on cardiovascular health and HF clinical outcomes. RECENT FINDINGS Treatment for obesity utilizes a variety of modalities to achieve purposeful weight loss including lifestyle intervention, medications, and bariatric surgery. There are a cluster of benefits of obesity treatment in terms of clinical outcomes in HF. The mechanisms of these benefits include both weight loss-dependent and weight loss-independent mechanisms. Obesity treatment is safe and associated with favorable clinical outcomes across the spectrum of the HF population. The potential benefits are facilitated through multiple mechanisms.
Collapse
Affiliation(s)
- Thida Tabucanon
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
- Thammasat Heart Center, Thammasat University Hospital, Khlong Luang, Pathum Thani, Thailand
| | - Jennifer Wilcox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA.
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
36
|
Li R, Zhao Y, Shi J, Zhao C, Xie P, Huang W, Yong T, Cai Z. Effects of PM 2.5 exposure in utero on heart injury, histone acetylation and GATA4 expression in offspring mice. CHEMOSPHERE 2020; 256:127133. [PMID: 32454355 DOI: 10.1016/j.chemosphere.2020.127133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric fine particulate matter exposure (PM2.5) can increase the incidence and mortality of heart disease, and raise the risk of fetal congenital heart defect, which have recently drawn much attention. In this study, C57BL/6 mice were exposed to PM2.5 (approximately equivalent to 174 μg/m3) by intratracheal instillation during the gestation. After birth, 10 weeks old offspring mice were divided into four groups: male exposed group (ME), female exposed group (FE), male control group (MC), female control group (FC). The pathological injury, pro-inflammatory cytokines, histone acetylation levels, and expressions of GATA-binding protein 4 (GATA4) and downstream genes were investigated. The results showed that exposure to PM2.5 in utero increased pathological damage and TNF-α and IL-6 levels in hearts of offspring mice, and effects in ME were more serious than FE. Notably, GATA4 protein levels in hearts in ME were significantly lower than that of MC, accompanied by down-regulation of histone acetyltransferase (HAT)-p300 and up-regulation of histone deacetylase-SIRT3. As GATA4 downstream genes, ratios of β-MHC gene expression to α-MHC significantly raised in ME relative to the MC. Results of chromatin immunoprecipitation (ChIP)-qPCR assay found that binding levels of acetylated histone 3 lysine 9 (H3K9ac) in GATA4 promoter region in the hearts of ME or FE were markedly decreased compared with their corresponding control groups. It suggested that maternal exposure to PM2.5 may cause cardiac injury in the offspring, heart damage of male mice was worse than female mice, in which process HAT-p300, H3K9ac, transcription factor GATA4 may play an important regulation role.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Jing Shi
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ting Yong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
37
|
Bouwens E, Schuurman AS, Akkerhuis KM, Baart SJ, Caliskan K, Brugts JJ, van Ramshorst J, Germans T, Umans VAWM, Boersma E, Kardys I. Serially Measured Cytokines and Cytokine Receptors in Relation to Clinical Outcome in Patients With Stable Heart Failure. Can J Cardiol 2020; 36:1587-1591. [PMID: 32827637 DOI: 10.1016/j.cjca.2020.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
In this prospective cohort study of 250 stable heart failure patients with trimonthly blood sampling, we investigated associations of 17 repeatedly measured cytokines and cytokine receptors with clinical outcome during a median follow-up of 2.2 (25th-75th percentile, 1.4-2.5) years. Sixty-six patients reached the primary end point (composite of cardiovascular mortality, heart failure hospitalization, heart transplantation, left ventricular assist device implantation). Repeatedly measured levels of 8 biomarkers correlated with clinical outcomes independent of clinical characteristics. Rates of change over time (slopes of biomarker evolutions) remained independently associated with outcome for 15 biomarkers. Thus, temporal patterns of cytokines and cytokine receptors, in particular tumour necrosis factor ligand superfamily member 13B and interleukin-1 receptor type 1, might contribute to personalized risk assessment.
Collapse
Affiliation(s)
- Elke Bouwens
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Sara J Baart
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Kadir Caliskan
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jasper J Brugts
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jan van Ramshorst
- Department of Cardiology, Northwest Clinics, Alkmaar, The Netherlands
| | - Tjeerd Germans
- Department of Cardiology, Northwest Clinics, Alkmaar, The Netherlands
| | | | - Eric Boersma
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Fernandez C, Rysä J, Ström K, Nilsson J, Engström G, Orho-Melander M, Ruskoaho H, Melander O. Circulating protein biomarkers predict incident hypertensive heart failure independently of N-terminal pro-B-type natriuretic peptide levels. ESC Heart Fail 2020; 7:1891-1899. [PMID: 32410391 PMCID: PMC7373917 DOI: 10.1002/ehf2.12757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Hypertension is the leading cause for the development of heart failure (HF). Here, we aimed to identify cardiomyocyte stretch‐induced circulating biomarkers for predicting hypertension‐associated HF. Methods and results Circulating levels of 149 proteins were measured by proximity extension assay at baseline examination in 4742 individuals from the Malmö Diet and Cancer study. Protein levels were compared with stretch‐activated gene expression changes in cultured neonatal rat ventricular myocytes (NRVMs) in response to 1–48 h of mechanical stretch. We also studied the association between protein levels and hypertension and HF incidence using respectively binary logistic and Cox regressions. Levels of 35 proteins were differentially expressed after Bonferroni correction in incident HF vs. control (P < 3.4E−4). Growth differentiation factor‐15 (GDF‐15), interleukin‐6 (IL‐6), IL‐1 receptor type 1, and urokinase plasminogen activator surface receptor had corresponding mRNA levels up‐regulated by stretch in NRVMs at all time points (P < 0.05). These four proteins were individually associated with increased risk of HF after age and sex adjustment [hazard ratio (HR) per standard deviation: 1.19 ≤ HR ≤ 1.49, P ≤ 4.90E−3]. GDF‐15 and IL‐6 were associated with HF independently of each other (1.22 ≤ HR ≤ 1.33, P ≤ 0.001). In subjects with hypertension, these associations remained significant after further adjustment for N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP) levels (1.23 ≤ HR ≤ 1.45, P ≤ 0.001). A higher fasting value of a GDF‐15, IL‐6 score aggregate was associated with increased risk of hypertensive HF after adjustment for all traditional risk factors for HF and NT‐proBNP (HR = 1.31, P = 2.19E−4). Conclusions Cardiomyocyte mRNA levels of GDF‐15 and IL‐6 are consistently up‐regulated by stretch, and their circulating protein levels predict HF in hypertensive subjects independently of NT‐proBNP during long‐term follow‐up. Our results encourage further studies on lower blood pressure goals in hypertensive subjects with high GDF‐15 and IL‐6, and interventions targeted at stretch‐induced cardiomyocyte expressed biomarkers.
Collapse
Affiliation(s)
- Celine Fernandez
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kristoffer Ström
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | | | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Olle Melander
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Rafe T, Shawon PA, Salem L, Chowdhury NI, Kabir F, Bin Zahur SM, Akhter R, Noor HB, Mohib MM, Sagor MAT. Preventive Role of Resveratrol Against Inflammatory Cytokines and Related Diseases. Curr Pharm Des 2020; 25:1345-1371. [PMID: 30968773 DOI: 10.2174/1381612825666190410153307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunity is the ultimate barrier between foreign stimuli and a host cell. Unwanted immune responses can threaten the host cells and may eventually damage a vital organ. Overproduction of inflammatory cytokines may also lead to autoimmune diseases. Inflammatory cells and pro-inflammatory cytokines can eventually progress to renal, cardiac, brain, hepatic, pancreatic and ocular inflammation that can result in severe damage in the long run. Evidence also suggests that inflammation may lead to atherosclerosis, Alzheimer's, hypertension, stroke, cysts and cancers. METHODS This study was designed to correlate the possible molecular mechanisms for inflammatory diseases and prevent biochemical changes owing to inflammatory cytokines by using Resveratrol. Therefore, we searched and accumulated very recent literature on inflammatory disorders and Resveratrol. We scoured PubMed, Scopus, Science Direct, PLoS One and Google Scholar to gather papers and related information. RESULTS Reports show that inflammatory diseases are very complex, as multiple cascade systems are involved; therefore, they are quite difficult to cure. However, our literature search also correlates some possible molecular interactions by which inflammation can be prevented. We noticed that Resveratrol is a potent lead component and has multiple activities against harmful inflammatory cytokines and related microRNA. Our study also suggests that the anti-inflammatory properties of Resveratrol have been highly studied on animal models, cell lines and human subjects and proven to be very effective in reducing inflammatory cell production and pro-inflammatory cytokine accumulation. Our tables and figures also demonstrate recent findings and possible preventive activities to minimize inflammatory diseases. CONCLUSION This study would outline the role of harmful inflammatory cytokines as well as how they accelerate pathophysiology and progress to an inflammatory disorder. Therefore, this study might show a potential therapeutic value of using Resveratrol by health professionals in preventing inflammatory disorders.
Collapse
Affiliation(s)
- Tanzir Rafe
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Parvez Ahmed Shawon
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Nafij Imtiyaj Chowdhury
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Farjana Kabir
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | | | - Rowshon Akhter
- Department of Pharmacy, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Humaira Binte Noor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Md Mohabbulla Mohib
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh.,Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| |
Collapse
|
40
|
Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol 2020; 598:33-59. [PMID: 31671478 DOI: 10.1113/jp278864] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 08/25/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
41
|
Aneva N, Zaharieva E, Katsarska O, Savova G, Stankova K, Djounova J, Boteva R. Inflammatory profile dysregulation in nuclear workers occupationally exposed to low-dose gamma radiation. JOURNAL OF RADIATION RESEARCH 2019; 60:768-779. [PMID: 31665386 PMCID: PMC7268544 DOI: 10.1093/jrr/rrz059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/10/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Chronic inflammation is a common denominator linking a wide range of health conditions, including tissue response to radiation exposure. This pilot study investigates whether inflammatory cytokines-interleukins IL-6, -8, -10, monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNFα)-can be used as early biomarkers of radiation-induced adverse health effects in occupationally exposed individuals. The study included 33 workers externally exposed to gamma radiation from the nuclear industry with cumulated doses from 0.11 to 190 mSv and 42 non-exposed controls of comparable age and socio-economic status. IL-6, IL-8, MCP-1, TNFα and IL-10 were analyzed by enzyme-linked assay (ELISA) in blood plasma samples. Total antioxidant status (TAS) of blood plasma was determined by a colorimetric assay. The radiation-exposed and control groups measured significantly different levels of MCP-1, TNFα and IL-10. Seventy-five percent of radiation workers had either high MCP-1 levels or low IL-10 levels and 30% had all three cytokines dysregulated. Approximately 50% of workers showed upregulated antioxidant status, which appeared to compensate the pro-inflammatory cytokine shift in these individuals. In contrast, only 2% of the control subjects were found to have three dysregulated cytokines, and all of them measured within the normal TAS range. The present study may represent an important step towards the establishment of a reliable set of biomarkers for health-risk estimation in population cohorts exposed to low radiation doses.
Collapse
Affiliation(s)
- Nevena Aneva
- National Center of Radiobiology and Radiation Protection (NCRRP), 1606 Sofia, Bulgaria
| | - Elena Zaharieva
- National Center of Radiobiology and Radiation Protection (NCRRP), 1606 Sofia, Bulgaria
| | - Olya Katsarska
- National Center of Radiobiology and Radiation Protection (NCRRP), 1606 Sofia, Bulgaria
| | - Gergana Savova
- National Center of Radiobiology and Radiation Protection (NCRRP), 1606 Sofia, Bulgaria
| | - Katia Stankova
- National Center of Radiobiology and Radiation Protection (NCRRP), 1606 Sofia, Bulgaria
| | - Jana Djounova
- National Center of Radiobiology and Radiation Protection (NCRRP), 1606 Sofia, Bulgaria
| | - Rayna Boteva
- National Center of Radiobiology and Radiation Protection (NCRRP), 1606 Sofia, Bulgaria
| |
Collapse
|
42
|
Rhee AJ, Lavine KJ. New Approaches to Target Inflammation in Heart Failure: Harnessing Insights from Studies of Immune Cell Diversity. Annu Rev Physiol 2019; 82:1-20. [PMID: 31658002 DOI: 10.1146/annurev-physiol-021119-034412] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite mounting evidence implicating inflammation in cardiovascular diseases, attempts at clinical translation have shown mixed results. Recent preclinical studies have reenergized this field and provided new insights into how to favorably modulate cardiac macrophage function in the context of acute myocardial injury and chronic disease. In this review, we discuss the origins and roles of cardiac macrophage populations in the steady-state and diseased heart, focusing on the human heart and mouse models of ischemia, hypertensive heart disease, and aortic stenosis. Specific attention is given to delineating the roles of tissue-resident and recruited monocyte-derived macrophage subsets. We also highlight emerging concepts of monocyte plasticity and heterogeneity among monocyte-derived macrophages, describe possible mechanisms by which infiltrating monocytes acquire unique macrophage fates, and discuss the putative impact of these populations on cardiac remodeling. Finally, we discuss strategies to target inflammatory macrophage populations.
Collapse
Affiliation(s)
- Aaron J Rhee
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
43
|
Mørch RH, Dieset I, Færden A, Reponen EJ, Hope S, Hoseth EZ, Gardsjord ES, Aas M, Iversen T, Joa I, Morken G, Agartz I, Melle I, Aukrust P, Djurovic S, Ueland T, Andreassen OA. Inflammatory markers are altered in severe mental disorders independent of comorbid cardiometabolic disease risk factors. Psychol Med 2019; 49:1749-1757. [PMID: 30688187 DOI: 10.1017/s0033291718004142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Inflammation and immune activation have been implicated in the pathogenesis of severe mental disorders and cardiovascular disease (CVD). Despite high level of comorbidity, many studies of the immune system in severe mental disorders have not systematically taken cardiometabolic risk factors into account. METHODS We investigated if inflammatory markers were increased in schizophrenia (SCZ) and affective (AFF) disorders independently of comorbid CVD risk factors. Cardiometabolic risk factors (blood lipids, body mass index and glucose) and CVD-related inflammatory markers CXCL16, soluble interleukin-2 receptor (sIL-2R), soluble CD14 (sCD14), macrophage inhibitory factor and activated leukocyte cell adhesion molecule (ALCAM) were measured in n = 992 patients (SCZ, AFF), and n = 647 healthy controls. We analyzed the inflammatory markers before and after controlling for comorbid cardiometabolic risk factors, and tested for association with psychotropic medication and symptom levels. RESULTS CXCL16 (p = 0.03) and sIL-2R (p = 7.8 × 10-5) were higher, while sCD14 (p = 0.05) were lower in patients compared to controls after controlling for confounders, with significant differences in SCZ for CXCL16 (p = 0.04) and sIL-2R (p = 1.1 × 10-5). After adjustment for cardiometabolic risk factors higher levels of sIL-2R (p = 0.001) and lower sCD14 (p = 0.002) remained, also in SCZ (sIL-2R, p = 3.0 × 10-4 and sCD14, p = 0.01). The adjustment revealed lower ALCAM levels (p = 0.03) in patients. We found no significant associations with psychotropic medication or symptom levels. CONCLUSION The results indicate that inflammation, in particular enhanced T cell activation and impaired monocyte activation, are associated with severe mental disorders independent of comorbid cardiometabolic risk factors. This suggests a role of novel pathophysiological mechanisms in severe mental disorders, particularly SCZ.
Collapse
Affiliation(s)
- Ragni H Mørch
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Ingrid Dieset
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Ann Færden
- Department of Acute Psychiatry, Division of Mental Health and Addiction,Oslo University Hospital Ullevål,Oslo,Norway
| | - Elina J Reponen
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Sigrun Hope
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Eva Z Hoseth
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Erlend S Gardsjord
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Monica Aas
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Trude Iversen
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Inge Joa
- Centre for Clinical Research in Psychosis, Psychiatric Division,Stavanger University Hospital,Stavanger,Norway
| | - Gunnar Morken
- Department of Psychiatry,St. Olav University Hospital,Trondheim,Norway
| | - Ingrid Agartz
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Ingrid Melle
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet,Oslo,Norway
| | - Srdjan Djurovic
- Department of Medical Genetics,Oslo University Hospital,Oslo,Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet,Oslo,Norway
| | - Ole A Andreassen
- NORMENT-KG Jebsen Centre for Psychosis Research,University of Oslo and Oslo University Hospital,Oslo,Norway
| |
Collapse
|
44
|
Jansen van Vuren E, Malan L, von Känel R, Magnusson M, Lammertyn L, Malan NT. BDNF increases associated with constant troponin T levels and may protect against poor cognitive interference control: The SABPA prospective study. Eur J Clin Invest 2019; 49:e13116. [PMID: 30932178 DOI: 10.1111/eci.13116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/13/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) modulates brain health and cognition, which can interfere with executive cognitive function. BDNF was implicated with microcirculatory ischaemia and may reflect cardiomyocyte injury. We aimed to determine whether prospective changes (%Δ) in BDNF and cardiac troponin T (cTnT) will be associated with executive cognitive function in a bi-ethnic cohort. DESIGN A prospective investigation was conducted over a three-year period in a bi-ethnic sex cohort (N = 338; aged 20-65 years) from South Africa. Fasting serum samples for BDNF and cTnT were obtained. The STROOP-color-word conflict test (CWT) was applied to assess executive cognitive function at baseline. RESULTS In Blacks, BDNF (P < 0.001) increased over the three-year period while cTnT did not change. In contrast, in Whites, BDNF and cTnT decreased over three years. In Black men, no change in cTnT was associated with increased ΔBDNF (β = 0.25; 95% CI 0.05-0.45; P = 0.02). In the Black men, constant cTnT levels were inversely associated with executive cognitive function (β = -0.33; 95% CI -0.53 to -0.12; P = 0.003). Three-year increases in BDNF increased the likelihood for chronic lower cTnT levels at a pre-established cut-point of <4.2 ng/L [OR = 2.35 (1.12-4.94), P = 0.02]. The above associations were not found in the White sex groups. CONCLUSIONS Central neural control mechanisms may have upregulated BDNF in Black men as a way to protect against myocardial stress progression and to possibly improve processes related to cognitive interference control. High-sensitive cTnT levels may act as an early predictor of disturbed neural control mechanisms.
Collapse
Affiliation(s)
- Esmé Jansen van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Leoné Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Roland von Känel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, Switzerland
| | - Martin Magnusson
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Malmö, Sweden
| | - Leandi Lammertyn
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Nicolaas T Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| |
Collapse
|
45
|
Tian L, Su C, Wang Q, Wu F, Bai R, Zhang H, Liu J, Lu W, Wang W, Lan F, Guo S. Chlorogenic acid: A potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. J Cell Mol Med 2019; 23:4666-4678. [PMID: 31033175 PMCID: PMC6584503 DOI: 10.1111/jcmm.14351] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/16/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
The traditional Chinese herb Lonicerae Japonicae Flos has shown significant clinical benefits in the treatment of heart failure, but the mechanism remains unclear. As the main active ingredient found in the plasma after oral administration of Lonicerae Japonicae Flos, chlorogenic acid (CGA) has been reported to possess anti-inflammatory, anti-oxidant and anti-apoptosis function. We firstly confirmed the cardioprotective effects of CGA in transverse aortic constriction (TAC)-induced heart failure mouse model, through mitigating the TNF-α-induced toxicity. We further used TNF-α-induced cardiac injury in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to elucidate the underlying mechanisms. CGA pre-treatment could reverse TNF-α-induced cellular injuries, including improved cell viability, increased mitochondrial membrane potential and inhibited cardiomyocytes apoptosis. We then examined the NF-κB/p65 and major mitogen-activated protein kinases (MAPKs) signalling pathways involved in TNF-α-induced apoptosis of hiPSC-CMs. Importantly, CGA can directly inhibit NF-κB signal by suppressing the phosphorylation of NF-κB/p65. As for the MAPKs, CGA suppressed the activity of only c-Jun N-terminal kinase (JNK), but enhanced extracellular signal-regulated kinase1/2 (ERK1/2) and had no effect on p38. In summary, our study revealed that CGA has profound cardioprotective effects through inhibiting the activation of NF-κB and JNK pathway, providing a novel therapeutic alternative for prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Lei Tian
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Cong‐Ping Su
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Qing Wang
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Fu‐Jian Wu
- Beijing Laboratory for Cardiovascular Precision MedicineAnzhen Hospital, Capital Medical UniversityBeijingChina
| | - Rui Bai
- Beijing Laboratory for Cardiovascular Precision MedicineAnzhen Hospital, Capital Medical UniversityBeijingChina
| | - Hui‐Min Zhang
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Jin‐Ying Liu
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Wen‐Jing Lu
- Beijing Laboratory for Cardiovascular Precision MedicineAnzhen Hospital, Capital Medical UniversityBeijingChina
| | - Wei Wang
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision MedicineAnzhen Hospital, Capital Medical UniversityBeijingChina
| | - Shu‐Zhen Guo
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
46
|
Iravani Saadi M, Babaee Beigi MA, Ghavipishe M, Tahamtan M, Geramizadeh B, Zare A, Yaghoobi R. The circulating level of interleukins 6 and 18 in ischemic and idiopathic dilated cardiomyopathy. J Cardiovasc Thorac Res 2019; 11:132-137. [PMID: 31384408 PMCID: PMC6669430 DOI: 10.15171/jcvtr.2019.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction: By aging population, the heart failure and its life-threatening complications have become an enormous issue in public health. Regarding the inflammation as a major contributing pathological factor, the determination of most important inflammatory targets for immunomodulation is a problematic puzzle in the treatment of heart failure patients and the inflammatory pathways primarily involved in different underlying conditions contributing to heart failure can be an area which is worthy of focused research. Considering the dilated cardiomyopathy (DCM) as a relatively high-incident disease leading to heart failure, the aim of this study is to determine the difference in the expression level of interleukin (IL)-6 and IL-18 in patients with ischemic and idiopathic DCM. Methods: 39 non-diabetic patients with ischemic and 37 ones with idiopathic DCM were enrolled in the study. 48 healthy individuals were also considered as control group. For quantitative determination of the mRNA expression level of IL-6 and IL-18 genes, an in-house- SYBR Green real-time PCR was used and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was considered as internal control gene. The left ventricular end-diastolic volume (LVEDV) and left ventricular ejection fraction (LVEF) was calculated by 2D echocardiographic assessment. Data were finally analyzed via SPSS statistical software version 19.0 using independent t test and 2-∆∆Ct method and P<0.05 were considered statistically significant. Results: The IL-6 was significantly higher expressed in patients with ischemic and idiopathic DCM than in healthy controls (274.3 and 168.8 times, respectively, both P values <0.001). The same higher expression of IL-18 was observed in ischemic DCM (48.5 times) and idiopathic DCM (45.2 times) compared with healthy individuals (both P values <0.001). Conclusion: Both ischemic and idiopathic DCM associates with IL-6 and IL-18 overexpression. However, no significant difference was observed between these two subtypes of DCM in either interleukin expression level. There is certainly need to further studies for evaluating the uniformity of results and also assessing other molecules in determining their roles in pathophysiology and probable utility for management.
Collapse
Affiliation(s)
- Mahdiyar Iravani Saadi
- Hematology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Transplant Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Babaee Beigi
- Cardiovascular Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ghavipishe
- Cardiovascular Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Tahamtan
- Cardiovascular Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolhossein Zare
- Transplant Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghoobi
- Transplant Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
47
|
Draker N, Torry DS, Torry RJ. Placenta growth factor and sFlt-1 as biomarkers in ischemic heart disease and heart failure: a review. Biomark Med 2019; 13:785-799. [DOI: 10.2217/bmm-2018-0492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coronary heart disease (CHD) and heart failure (HF) produce significant morbidity/mortality but identifying new biomarkers could help in the management of each. In this article, we summarize the molecular regulation and biomarker potential of PIGF and sFlt-1 in CHD and HF. PlGF is elevated during ischemia and some studies have shown PlGF, sFlt-1 or PlGF:sFlt-1 ratio, when used in combination with standard biomarkers, strengthens predictions of outcomes. sFlt-1 and PlGF are elevated in HF with sFlt-1 as a stronger predictor of outcomes. Although promising, we discuss additional study criteria needed to confirm the clinical usefulness of PlGF or sFlt-1 in the detection and management of CHD or HF.
Collapse
Affiliation(s)
- Nicole Draker
- Department of Pharmaceutical & Administrative Sciences, Ellis Pharmacogenomics Lab, College of Pharmacy & Health Sciences, Drake University, Des Moines, IA 50311, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology, & Cell Biology, Department of OB/GYN, Southern Illinois University, School of Medicine, Springfield, IL 62702, USA
| | - Ronald J Torry
- Department of Pharmaceutical & Administrative Sciences, Ellis Pharmacogenomics Lab, College of Pharmacy & Health Sciences, Drake University, Des Moines, IA 50311, USA
| |
Collapse
|
48
|
Giannattasio S, Corinaldesi C, Colletti M, Di Luigi L, Antinozzi C, Filardi T, Scolletta S, Basili S, Lenzi A, Morano S, Crescioli C. The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: in vivo and in vitro evidence. J Endocrinol Invest 2019; 42:715-725. [PMID: 30415310 PMCID: PMC6531405 DOI: 10.1007/s40618-018-0977-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/01/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE Interleukin (IL)-8 is a proinflammatory C-X-C chemokine involved in inflammation underling cardiac diseases, primary or in comorbid condition, such diabetic cardiomyopathy (DCM). The phosphodiesterase type 5 inhibitor sildenafil can ameliorate cardiac conditions by counteracting inflammation. The study aim is to evaluate the effect of sildenafil on serum IL-8 in DCM subjects vs. placebo, and on IL-8 release in human endothelial cells (Hfaec) and peripheral blood mononuclear cells (PBMC) under inflammatory stimuli. METHODS IL-8 was quantified: in sera of (30) DCM subjects before (baseline) and after sildenafil (100 mg/day, 3-months) vs. (16) placebo and (15) healthy subjects, by multiplatform array; in supernatants from inflammation-challenged cells after sildenafil (1 µM), by ELISA. RESULTS Baseline IL-8 was higher in DCM vs. healthy subjects (149.14 ± 46.89 vs. 16.17 ± 5.38 pg/ml, p < 0.01). Sildenafil, not placebo, significantly reduced serum IL-8 (23.7 ± 5.9 pg/ml, p < 0.05 vs. baseline). Receiver operating characteristic (ROC) curve for IL-8 was 0.945 (95% confidence interval of 0.772 to 1.0, p < 0.01), showing good capacity of discriminating the response in terms of drug-induced IL-8 decrease (sensitivity of 0.93, specificity of 0.90). Sildenafil significantly decreased IL-8 protein release by inflammation-induced Hfaec and PBMC and downregulated IL-8 mRNA in PBMC, without affecting cell number or PDE5 expression. CONCLUSION Sildenafil might be suggested as potential novel pharmacological tool to control DCM progression through IL-8 targeting at systemic and cellular level.
Collapse
Affiliation(s)
- S Giannattasio
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Unit of Endocrinology, Università degli Studi di Roma "Foro Italico", 00135, Rome, Italy
| | - C Corinaldesi
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Unit of Endocrinology, Università degli Studi di Roma "Foro Italico", 00135, Rome, Italy
- Institute for Cancer Genetics, University of Columbia, New York, USA
| | - M Colletti
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Unit of Endocrinology, Università degli Studi di Roma "Foro Italico", 00135, Rome, Italy
| | - L Di Luigi
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Unit of Endocrinology, Università degli Studi di Roma "Foro Italico", 00135, Rome, Italy
| | - C Antinozzi
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Unit of Endocrinology, Università degli Studi di Roma "Foro Italico", 00135, Rome, Italy
| | - T Filardi
- Department of Experimental Medicine, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - S Scolletta
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - S Basili
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - S Morano
- Department of Experimental Medicine, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - C Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Unit of Endocrinology, Università degli Studi di Roma "Foro Italico", 00135, Rome, Italy.
| |
Collapse
|
49
|
Gong Y, Liang S, Zeng L, Ni Y, Zhou S, Yuan X. Effects of blood sample handling procedures on measurable interleukin 6 in plasma and serum. J Clin Lab Anal 2019; 33:e22924. [PMID: 31131487 PMCID: PMC6757116 DOI: 10.1002/jcla.22924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 11/15/2022] Open
Abstract
Introduction Interleukin‐6(IL‐6) measurement is used as a biomarker in medical diagnosis, therapy, and prognosis in various diseases. However, several pre‐analytical factors may yield a false IL‐6 result. In this study, we set out to investigate the effects of corrected blood sample handling procedures on measurable IL‐6. Method EDTA plasma and serum samples were collected from 45 healthy individuals. The participants were divided into three groups to perform different handling procedures. Different centrifugal timing, storage temperature, and time were executed on the samples. The changed trends of IL‐6 levels were analyzed. Results At baseline, while the paired plasma and serum IL‐6 values had a good correlation, the plasma levels were higher than serum. In general, the unseparated EDTA plasma kept steady with time. With the increase in storage temperature and time, a more pronounced rise in unseparated serum IL‐6 was observed. Nevertheless, the samples in Group 3 which centrifuged and separated immediately kept stable after a different temperature and longtime storage. Conclusion Sample types, centrifugal timing, storage temperature, and time may affect the IL‐6 levels. A standard blood sample handling procedure should be performed to ensure the accuracy and stability of IL‐6 values.
Collapse
Affiliation(s)
- Yan Gong
- Department of Coloproctology, Zhujiang Hospital, Southern Medical University, GuangZhou, China.,Department of Geriatrics, Zhujiang Hospital, Southern Medical University, GuangZhou, China
| | - Shaocong Liang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, GuangZhou, China
| | - Lei Zeng
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, GuangZhou, China
| | - Yanli Ni
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, GuangZhou, China
| | - Shaosong Zhou
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, GuangZhou, China
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
50
|
Blanton RM, Carrillo-Salinas FJ, Alcaide P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am J Physiol Heart Circ Physiol 2019; 317:H124-H140. [PMID: 31074651 DOI: 10.1152/ajpheart.00028.2019] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial inflammation can lead to lethal acute or chronic heart failure (HF). T lymphocytes (T cells), have been reported in the inflamed heart in different etiologies of HF, and more recent studies support that different T-cell subsets play distinct roles in the heart depending on the inflammation-triggering event. T cells follow sequential steps to extravasate into tissues, but their specific recruitment to the heart is determined by several factors. These include differences in T-cell responsiveness to specific chemokines in the heart environment, as well as differences in the expression of adhesion molecules in response to distinct stimuli, which regulate T-cell recruitment to the heart and have consequences in cardiac remodeling and function. This review focuses on recent advances in our understanding of the role T cells play in the heart, including its critical role for host defense to virus and myocardial healing postischemia, and its pathogenic role in chronic ischemic and nonischemic HF. We discuss a variety of mechanisms that contribute to the inflammatory damage to the heart, as well as regulatory mechanisms that limit the magnitude of T-cell-mediated inflammation. We also highlight areas in which further research is needed to understand the role T cells play in the heart and distinguish the findings reported in experimental animal models and how they may translate to clinical observations in the human heart.
Collapse
Affiliation(s)
- Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | | | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|