1
|
Theodoropoulos F, Hüsing A, Dittmer U, Jöckel KH, Taube C, Anastasiou OE. Seasonal Patterns of Common Respiratory Viral Infections in Immunocompetent and Immunosuppressed Patients. Pathogens 2024; 13:704. [PMID: 39204304 PMCID: PMC11357019 DOI: 10.3390/pathogens13080704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Several respiratory viruses have been shown to have seasonal patterns. The aim of our study was to evaluate and compare these patterns in immunocompetent and immunosuppressed patients for five different respiratory viruses. METHODS We performed a retrospective analysis of results for 13,591 respiratory tract samples for human metapneumovirus (HMPV), influenza virus, parainfluenza virus (PIV) and respiratory syncytial virus (RSV) in immunocompetent and immunosuppressed patients. A seasonal pattern was aligned to the data of immunocompetent patients through a logistic regression model of positive and negative test results. RESULTS A narrow seasonal pattern (January to March) was documented for HMPV. Most RSV infections were detected in the winter and early spring months, from December to March, but occasional cases of RSV could be found throughout the year. The peak season for PIV-3 was during the summer months, and that for PIV-4 was mostly in autumn. A narrow seasonal pattern emerged for influenza virus as most infections were detected in the winter, in January and February. The seasonal patterns of HMPV, RSV, PIV, and influenza virus were similar for both immunocompetent and immunocompromised patients. CONCLUSIONS We found no difference in the seasonality of HMPV, RSV, PIV, and influenza virus infections between immunosuppressed and immunocompetent hosts.
Collapse
Affiliation(s)
- Fotis Theodoropoulos
- Department of Pulmonary Medicine, University Hospital of Essen-Ruhrlandklinik, 45239 Essen, Germany; (F.T.); (C.T.)
| | - Anika Hüsing
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (A.H.); (K.-H.J.)
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (A.H.); (K.-H.J.)
- Centre for Clinical Studies (ZKSE), Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital of Essen-Ruhrlandklinik, 45239 Essen, Germany; (F.T.); (C.T.)
| | - Olympia E. Anastasiou
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
2
|
Fullana Barceló MI, Artigues Serra F, Millan Pons AR, Asensio Rodriguez J, Ferre Beltran A, Del Carmen Lopez Bilbao M, Reina Prieto J, Riera Jaume M. Analysis of viral pneumonia and risk factors associated with severity of influenza virus infection in hospitalized patients from 2012 to 2016. BMC Infect Dis 2024; 24:302. [PMID: 38475703 DOI: 10.1186/s12879-024-09173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Influenza viruses cause pneumonia in approximately one-third of cases, and pneumonia is an important cause of death. The aim was to identify risk factors associated with severity and those that could predict the development of pneumonia. METHODS This retrospective, observational study included all adult patients with confirmed influenza virus infection admitted to Son Espases University Hospital during four influenza seasons in Spain (October to May) from to 2012-2016. RESULTS Overall, 666 patients with laboratory-confirmed influenza were included, 93 (14%) of which were severe; 73 (10.9%) were admitted to Intensive Care Unit (ICU), 39 (5.8%) died, and 185 (27.7%) developed pneumonia. Compared to less severe cases, patients with severe disease: were less vaccinated (40% vs. 28%, p = 0.021); presented with more confusion (26.9% vs. 6.8%), were more hypoxemic (Horowitz index (PaO2/FiO2) 261 vs. 280), had higher C-reactive protein (CRP) (12.3 vs. 4.0), had more coinfections (26.8% vs. 6.3%) and had more pleural effusion (14% vs. 2.6%) (last six all p < 0.001). Risk factors significantly associated with severity were pneumonia [OR (95% CI) = 4.14 (2.4-7.16)], history of heart disease (1.84, 1.03-3.28), and confusion at admission (4.99, 2.55-9.74). Influenza vaccination was protective (0.53, 0.28-0.98). Compared to those without pneumonia, the pneumonia group had higher CRP (11.3 vs. 4.0, p < 0.001), lower oxygen saturation (92% vs. 94%, p < 0.001), were more hypoxic (PaO2/FiO2 266 vs. 281, p < 0.001), and incurred more mechanical ventilation, septic shock, admission to the ICU, and deaths (all four p < 0.001). Higher CRP and lower oxygen saturation were independent variables for predicting the development of pneumonia. CONCLUSIONS Pneumonia, history of heart disease, confusion and no influenza vaccination were independent variables to present complications in patients admitted with influenza infection.
Collapse
Affiliation(s)
- M I Fullana Barceló
- Internal Medicine Department, Infectious Diseases Section, Hospital Universitari Son Espases, Valldemossa Road 79, Palma de Mallorca, 07010, Spain.
| | - F Artigues Serra
- Internal Medicine Department, Infectious Diseases Section, Hospital Universitari Son Espases, Valldemossa Road 79, Palma de Mallorca, 07010, Spain
| | - A R Millan Pons
- IdISBa estadistic and methodological support, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - J Asensio Rodriguez
- Internal Medicine Department, Infectious Diseases Section, Hospital Universitari Son Espases, Valldemossa Road 79, Palma de Mallorca, 07010, Spain
| | - A Ferre Beltran
- Internal Medicine Department, Infectious Diseases Section, Hospital Universitari Son Espases, Valldemossa Road 79, Palma de Mallorca, 07010, Spain
| | | | - J Reina Prieto
- Microbiological Department, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - M Riera Jaume
- Internal Medicine Department, Infectious Diseases Section, Hospital Universitari Son Espases, Valldemossa Road 79, Palma de Mallorca, 07010, Spain
- IdISBa- Fundació Institut d'Investigació Sanitària Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
3
|
Martínez-Zarco BA, Jiménez-García MG, Tirado R, Ambrosio J, Hernández-Mendoza L. [Mesenchymal stem cells: Therapeutic option in ARDS, COPD, and COVID-19 patients]. REVISTA ALERGIA MÉXICO 2023; 70:89-101. [PMID: 37566772 DOI: 10.29262/ram.v70i1.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/30/2023] [Indexed: 08/13/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD) and COVID-19 have as a common characteristic the inflammatory lesion of the lung epithelium. The therapeutic options are associated with opportunistic infections, a hyperglycemic state, and adrenal involvement. Therefore, the search for new treatment strategies that reduce inflammation, and promote re-epithelialization of damaged tissue is very important. This work describes the relevant pathophysiological characteristics of these diseases and evaluates recent findings on the immunomodulatory, anti-inflammatory and regenerative effect of mesenchymal stem cells (MSC) and their therapeutic use. In Pubmed we selected the most relevant studies on the subject, published between 2003 and 2022 following the PRISMA guide. We conclude that MSCs are an important therapeutic option for regenerative treatment in COPD, ARDS, and COVID-19, because of their ability to differentiate into type II pneumocytes and maintain the size and function of lung tissue by replacing dead or damaged cells.
Collapse
Affiliation(s)
| | | | - Rocío Tirado
- Doctor en Ciencias Biomédicas, Departamento de Microbiología y Parasitología.Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Biología del Citoesqueleto y Virología, Ciudad de México
| | - Javier Ambrosio
- Doctor en Ciencias Biomédicas, Departamento de Microbiología y Parasitología.Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Biología del Citoesqueleto y Virología, Ciudad de México
| | - Lilian Hernández-Mendoza
- Doctor en Ciencias Biomédicas, Departamento de Microbiología y Parasitología.Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Biología del Citoesqueleto y Virología, Ciudad de México.
| |
Collapse
|
4
|
Lian B, He S, Jiang H, Guo Y, Cui X, Jiang T, Su R, Chen Y, Zhao C, Zhang M, Hu Y, Ye H, Ning J, Xu X, Liu Q. Qin-Qiao-Xiao-Du formula alleviate influenza virus infectious pneumonia through regulation gut microbiota and metabolomics. Front Med (Lausanne) 2022; 9:1032127. [PMID: 36313993 PMCID: PMC9614278 DOI: 10.3389/fmed.2022.1032127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Qin-Qiao-Xiao-Du (QQXD), a traditional Chinese medicine (TCM) formula, has been used in the clinical treatment of influenza virus pneumonia. However, the effects and mechanisms of QQXD on influenza virus pneumonia remain unknown. Therefore, this study explores the mechanisms of QQXD in the treatment of influenza virus pneumonia from the point of view of intestinal flora and metabolism. The results showed that QQXD was able to reduce mortality, weight loss, lung viral load, lung index, and lung injury in influenza virus mice. A cytokine array found that the QQXD attenuated the expression of serum IL-1α, IL-4, IL-12(P70), and TNF-α. Subsequently, 16s rRNA gene sequencing showed that QQXD could increase the relative abundances of Gemmiger, Anaerofustis, Adlercreutzia, and Streptococcus and decrease those of Dehalobacteriu, Burkholderia, Prevotella, Butyrimimonas, Delftia, and others. Meanwhile, targeted metabolic profiling analysis showed that QQXD could regulate nitrogen metabolism, phenylalanine metabolism, valine, leucine, and isoleucine biosynthesis. Correlation analysis demonstrated that the regulatory effect of QQXD on the cyanoamino acid metabolism pathway was associated with changes in the abundance of Parabacteroides, Pediococcus, and Clostridium in influenza mice. In conclusion, our study revealed that QQXD can inhibit influenza virus replication, suppress cytokine storms, and protect mice from influenza virus infection pneumonia. The mechanisms are likely to be related to improved gut microbiota dysbiosis, increased intestinal carbohydrate metabolism, and up-regulated cyanoamino acid metabolism pathways.
Collapse
Affiliation(s)
- Bo Lian
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,Beijing Institute of Chinese Medicine, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China,Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,Beijing Institute of Chinese Medicine, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Hui Jiang
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Xuran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,Beijing Institute of Chinese Medicine, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Rui Su
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,Beijing Institute of Chinese Medicine, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Mina Zhang
- Beijing Institute of Chinese Medicine, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China,Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yahui Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoran Ye
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,Beijing Institute of Chinese Medicine, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,Beijing Institute of Chinese Medicine, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China,*Correspondence: Xiaolong Xu,
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,Beijing Institute of Chinese Medicine, Beijing, China,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China,Qingquan Liu,
| |
Collapse
|
5
|
An C, Wu Y, Wu J, Liu H, Zhou S, Ge D, Dong R, You L, Hao Y. Berberine ameliorates pulmonary inflammation in mice with influenza viral pneumonia by inhibiting NLRP3 inflammasome activation and gasdermin D‐mediated pyroptosis. Drug Dev Res 2022; 83:1707-1721. [DOI: 10.1002/ddr.21995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chen An
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Yanmin Wu
- Department of Immunology, School of Medical Technology Qiqihar Medical University Qiqihar China
| | - Jun Wu
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Huanwei Liu
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Siyao Zhou
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Dongyu Ge
- Research and Test Center, School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Ruijuan Dong
- Research and Test Center, School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Yu Hao
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
6
|
Masterson CH, Ceccato A, Artigas A, Dos Santos C, Rocco PR, Rolandsson Enes S, Weiss DJ, McAuley D, Matthay MA, English K, Curley GF, Laffey JG. Mesenchymal stem/stromal cell-based therapies for severe viral pneumonia: therapeutic potential and challenges. Intensive Care Med Exp 2021; 9:61. [PMID: 34970706 PMCID: PMC8718182 DOI: 10.1186/s40635-021-00424-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Severe viral pneumonia is a significant cause of morbidity and mortality globally, whether due to outbreaks of endemic viruses, periodic viral epidemics, or the rarer but devastating global viral pandemics. While limited anti-viral therapies exist, there is a paucity of direct therapies to directly attenuate viral pneumonia-induced lung injury, and management therefore remains largely supportive. Mesenchymal stromal/stem cells (MSCs) are receiving considerable attention as a cytotherapeutic for viral pneumonia. Several properties of MSCs position them as a promising therapeutic strategy for viral pneumonia-induced lung injury as demonstrated in pre-clinical studies in relevant models. More recently, early phase clinical studies have demonstrated a reassuring safety profile of these cells. These investigations have taken on an added importance and urgency during the COVID-19 pandemic, with multiple trials in progress across the globe. In parallel with clinical translation, strategies are being investigated to enhance the therapeutic potential of these cells in vivo, with different MSC tissue sources, specific cellular products including cell-free options, and strategies to ‘licence’ or ‘pre-activate’ these cells, all being explored. This review will assess the therapeutic potential of MSC-based therapies for severe viral pneumonia. It will describe the aetiology and epidemiology of severe viral pneumonia, describe current therapeutic approaches, and examine the data suggesting therapeutic potential of MSCs for severe viral pneumonia in pre-clinical and clinical studies. The challenges and opportunities for MSC-based therapies will then be considered.
Collapse
Affiliation(s)
- C H Masterson
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - A Ceccato
- Intensive Care Unit, Hospital Universitari Sagrat Cor, Barcelona, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Sabbadell, Spain
| | - A Artigas
- CIBER de Enfermedades Respiratorias (CIBERES), Sabbadell, Spain.,Critical Center, Corporacion Sanitaria Universitaria Parc Tauli, Autonomous University of Barcelona, Sabadell, Spain
| | - C Dos Santos
- Keenan Center for Biomedical Research, St. Michael's Hospital, Bond St, Toronto, Canada.,Interdepartmental Division of Critical Care Medicine and Institutes of Medical Sciences, University of Toronto, Toronto, Canada
| | - P R Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - S Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - D J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - D McAuley
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - M A Matthay
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - K English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - G F Curley
- Anaesthesia, School of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - J G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland. .,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland.
| |
Collapse
|
7
|
Seasonality of Non-SARS, Non-MERS Coronaviruses and the Impact of Meteorological Factors. Pathogens 2021; 10:pathogens10020187. [PMID: 33572306 PMCID: PMC7916144 DOI: 10.3390/pathogens10020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Seasonality is a characteristic of some respiratory viruses. The aim of our study was to evaluate the seasonality and the potential effects of different meteorological factors on the detection rate of the non-SARS coronavirus detection by PCR. Methods: We performed a retrospective analysis of 12,763 respiratory tract sample results (288 positive and 12,475 negative) for non-SARS, non-MERS coronaviruses (NL63, 229E, OC43, HKU1). The effect of seven single weather factors on the coronavirus detection rate was fitted in a logistic regression model with and without adjusting for other weather factors. Results: Coronavirus infections followed a seasonal pattern peaking from December to March and plunged from July to September. The seasonal effect was less pronounced in immunosuppressed patients compared to immunocompetent patients. Different automatic variable selection processes agreed on selecting the predictors temperature, relative humidity, cloud cover and precipitation as remaining predictors in the multivariable logistic regression model, including all weather factors, with low ambient temperature, low relative humidity, high cloud cover and high precipitation being linked to increased coronavirus detection rates. Conclusions: Coronavirus infections followed a seasonal pattern, which was more pronounced in immunocompetent patients compared to immunosuppressed patients. Several meteorological factors were associated with the coronavirus detection rate. However, when mutually adjusting for all weather factors, only temperature, relative humidity, precipitation and cloud cover contributed independently to predicting the coronavirus detection rate.
Collapse
|
8
|
Ural BB, Yeung ST, Damani-Yokota P, Devlin JC, de Vries M, Vera-Licona P, Samji T, Sawai CM, Jang G, Perez OA, Pham Q, Maher L, Loke P, Dittmann M, Reizis B, Khanna KM. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci Immunol 2020; 5:5/45/eaax8756. [PMID: 32220976 DOI: 10.1126/sciimmunol.aax8756] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/28/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Tissue-resident macrophages are a diverse population of cells that perform specialized functions including sustaining tissue homeostasis and tissue surveillance. Here, we report an interstitial subset of CD169+ lung-resident macrophages that are transcriptionally and developmentally distinct from alveolar macrophages (AMs). They are primarily localized around the airways and are found in close proximity to the sympathetic nerves in the bronchovascular bundle. These nerve- and airway-associated macrophages (NAMs) are tissue resident, yolk sac derived, self-renewing, and do not require CCR2+ monocytes for development or maintenance. Unlike AMs, the development of NAMs requires CSF1 but not GM-CSF. Bulk population and single-cell transcriptome analysis indicated that NAMs are distinct from other lung-resident macrophage subsets and highly express immunoregulatory genes under steady-state and inflammatory conditions. NAMs proliferated robustly after influenza infection and activation with the TLR3 ligand poly(I:C), and in their absence, the inflammatory response was augmented, resulting in excessive production of inflammatory cytokines and innate immune cell infiltration. Overall, our study provides insights into a distinct subset of airway-associated pulmonary macrophages that function to maintain immune and tissue homeostasis.
Collapse
Affiliation(s)
- Basak B Ural
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Joseph C Devlin
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Maren de Vries
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Paola Vera-Licona
- Center for Quantitative Medicine, Uconn Health, Farmington, CT 06030, USA.,Department of Cell Biology, Department of Cell Biology, UConn Health, Farmington, CT 06030, USA.,Department of Pediatrics, UConn Health, Farmington, CT 06030, USA.,Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Tasleem Samji
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | | | - Geunhyo Jang
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Oriana A Perez
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Quynh Pham
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Leigh Maher
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - P'ng Loke
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Boris Reizis
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA.,Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA. .,Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
9
|
Deng L, Xu H, Liu P, Wu S, Shi Y, Lv Y, Chen X. Prolonged exposure to high humidity and high temperature environment can aggravate influenza virus infection through intestinal flora and Nod/RIP2/NF-κB signaling pathway. Vet Microbiol 2020; 251:108896. [PMID: 33091794 DOI: 10.1016/j.vetmic.2020.108896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
Seasonal influenza is an acute viral infection caused by influenza virus, which is often prevalent in the summer and winter. The influenza virus can infect pigs and poultry. Some literature reports that the influenza virus has an outbreak in summer. The summer climate is characterized by a high humidity and high temperature environment, which is the same as many animal feeding and growing environments. We established a flu animal model under a high temperature and humidity environment during the day to observe the impact of high humidity and high temperature environment on the mice after contracting the influenza virus. Our results indicate that the intestinal flora of 16 s rDNA cultured in High humidity and high temperature environment changes, the intestinal mucosal permeability increases, the expression of pIgR, sIgA, and IgA in the intestinal mucosal immune system decreases, and the NLR immune recognition signaling pathway NOD1 is activated. The expression of related genes such as NOD2, NF-κB, and pIgR increases, which leads to the increase of related inflammatory factors in the vicinity of the intestines, aggravating local inflammation. High humidity and high temperature environment can cause the expression of inflammatory cytokines in the body to rise, causing Th17/Treg immune imbalance, inhibiting Treg maturation and differentiation, and increasing the expression of IL-2, IL-6, and other cytokines, while the expression of IFN-γ and IL-17A decreases. This condition worsens after infection with the influenza virus. Overall, our study found that High humidity and high temperature environment affect the intestinal flora and the body's immune status, thereby aggravating the status of influenza virus infection.
Collapse
Affiliation(s)
- Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Qi F, Liu M, Li F, Lv Q, Wang G, Gong S, Wang S, Xu Y, Bao L, Qin C. Interleukin-37 Ameliorates Influenza Pneumonia by Attenuating Macrophage Cytokine Production in a MAPK-Dependent Manner. Front Microbiol 2019; 10:2482. [PMID: 31736917 PMCID: PMC6831648 DOI: 10.3389/fmicb.2019.02482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Viral pneumonitis caused by influenza A (H1N1) virus leads to high levels of morbidity and mortality. Given the limited treatment options for severe influenza pneumonia, it is necessary to explore effective amelioration approaches. Interleukin-37 (IL-37) has been reported to inhibit excessive immune responses and protect against a variety of inflammatory diseases. In this study, by using BALB/c mice intranasally infected with A/California/07/2009 (H1N1), we found that IL-37 treatment increases the survival rate and body weight, and reduces the pulmonary index, impaired the lung injury and decreased production of pro-inflammatory cytokines in the BALF and lung tissue. Moreover, IL-37 administration enhanced not only the percentage of macrophages, but also the percentage of IL-18Rα+ macrophages, suggesting that enhancing the macrophages function may improve outcomes in a murine model of H1N1 infection. Indeed, macrophages depletion reduced the protective effect of IL-37 during H1N1 infection. Furthermore, IL-37 administration inhibited MAPK signaling in RAW264.7 cells infected with H1N1. This study demonstrates that IL-37 treatment can ameliorate influenza pneumonia by attenuating cytokine production, especially by macrophages. Thus, IL-37 might serve as a promising new target for the treatment of influenza A-induced pneumonia.
Collapse
Affiliation(s)
- Feifei Qi
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mingya Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fengdi Li
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Qi Lv
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Guanpeng Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Shuran Gong
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Shunyi Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Yanfeng Xu
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, The Institute of Laboratory Animal Sciences, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
11
|
Daoud A, Laktineh A, Macrander C, Mushtaq A, Soubani AO. Pulmonary complications of influenza infection: a targeted narrative review. Postgrad Med 2019; 131:299-308. [PMID: 30845866 DOI: 10.1080/00325481.2019.1592400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Severe influenza infection represents a leading cause of global morbidity and mortality. Several clinical syndromes that involve a number of organs may be associated with Influenza infection. However, lower respiratory complications remain the most common and serious sequel of influenza infection. These include influenza pneumonia, superinfection with bacteria and fungi, exacerbation of underlying lung disease and ARDS. This review analyzes the available literature on the epidemiology and clinical considerations of these conditions. It also provides an overview of the effects of type of influenza, antiviral therapy, vaccination and other therapies on the outcome of these complications.
Collapse
Affiliation(s)
- Asil Daoud
- a Division of Pulmonary, Critical Care and Sleep Medicine , Wayne State University, School of Medicine , Detroit , MI , USA
| | - Amir Laktineh
- a Division of Pulmonary, Critical Care and Sleep Medicine , Wayne State University, School of Medicine , Detroit , MI , USA
| | - Corey Macrander
- a Division of Pulmonary, Critical Care and Sleep Medicine , Wayne State University, School of Medicine , Detroit , MI , USA
| | - Ammara Mushtaq
- a Division of Pulmonary, Critical Care and Sleep Medicine , Wayne State University, School of Medicine , Detroit , MI , USA
| | - Ayman O Soubani
- a Division of Pulmonary, Critical Care and Sleep Medicine , Wayne State University, School of Medicine , Detroit , MI , USA
| |
Collapse
|
12
|
Chandler JD, Hu X, Ko EJ, Park S, Fernandes J, Lee YT, Orr ML, Hao L, Smith MR, Neujahr DC, Uppal K, Kang SM, Jones DP, Go YM. Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. ENVIRONMENT INTERNATIONAL 2019; 127:720-729. [PMID: 30999129 PMCID: PMC6536378 DOI: 10.1016/j.envint.2019.03.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 05/04/2023]
Abstract
Cadmium (Cd) is a toxic, pro-inflammatory metal ubiquitous in the diet that accumulates in body organs due to inefficient elimination. Responses to influenza virus infection are variable, particularly severity of pneumonia. We used a murine model of chronic low-dose oral exposure to Cd to test if increased lung tissue Cd worsened inflammation in response to sub-lethal H1N1 infection. The results show that Cd-treated mice had increased lung tissue inflammatory cells, including neutrophils, monocytes, T lymphocytes and dendritic cells, following H1N1 infection. Lung genetic responses to infection (increasing TNF-α, interferon and complement, and decreasing myogenesis) were also exacerbated. To reveal the organization of a network structure, pinpointing molecules critical to Cd-altered lung function, global correlations were made for immune cell counts, leading edge gene transcripts and metabolites. This revealed that Cd increased correlation of myeloid immune cells with pro-inflammatory genes, particularly interferon-γ and metabolites. Together, the results show that Cd burden in mice increased inflammation in response to sub-lethal H1N1 challenge, which was coordinated by genetic and metabolic responses, and could provide new targets for intervention against lethal inflammatory pathology of clinical H1N1 infection.
Collapse
Affiliation(s)
- Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Soojin Park
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Michael L Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Li Hao
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - David C Neujahr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States of America
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States of America.
| |
Collapse
|
13
|
Dandachi D, Rodriguez-Barradas MC. Viral pneumonia: etiologies and treatment. J Investig Med 2018; 66:957-965. [PMID: 29680828 DOI: 10.1136/jim-2018-000712] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2018] [Indexed: 12/16/2022]
Abstract
Viral pathogens are increasingly recognized as a cause of pneumonia, in immunocompetent patients and more commonly among immunocompromised. Viral pneumonia in adults could present as community-acquired pneumonia (CAP), ranging from mild disease to severe disease requiring hospital admission and mechanical ventilation. Moreover, the role of viruses in hospital-acquired pneumonia and ventilator-associated pneumonia as causative agents or as co-pathogens and the effect of virus detection on clinical outcome are being investigated.More than 20 viruses have been linked to CAP. Clinical presentation, laboratory findings, biomarkers, and radiographic patterns are not characteristic to specific viral etiology. Currently, laboratory confirmation is most commonly done by detection of viral nucleic acid by reverse transcription-PCR of respiratory secretions.Apart from the US Food and Drug Administration-approved medications for treatment of influenza pneumonia, the treatment of non-influenza respiratory viruses is limited. Moreover, the evidence supporting the use of available antivirals to treat immunocompromised patients is modest at best. With the widespread use of molecular diagnostics, an aging population, and advancement in cancer therapy, physicians will face a bigger challenge in managing viral respiratory tract infections. Emphasis on infection control measures to prevent the spread of respiratory viruses especially in healthcare settings is extremely important.
Collapse
Affiliation(s)
- Dima Dandachi
- Infectious Diseases Section, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Maria C Rodriguez-Barradas
- Infectious Diseases Section, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Infectious Diseases Section (MS 111G), Michael E. DeBakey VAMC, Houston, Texas, USA
| |
Collapse
|
14
|
Rello J, Bunsow E. What is the Research Agenda in Ventilator-associated Pneumonia? Int J Infect Dis 2016; 51:110-112. [PMID: 27664931 DOI: 10.1016/j.ijid.2016.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jordi Rello
- CIBERES & Universitat Autonoma de Barcelona, Spain.
| | | |
Collapse
|
15
|
Nedel WL, Nora DG, Salluh JIF, Lisboa T, Póvoa P. Corticosteroids for severe influenza pneumonia: A critical appraisal. World J Crit Care Med 2016; 5:89-95. [PMID: 26855898 PMCID: PMC4733461 DOI: 10.5492/wjccm.v5.i1.89] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Influenza pneumonia is associated with high number of severe cases requiring hospital and intensive care unit (ICU) admissions with high mortality. Systemic steroids are proposed as a valid therapeutic option even though its effects are still controversial. Heterogeneity of published data regarding study design, population demographics, severity of illness, dosing, type and timing of corticosteroids administered constitute an important limitation for drawing robust conclusions. However, it is reasonable to admit that, as it was not found any advantage of corticosteroid therapy in so diverse conditions, such beneficial effects do not exist at all. Its administration is likely to increase overall mortality and such trend is consistent regardless of the quality as well as the sample size of studies. Moreover it was shown that corticosteroids might be associated with higher incidence of hospital-acquired pneumonia and longer duration of mechanical ventilation and ICU stay. Finally, it is reasonable to conclude that corticosteroids failed to demonstrate any beneficial effects in the treatment of patients with severe influenza infection. Thus its current use in severe influenza pneumonia should be restricted to very selected cases and in the setting of clinical trials.
Collapse
|
16
|
Influenza infection in the intensive care unit: Four years after the 2009 pandemic. Enferm Infecc Microbiol Clin 2015; 34:177-83. [PMID: 26025480 DOI: 10.1016/j.eimc.2015.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
UNLABELLED The role of influenza viruses in severe acute respiratory infection (SARI) in Intensive Care Units (ICU) remains unknown. The post-pandemic influenza A(H1N1)pdm09 period, in particular, has been poorly studied. OBJECTIVE To identify influenza SARI patients in ICU, to assess the usefulness of the symptoms of influenza-like illness (ILI), and to compare the features of pandemic vs. post-pandemic influenza A(H1N1) pdm09 infection. METHODS A prospective observational study with SARI patients admitted to ICU during the first three post-pandemic seasons. Patient demographics, characteristics and outcomes were recorded. An influenza epidemic period (IEP) was defined as >100 cases/100,000 inhabitants per week. RESULTS One hundred sixty-three patients were diagnosed with SARI. ILI was present in 65 (39.9%) patients. Influenza infection was documented in 41 patients, 27 (41.5%) ILI patients, and 14 (14.3%) non-ILI patients, 27 of them during an IEP. Influenza A viruses were mainly responsible. Only five patients had influenza B virus infection, which were non-ILI during an IEP. SARI overall mortality was 22.1%, and 15% in influenza infection patients. Pandemic and post-pandemic influenza infection patients shared similar clinical features. CONCLUSIONS During influenza epidemic periods, influenza infection screening should be considered in all SARI patients. Influenza SARI was mainly caused by subtype A(H1N1)pdm09 and A(H3N2) in post-pandemic seasons, and no differences were observed in ILI and mortality rate compared with a pandemic season.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review examines the epidemiology, diagnosis, prognosis, treatment and prevention of community-acquired pneumonia (CAP) in adults. RECENT FINDINGS CAP is a significant cause of morbidity and mortality. Streptococcus pneumoniae is the most common CAP pathogen; however, microbial cause varies by geographic location and host factors. Identification of a microbial cause in CAP remains challenging - 30-65% of cases do not have a pathogen isolated. The use of molecular techniques in addition to culture, serology and urinary antigen testing has improved diagnostic yield. Scoring systems are useful for CAP prognostication and site of care decisions. Studies evaluating novel biomarkers including pro-B-type natriuretic peptide and procalcitonin suggest potential adjunctive roles in CAP prognosis. Guideline-based treatment for CAP has changed little in recent years. Effective and timely antimicrobial therapy is crucial in optimizing outcomes and should be based on local antimicrobial susceptibility patterns. Macrolides may have additional anti-inflammatory properties and a mortality benefit in severe CAP. Preventive strategies include immunization and modification of specific patient risk factors. SUMMARY CAP is common and causes considerable morbidity and mortality. A comprehensive approach including advanced diagnostic testing, effective and timely antimicrobial therapy and prevention is required to optimize CAP outcomes.
Collapse
|
18
|
Kelesidis T, Mastoris I, Metsini A, Tsiodras S. How to approach and treat viral infections in ICU patients. BMC Infect Dis 2014; 14:321. [PMID: 25431007 PMCID: PMC4289200 DOI: 10.1186/1471-2334-14-321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Patients with severe viral infections are often hospitalized in intensive care units (ICUs) and recent studies underline the frequency of viral detection in ICU patients. Viral infections in the ICU often involve the respiratory or the central nervous system and can cause significant morbidity and mortality especially in immunocompromised patients. The mainstay of therapy of viral infections is supportive care and antiviral therapy when available. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host proteins that regulate immunity and are involved in the viral life cycle. These novel treatments need to be further validated in animal and human randomized controlled studies.
Collapse
Affiliation(s)
| | | | | | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, 1 Rimini Street, GR-12462 Haidari, Athens, Greece.
| |
Collapse
|
19
|
Ruuskanen O, Järvinen A. What is the real role of respiratory viruses in severe community-acquired pneumonia? Clin Infect Dis 2014; 59:71-3. [PMID: 24729504 DOI: 10.1093/cid/ciu242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Asko Järvinen
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Finland
| |
Collapse
|