1
|
Sytu MRC, Cho DH, Hahm JI. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces. Polymers (Basel) 2024; 16:1267. [PMID: 38732737 PMCID: PMC11085100 DOI: 10.3390/polym16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.
Collapse
Affiliation(s)
- Marion Ryan C. Sytu
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| | - David H. Cho
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
2
|
Mustafa MI, Alzebair AA, Mohammed A. Development of Recombinant Antibody by Yeast Surface Display Technology. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100174. [PMID: 38318280 PMCID: PMC10839864 DOI: 10.1016/j.crphar.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
Recombinant antibodies have emerged as powerful tools in various fields, including therapeutics, diagnostics, and research applications. The selection of high-affinity antibodies with desired specificity is a crucial step in the development of recombinant antibody-based products. In recent years, yeast surface display technology has gained significant attention as a robust and versatile platform for antibody selection. This graphical review provides an overview of the yeast surface display technology and its applications in recombinant antibody selection. We discuss the key components involved in the construction of yeast surface display libraries, including the antibody gene libraries, yeast host strains, and display vectors. Furthermore, we highlight the strategies employed for affinity maturation and optimization of recombinant antibodies using yeast surface display. Finally, we discuss the advantages and limitations of this technology compared to other antibody selection methods. Overall, yeast surface display technology offers a powerful and efficient approach for the selection of recombinant antibodies, enabling the rapid generation of high-affinity antibodies for various applications.
Collapse
Affiliation(s)
- Mujahed I. Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan
| | - Awad A. Alzebair
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic University, Omdurman, Sudan
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic University, Omdurman, Sudan
| |
Collapse
|
3
|
Cho DH, Hahm JI. Protein-Polymer Interaction Characteristics Unique to Nanoscale Interfaces: A Perspective on Recent Insights. J Phys Chem B 2021; 125:6040-6057. [PMID: 34101462 DOI: 10.1021/acs.jpcb.1c00684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein interactions at polymer interfaces represent a complex but ubiquitous phenomenon that demands an entirely different focus of investigation than what has been attempted before. With the advancement of nanoscience and nanotechnology, the nature of polymer materials interfacing proteins has evolved to exhibit greater chemical intricacy and smaller physical dimensions. Existing knowledge built from studying the interaction of macroscopic, chemically alike surfaces with an ensemble of protein molecules cannot be simply carried over to nanoscale protein-polymer interactions. In this Perspective, novel protein interaction phenomena driven by the presence of nanoscale polymer interfaces are discussed. Being able to discern discrete protein interaction events via simple visualization was crucial to attaining the much needed, direct experimental evidence of protein-polymer interactions at the single biomolecule level. Spatial and temporal tracking of particular proteins at specific polymer interfaces was made possible by resolving individual proteins simultaneously with those polymer nanodomains responsible for the protein interactions. Therefore, such single biomolecule level approaches taken to examine protein-polymer interaction mark a big departure from the mainstream approaches of collecting indirectly observed, ensemble-averaged protein signals on chemically simple substrates. Spearheading research efforts so far has led to inspiring initial discoveries of protein interaction mechanisms and kinetics that are entirely unique to nanoscale polymer systems. They include protein self-assembly/packing characteristics, protein-polymer interaction mechanisms/kinetics, and various protein functionalities on polymer nanoconstructs. The promising beginning and future of nanoscale protein-polymer research endeavors are presented in this article.
Collapse
Affiliation(s)
- David H Cho
- Department of Chemistry, Georgetown University, 37th & O Streets NW, Washington, District of Columbia 20057, United States
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
4
|
|
5
|
Antibody Printing Technologies. Methods Mol Biol 2020. [PMID: 33237416 DOI: 10.1007/978-1-0716-1064-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Antibody microarrays are routinely employed in the lab and in the clinic for studying protein expression, protein-protein, and protein-drug interactions. The microarray format reduces the size scale at which biological and biochemical interactions occur, leading to large reductions in reagent consumption and handling times while increasing overall experimental throughput. Specifically, antibody microarrays, as a platform, offer a number of different advantages over traditional techniques in the areas of drug discovery and diagnostics. While a number of different techniques and approaches have been developed for creating micro and nanoscale antibody arrays, issues relating to sensitivity, cost, and reproducibility persist. The aim of this review is to highlight current state-of the-art techniques and approaches for creating antibody arrays by providing latest accounts of the field while discussing potential future directions.
Collapse
|
6
|
Abstract
There is an increasing interest for low cost, ultrasensitive, time saving yet reliable, point-of-care bioelectronic sensors. Electrolyte gated organic field effect transistors (EGOFETs) are proven compelling transducers for various sensing applications, offering direct electronic, label-free transduction of bio-recognition events along with miniaturization, fast data handling and processing. Given that field effect transistors act as intrinsically signal amplifiers, even a small change of a chemical or biological quantity may significantly alter the output electronic signal. In EGOFETs selectivity can be guaranteed by the immobilization of bioreceptors able to bind specifically a target analyte. The layer of receptors can be linked to one of the electronic active interfaces of the transistor, and the interactions with a target molecule affect the electronic properties of the device. The present chapter discusses main aspects of EGOFETs transducers along with detailed examples of how to tailor the device interfaces with desired functionality. The development of an "electronic tongue" based on an EGOFET device coupled to odorant binding proteins (OBPs) for enantiomers differentiation is presented.
Collapse
|
7
|
|
8
|
Ng WK, Lim TS, Lai NS. Human neonatal Fc receptor as a new potential antibody binding protein for antibody immobilization. Biotechnol Appl Biochem 2017; 65:547-553. [PMID: 29280199 DOI: 10.1002/bab.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/15/2017] [Indexed: 11/11/2022]
Abstract
A critical challenge in producing an antibody-based assay with the highest reproducibility and sensitivity is the strategy to immobilize antibodies to solid phase. To date, numerous methods of antibody immobilization were reported but each was subjected to its advantages and limitations. The current study proposes a new potential antibody binding protein, the human neonatal fragment crystallizable (Fc) receptor. This protein has shown its high affinity to the Fc of antibody either in vivo or in vitro. Human neonatal Fc receptor is a heterodimer constructed by p51 α-heavy chain and β2-microglobulin light chain; however, the binding sites toward the antibody are located in the p51 α-heavy chain. Hence, vector cloning and recombinant protein expression were carried out to express the p51 α-heavy chain of the human neonatal Fc receptor (hFcRn-α). The recombinant protein expressed, hFcRn-α, was adopted to pin rabbit IgG against hepatitis B virus surface antigen to a solid phase. A sandwich enzyme-linked immunosorbent assay was further developed to evaluate the efficiency of hFcRn-α-directed immobilization in antigen detection. The result was compared with the conventional physical adsorption method. The findings demonstrated that human neonatal Fc receptor was efficient in pinning antibodies and generating higher signals compared with the physical adsorption of antibody.
Collapse
Affiliation(s)
- Woei Kean Ng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Bush DB, Knotts TA. Probing the effects of surface hydrophobicity and tether orientation on antibody-antigen binding. J Chem Phys 2017; 146:155103. [DOI: 10.1063/1.4980083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Derek B. Bush
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Thomas A. Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
10
|
Tasso M, Singh MK, Giovanelli E, Fragola A, Loriette V, Regairaz M, Dautry F, Treussart F, Lenkei Z, Lequeux N, Pons T. Oriented Bioconjugation of Unmodified Antibodies to Quantum Dots Capped with Copolymeric Ligands as Versatile Cellular Imaging Tools. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26904-26913. [PMID: 26551755 DOI: 10.1021/acsami.5b09777] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Distinctive optical properties of inorganic quantum dot (QD) nanoparticles promise highly valuable probes for fluorescence-based detection methods, particularly for in vivo diagnostics, cell phenotyping via multiple markers or single molecule tracking. However, despite high hopes, this promise has not been fully realized yet, mainly due to difficulties at producing stable, nontoxic QD bioconjugates of negligible nonspecific binding. Here, a universal platform for antibody binding to QDs is presented that builds upon the controlled functionalization of CdSe/CdS/ZnS nanoparticles capped with a multidentate dithiol/zwitterion copolymer ligand. In a change-of-paradigm approach, thiol groups are concomitantly used as anchoring and bioconjugation units to covalently bind up to 10 protein A molecules per QD while preserving their long-term colloidal stability. Protein A conjugated to QDs then enables the oriented, stoichiometrically controlled immobilization of whole, unmodified antibodies by simple incubation. This QD-protein A immobilization platform displays remarkable antibody functionality retention after binding, usually a compromised property in antibody conjugation to surfaces. Typical QD-protein A-antibody assemblies contain about three fully functional antibodies. Validation experiments show that these nanobioconjugates overcome current limitations since they retain their colloidal stability and antibody functionality over 6 months, exhibit low nonspecific interactions with live cells and have very low toxicity: after 48 h incubation with 1 μM QD bioconjugates, HeLa cells retain more than 80% of their cellular metabolism. Finally, these QD nanobioconjugates possess a high specificity for extra- and intracellular targets in live and fixed cells. The dithiol/zwitterion QD-protein A nanoconjugates have thus a latent potential to become an off-the-shelf tool destined to unresolved biological questions.
Collapse
Affiliation(s)
- Mariana Tasso
- Laboratoire de Physique et d'Étude des Matériaux, ESPCI ParisTech, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 6; LPEM , 10 rue Vauquelin, F-75231 Paris Cedex 5, France
| | - Manish K Singh
- Laboratoire Aimé Cotton, CNRS, ENS Cachan, Univ. Paris-Saclay , Bâtiment 505, Campus d'Orsay, 91405 Orsay, France
| | - Emerson Giovanelli
- Laboratoire de Physique et d'Étude des Matériaux, ESPCI ParisTech, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 6; LPEM , 10 rue Vauquelin, F-75231 Paris Cedex 5, France
| | - Alexandra Fragola
- Laboratoire de Physique et d'Étude des Matériaux, ESPCI ParisTech, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 6; LPEM , 10 rue Vauquelin, F-75231 Paris Cedex 5, France
| | - Vincent Loriette
- Laboratoire de Physique et d'Étude des Matériaux, ESPCI ParisTech, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 6; LPEM , 10 rue Vauquelin, F-75231 Paris Cedex 5, France
| | - Marie Regairaz
- Laboratoire de Biotechnologies et Pharmacologie Appliquée, CNRS, ENS Cachan, Univ. Paris-Saclay , 61, Avenue du Président Wilson, 94235 Cachan, France
| | - François Dautry
- Laboratoire de Biotechnologies et Pharmacologie Appliquée, CNRS, ENS Cachan, Univ. Paris-Saclay , 61, Avenue du Président Wilson, 94235 Cachan, France
| | - François Treussart
- Laboratoire Aimé Cotton, CNRS, ENS Cachan, Univ. Paris-Saclay , Bâtiment 505, Campus d'Orsay, 91405 Orsay, France
| | - Zsolt Lenkei
- Brain Plasticity Unit, PSL Research University, ESPCI ParisTech, CNRS UMR 8249 , 10 rue Vauquelin, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d'Étude des Matériaux, ESPCI ParisTech, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 6; LPEM , 10 rue Vauquelin, F-75231 Paris Cedex 5, France
| | - Thomas Pons
- Laboratoire de Physique et d'Étude des Matériaux, ESPCI ParisTech, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 6; LPEM , 10 rue Vauquelin, F-75231 Paris Cedex 5, France
| |
Collapse
|
11
|
Thatikonda N, Delfani P, Jansson R, Petersson L, Lindberg D, Wingren C, Hedhammar M. Genetic fusion of single-chain variable fragments to partial spider silk improves target detection in micro- and nanoarrays. Biotechnol J 2015; 11:437-48. [PMID: 26470853 DOI: 10.1002/biot.201500297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
Immobilizing biomolecules with retained functionality and stability on solid supports is crucial for generation of sensitive immunoassays. However, upon use of conventional immobilization strategies, a major portion of the biomolecules (e.g. antibodies) frequently tends to lose their bioactivity. In this study, we describe a procedure to immobilize human single-chain variable fragment (scFv) via genetic fusion to partial spider silk, which have a high tendency to adhere to solid supports. Two scFvs, directed towards serum proteins, were genetically fused to partial spider silk proteins and expressed as silk fusion proteins in E. coli. Antigen binding ability of scFvs attached to a partial silk protein denoted RC was investigated using microarray analysis, whereas scFvs fused to the NC silk variant were examined using nanoarrays. Results from micro- and nanoarrays confirmed the functionality of scFvs attached to both RC and NC silk, and also for binding of targets in crude serum. Furthermore, the same amount of added scFv gives higher signal intensity when immobilized via partial spider silk compared to when immobilized alone. Together, the results suggest that usage of scFv-silk fusion proteins in immunoassays could improve target detection, in the long run enabling novel biomarkers to be detected in crude serum proteomes.
Collapse
Affiliation(s)
- Naresh Thatikonda
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Payam Delfani
- Department of Immunotechnology and CREATE Health, Lund University, Lund, Sweden
| | - Ronnie Jansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Linn Petersson
- Department of Immunotechnology and CREATE Health, Lund University, Lund, Sweden
| | | | - Christer Wingren
- Department of Immunotechnology and CREATE Health, Lund University, Lund, Sweden.
| | - My Hedhammar
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden. .,Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
12
|
Bush DB, Knotts TA. Communication: Antibody stability and behavior on surfaces. J Chem Phys 2015; 143:061101. [DOI: 10.1063/1.4928455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Derek B. Bush
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Thomas A. Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
13
|
Zangar RC, Daly DS, White AM. ELISA microarray technology as a high-throughput system for cancer biomarker validation. Expert Rev Proteomics 2014; 3:37-44. [PMID: 16445349 DOI: 10.1586/14789450.3.1.37] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A large gap currently exists between the ability to discover potential biomarkers and the ability to assess the real value of these proteins for cancer screening. One major challenge in biomarker validation is the inherent variability in biomarker levels. This variability stems from the diversity across the human population and the considerable molecular heterogeneity between individual tumors, even those that originate from a single tissue. An additional challenge with cancer screening is that most cancers are rare in the general population, meaning that assay specificity must be very high. Otherwise, the number of false positives will be much greater than the number of true positives. Due to these challenges associated with biomarker validation, it is necessary to analyze thousands of samples in order to obtain a clear idea of the utility of a screening assay. Enzyme-linked immunosorbent assay (ELISA) microarray technology can simultaneously quantify levels of multiple proteins and, thus, has the potential to accelerate validation of protein biomarkers for clinical use. This review will discuss current ELISA microarray technology and potential advances that could help to achieve the reproducibility and throughput that are required to evaluate cancer biomarkers.
Collapse
Affiliation(s)
- Richard C Zangar
- Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA.
| | | | | |
Collapse
|
14
|
Borrebaeck CAK, Wingren C. High-throughput proteomics using antibody microarrays: an update. Expert Rev Mol Diagn 2014; 7:673-86. [PMID: 17892372 DOI: 10.1586/14737159.7.5.673] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antibody-based microarrays are a rapidly emerging technology that has advanced from the first proof-of-concept studies to demanding serum protein profiling applications during recent years, displaying great promise within disease proteomics. Miniaturized micro- and nanoarrays can be fabricated with an almost infinite number of antibodies carrying the desired specificities. While consuming only minute amounts of reagents, multiplexed and ultrasensitive assays can be performed targeting high- as well as low-abundance analytes in complex nonfractionated proteomes. The microarray images generated can then be converted into protein expression profiles or protein atlases, revealing a detailed composition of the sample. The technology will provide unique opportunities for fields such as disease diagnostics, biomarker discovery, patient stratification, predicting disease recurrence and drug target discovery. This review describes an update of high-throughput proteomics, using antibody-based microarrays, focusing on key technological advances and novel applications that have emerged over the last 3 years.
Collapse
Affiliation(s)
- Carl A K Borrebaeck
- Lund University, Department of Immunotechnology & CREATE Health, BMC D13, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
15
|
Ierardi V, Ferrera F, Millo E, Damonte G, Filaci G, Valbusa U. Bioactive surfaces for antibody-antigen complex detection by Atomic Force Microscopy. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/439/1/012001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Montenegro JM, Grazu V, Sukhanova A, Agarwal S, de la Fuente JM, Nabiev I, Greiner A, Parak WJ. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv Drug Deliv Rev 2013; 65:677-88. [PMID: 23280372 DOI: 10.1016/j.addr.2012.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/05/2012] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Abstract
Arguably targeting is one of the biggest problems for controlled drug delivery. In the case that drugs can be directed with high efficiency to the target tissue, side effects of medication are drastically reduced. Colloidal inorganic nanoparticles (NPs) have been proposed and described in the last 10years as new platforms for in vivo delivery. However, though NPs can introduce plentiful functional properties (such as controlled destruction of tissue by local heating or local generation of free radicals), targeting remains an issue of intense research efforts. While passive targeting of NPs has been reported (the so-called enhanced permeation and retention, EPR effect), still improved active targeting would be highly desirable. One classical approach for active targeting is mediated by molecular recognition via capture molecules, i.e. antibodies (Abs) specific for the target. In order to apply this strategy for NPs, they need to be conjugated with Abs against specific biomarkers. Though many approaches have been reported in this direction, the controlled bioconjugation of NPs is still a challenge. In this article the strategies of controlled bioconjugation of NPs will be reviewed giving particular emphasis to the following questions: 1) how can the number of capture molecules per NP be precisely adjusted, and 2) how can the Abs be attached to NP surfaces in an oriented way. Solution of both questions is a cornerstone in controlled targeting of the inorganic NPs bioconjugates.
Collapse
|
17
|
|
18
|
Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, de Beeck MO, Dehollain C, Burleson W, Moussy FG, Guiseppi-Elie A, De Micheli G. Fully integrated biochip platforms for advanced healthcare. SENSORS (BASEL, SWITZERLAND) 2012; 12:11013-60. [PMID: 23112644 PMCID: PMC3472872 DOI: 10.3390/s120811013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 01/07/2023]
Abstract
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.
Collapse
Affiliation(s)
- Sandro Carrara
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-Mails: (S.S.G.); (J.O.); (I.T.); (C.B.-R.); (A.C.); (C.D.); (G.D.M.)
| | - Sara Ghoreishizadeh
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-Mails: (S.S.G.); (J.O.); (I.T.); (C.B.-R.); (A.C.); (C.D.); (G.D.M.)
| | - Jacopo Olivo
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-Mails: (S.S.G.); (J.O.); (I.T.); (C.B.-R.); (A.C.); (C.D.); (G.D.M.)
| | - Irene Taurino
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-Mails: (S.S.G.); (J.O.); (I.T.); (C.B.-R.); (A.C.); (C.D.); (G.D.M.)
| | - Camilla Baj-Rossi
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-Mails: (S.S.G.); (J.O.); (I.T.); (C.B.-R.); (A.C.); (C.D.); (G.D.M.)
| | - Andrea Cavallini
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-Mails: (S.S.G.); (J.O.); (I.T.); (C.B.-R.); (A.C.); (C.D.); (G.D.M.)
| | - Maaike Op de Beeck
- Interuniversity Microelectronics Centre (IMEC), B-3001 Leuven, Belgium; E-Mail:
| | - Catherine Dehollain
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-Mails: (S.S.G.); (J.O.); (I.T.); (C.B.-R.); (A.C.); (C.D.); (G.D.M.)
| | - Wayne Burleson
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA; E-Mail:
| | - Francis Gabriel Moussy
- Brunel Institute for Bioengineering, University of Brunel, West London, UB8 3PH, UK; E-Mail:
| | - Anthony Guiseppi-Elie
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips, Clemson University, Anderson, SC 29625, USA; E-Mail:
- ABTECH Scientific, Inc., Richmond, VA 23219, USA
| | - Giovanni De Micheli
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-Mails: (S.S.G.); (J.O.); (I.T.); (C.B.-R.); (A.C.); (C.D.); (G.D.M.)
| |
Collapse
|
19
|
Alhamdani MSS, Hoheisel JD. Antibody Microarrays in Proteome Profiling. MOLECULAR ANALYSIS AND GENOME DISCOVERY 2011:219-243. [DOI: 10.1002/9781119977438.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Abstract
Cell-based microarrays were first described by Ziauddin and Sabatini in 2001 as a novel method for performing high-throughput screens of gene function. They reported a technique whereby expression vectors containing the open reading frame (ORF) of human genes were printed onto glass microscope slides to form a microarray. Transfection reagents were added pre- or post-spotting and cells grown over the surface of the array. They demonstrated that cells growing in the immediate vicinity of the expression vectors underwent 'reverse transfection' and that subsequent alterations in cell function could then be detected by secondary assays performed on the array. Subsequent publications have adapted the technique to a variety of applications and have also shown that the approach works when arrays are fabricated using siRNAs and compounds. The potential of this method for performing analyses of gene function and identification of novel therapeutic agents has now been clearly demonstrated. Current efforts are focused on improving and harnessing this technology for high-throughput screening applications.
Collapse
Affiliation(s)
- Ella Palmer
- Clinical Sciences Centre, Hammersmith Hospital, London, UK.
| |
Collapse
|
21
|
Martins S, Karmali A, Serralheiro ML. Chromatographic behaviour of monoclonal antibodies against wild-type amidase from Pseudomonas aeruginosa on immobilized metal chelates. Biomed Chromatogr 2011; 25:1327-37. [PMID: 21337355 DOI: 10.1002/bmc.1605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 12/14/2010] [Indexed: 11/07/2022]
Abstract
The aim of this work was to devise a one-step purification procedure for monoclonal antibodies (MAbs) of IgG class by immobilized metal affinity chromatography (IMAC). Therefore, several stationary phases were prepared containing immobilized metal chelates in order to study the chromatographic behaviour of MAbs against wild-type amidase from Pseudomonas aeruginosa. Such MAbs adsorbed to Cu(II), Ni(II), Zn(II) and Co(II)-IDA agarose columns. The increase in ligand concentration and the use of longer spacer arms and higher pH values resulted in higher adsorption of MAbs into immobilized metal chelates. The dynamic binding capacity and the maximum binding capacity were 1.33 ± 0.015 and 3.214 ± 0.021 mg IgG/mL of sedimented commercial matrix, respectively. A K(D) of 4.53 × 10(-7) m was obtained from batch isotherm measurements. The combination of tailor-made stationary phases of IMAC and the correct selection of adsorption conditions permitted a one-step purification procedure to be devised for MAbs of IgG class. Culture supernatants containing MAbs were purified by IMAC on commercial-Zn(II) and EPI-30-IDA-Zn(II) Sepharose 6B columns and by affinity chromatography on Protein A-Sepharose CL-4B. This MAb preparation revealed on SDS-PAGE two protein bands with M(r) of 50 and 22 kDa corresponding to the heavy and light chains, respectively.
Collapse
Affiliation(s)
- Sónia Martins
- Chemical Engineering and Biotechnology Research Center and Departmental Area of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1959-007, Lisboa, Portugal
| | | | | |
Collapse
|
22
|
Li H, Cao Z, Zhang Y, Lau C, Lu J. Simultaneous detection of two lung cancer biomarkers using dual-color fluorescence quantum dots. Analyst 2011; 136:1399-405. [DOI: 10.1039/c0an00704h] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Abstract
Affinity proteomics, mainly represented by antibody microarrays, has in recent years been established as a powerful tool for high-throughput (disease) proteomics. The technology can be used to generate detailed protein expression profiles, or protein maps, of focused set of proteins in crude proteomes and potentially even high-resolution portraits of entire proteomes. The technology provides unique opportunities, for example biomarker discovery, disease diagnostics, patient stratification and monitoring of disease, and taking the next steps toward personalized medicine. However, the process of designing high-performing, high-density antibody micro- and nanoarrays has proven to be challenging, requiring truly cross-disciplinary efforts to be adopted. In this mini-review, we address one of these key technological issues, namely, the choice of probe format, and focus on the use of recombinant antibodies vs. polyclonal and monoclonal antibodies for the generation of antibody arrays.
Collapse
|
24
|
Walls D, Loughran ST, Cunningham O. Phage display: a powerful technology for the generation of high specificity affinity reagents from alternative immune sources. Methods Mol Biol 2010; 681:87-101. [PMID: 20978962 PMCID: PMC7120213 DOI: 10.1007/978-1-60761-913-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents. Despite their long-standing efficacy, recombinant antibody generation technologies such as phage display are still largely the tools of biotechnology companies or research groups with a direct interest in protein engineering. In this chapter, we discuss the inherent limitations of classical polyclonal and monoclonal antibody generation and highlight an attractive alternative: generating high specificity, high affinity recombinant antibodies from alternative immune sources such as chickens, via phage display.
Collapse
Affiliation(s)
- Dermot Walls
- National Centre for Sensor Research, School of Biotechnology, Dublin City University, Dublin, 9 Ireland
| | - Sinéad T. Loughran
- National Centre for Sensor Research, School of Biotechnology, Dublin City University, Dublin, 9 Ireland
| | | |
Collapse
|
25
|
Choi S, Chae J. A microfluidic biosensor based on competitive protein adsorption for thyroglobulin detection. Biosens Bioelectron 2009; 25:118-23. [PMID: 19577460 DOI: 10.1016/j.bios.2009.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/04/2009] [Accepted: 06/08/2009] [Indexed: 11/29/2022]
Abstract
We report a microfluidic sensing platform for the detection of thyroglobulin (Tg) using competitive protein adsorption. Serum Tg is a highly specific biomarker for residual thyroid tissue, recurrence and metastases after treatment for differentiated thyroid cancer (DTC). Conventional Tg detection techniques require complicated immobilization of antibodies and need to form a sandwich assay using additional secondary antibodies to enhance the sensitivity. We present a fundamentally different sensing technique without using antibody immobilization on a microfluidic platform. We engineer two surfaces covered by two known proteins, immunoglobulin G (IgG) and fibrinogen, with different affinities onto the surfaces. The microfluidic device offers a selective protein sensing by being displaced by a target protein, Tg, on only one of the surfaces. By utilizing the competitive protein adsorption, Tg displaces a weakly bound protein, IgG; however, a strongly bound protein, fibrinogen, is not displaced by Tg. The surface plasmon resonance (SPR) sensorgrams show that five human serum proteins, albumin, haptoglobin, IgG, fibrinogen and Tg, have different adsorption strengths to the surface and the competitive adsorption of individuals controls the exchange sequence. The adsorption and exchange are evaluated by fluorescent labeling of these proteins. Tg in a protein mixture of albumin, haptoglobin, and Tg is selectively detected based on the exchange reaction. By using the technique, we obviate the need to rely on antibodies as a capture probe and their attachment to transducers.
Collapse
Affiliation(s)
- Seokheun Choi
- Department of Electrical Engineering, Arizona State University, 650 E. Tyler Mall, GWC329, Tempe, AZ 85287-5706, USA.
| | | |
Collapse
|
26
|
Stoevesandt O, Taussig MJ, He M. Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 2009; 6:145-57. [PMID: 19385942 PMCID: PMC7105755 DOI: 10.1586/epr.09.2] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein microarrays are versatile tools for parallel, miniaturized screening of binding events involving large numbers of immobilized proteins in a time- and cost-effective manner. They are increasingly applied for high-throughput protein analyses in many research areas, such as protein interactions, expression profiling and target discovery. While conventionally made by the spotting of purified proteins, recent advances in technology have made it possible to produce protein microarrays through in situ cell-free synthesis directly from corresponding DNA arrays. This article reviews recent developments in the generation of protein microarrays and their applications in proteomics and diagnostics.
Collapse
Affiliation(s)
- Oda Stoevesandt
- Babraham Bioscience Technologies Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | | | | |
Collapse
|
27
|
Wu HC, Shi XW, Tsao CY, Lewandowski AT, Fernandes R, Hung CW, DeShong P, Kobatake E, Valdes JJ, Payne GF, Bentley WE. Biofabrication of antibodies and antigens via IgG-binding domain engineered with activatable pentatyrosine pro-tag. Biotechnol Bioeng 2009; 103:231-40. [DOI: 10.1002/bit.22238] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Hucknall A, Kim DH, Rangarajan S, Hill RT, Reichert WM, Chilkoti A. Simple Fabrication of Antibody Microarrays on Nonfouling Polymer Brushes with Femtomolar Sensitivity for Protein Analytes in Serum and Blood. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:1968-1971. [PMID: 31097880 PMCID: PMC6516072 DOI: 10.1002/adma.200803125] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Angus Hucknall
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281 (USA); Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708 (USA)
| | - Dong-Hwan Kim
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281 (USA)
| | - Srinath Rangarajan
- Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708 (USA)
| | - Ryan T Hill
- Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708 (USA)
| | - William M Reichert
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281 (USA)
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, North Carolina 27708-0281 (USA); Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708 (USA)
| |
Collapse
|
29
|
Wingren C, James P, Borrebaeck CAK. Strategy for surveying the proteome using affinity proteomics and mass spectrometry. Proteomics 2009; 9:1511-7. [PMID: 19235165 DOI: 10.1002/pmic.200800802] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antibody-based microarrays is a rapidly evolving technology that has gone from the first proof-of-concept studies to more demanding proteome profiling applications, during the last years. Miniaturized microarrays can be printed with large number of antibodies harbouring predetermined specificities, capable of targeting high- as well as low-abundant analytes in complex, nonfractionated proteomes. Consequently, the resolution of such proteome profiling efforts correlate directly to the number of antibodies included, which today is a key limiting factor. To overcome this bottleneck and to be able to perform in-depth global proteome surveys, we propose to interface affinity proteomics with MS-based read-out, as outlined in this technical perspective. Briefly, we have defined a range of peptide motifs, each motif being present in 5-100 different proteins. In this manner, 100 antibodies, binding 100 different motifs commonly distributed among different proteins, would potentially target a protein cluster of 10(4) individual molecules, i.e. around 50% of the nonredundant human proteome. Notably, these motif-specific antibodies would be directly applicable to any proteome in a specie independent manner and not biased towards abundant proteins or certain protein classes. The biological sample is digested, exposed to these immobilized antibodies, whereby motif-containing peptides are specifically captured, enriched and subsequently detected and identified using MS.
Collapse
|
30
|
Roque ACA, Bispo S, Pinheiro ARN, Antunes JMA, Gonçalves D, Ferreira HA. Antibody immobilization on magnetic particles. J Mol Recognit 2009; 22:77-82. [DOI: 10.1002/jmr.913] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Design of high-density antibody microarrays for disease proteomics: key technological issues. J Proteomics 2009; 72:928-35. [PMID: 19457338 DOI: 10.1016/j.jprot.2009.01.027] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 01/01/2023]
Abstract
Antibody-based microarray is a novel proteomic technology setting a new standard for molecular profiling of non-fractionated complex proteomes. The first generation of antibody microarrays has already demonstrated its potential for generating detailed protein expression profiles, or protein atlases, of human body fluids in health and disease, paving the way for new discoveries within the field of disease proteomics. The process of designing highly miniaturized, high-density and high-performing antibody microarray set-ups have, however, proven to be challenging. In this mini-review we discuss key technological issues that must be addressed in a cross-disciplinary manner before true global proteome analysis can be performed using antibody microarrays.
Collapse
|
32
|
Abstract
Antibody-based microarrays are a new powerful proteomic technology that can be used to generate rapid and detailed expression profiles of defined sets of protein analytes in complex samples as well as high-resolution portraits of entire proteomes. Miniaturized micro- and nanoarrays can be printed with numerous antibodies carrying the desired specificities. Multiplexed and ultra-sensitive assays, specifically targeting several analytes in a single experiment, can be performed, while consuming only minute amounts of the sample. The array images generated can then be converted into protein expression profiles, or maps, revealing the detailed composition of the sample. This promising proteomic research tool will thus provide unique opportunities for e.g. disease proteomics, biomarker discovery, disease diagnostics, and patient stratification. This review describes the antibody-based microarray technology and applications thereof.
Collapse
|
33
|
Peng Y, Shi M, Kong J. Detection of Biomarkers for Liver Fibrosis Using High-Throughput Electrochemical Microimmunosensor. ELECTROANAL 2008. [DOI: 10.1002/elan.200804250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Saerens D, Huang L, Bonroy K, Muyldermans S. Antibody Fragments as Probe in Biosensor Development. SENSORS 2008; 8:4669-4686. [PMID: 27873779 PMCID: PMC3705465 DOI: 10.3390/s8084669] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 11/30/2022]
Abstract
Today's proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed.
Collapse
Affiliation(s)
- Dirk Saerens
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium.
| | - Lieven Huang
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
- Department of Molecular Biology, Technologiepark 927, B-9052 Zwijnaarde, Ghent University, Ghent, Belgium
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
| |
Collapse
|
35
|
Saerens D, Ghassabeh GH, Muyldermans S. Antibody technology in proteomics. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:275-82. [DOI: 10.1093/bfgp/eln028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
|
37
|
Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. SENSORS (BASEL, SWITZERLAND) 2008; 8:1400-1458. [PMID: 27879772 PMCID: PMC3663003 DOI: 10.3390/s80314000] [Citation(s) in RCA: 827] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/28/2008] [Indexed: 11/16/2022]
Abstract
Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate interplay between surface nano-architectures, surface functionalization and the chosen sensor transducer principle, as well as the usefulness of complementary characterization tools to interpret and to optimize the sensor response.
Collapse
Affiliation(s)
- Dorothee Grieshaber
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Robert MacKenzie
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Janos Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Erik Reimhult
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland.
| |
Collapse
|
38
|
Carlsson A, Wingren C, Ingvarsson J, Ellmark P, Baldertorp B, Fernö M, Olsson H, Borrebaeck CAK. Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. Eur J Cancer 2008; 44:472-80. [PMID: 18171612 DOI: 10.1016/j.ejca.2007.11.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 11/26/2022]
Abstract
The driving force behind oncoproteomics is to identify biomarker signatures associated with a particular malignancy. Here, we have for the first time used large-scale recombinant scFv antibody microarrays in an attempt to classify metastatic breast cancer versus healthy controls, based on differential protein expression profiling of whole serum samples. Using this multiplexed and miniaturised assay set-up providing pM range sensitivities, breast cancer could be classified with a specificity and sensitivity of 85% based on 129 serum analytes. However, by adopting a condensed 11 analyte biomarker signature, composed of nine non-redundant serum proteins, we were able to distinguish cancer versus healthy serum proteomes with a 95% sensitivity and specificity, respectively. When a subgroup of patients, not receiving anti-inflammatory drugs, was analysed, a novel eight analyte biomarker signature with a further improved predictive power was indicated. In a longer perspective, antibody microarray analysis could provide a tool for the development of improved diagnostics and intensified biomarker discovery for breast cancer patients.
Collapse
Affiliation(s)
- Anders Carlsson
- Department of Immunotechnology, Lund University, BMC D13, SE-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jung Y, Jeong JY, Chung BH. Recent advances in immobilization methods of antibodies on solid supports. Analyst 2008; 133:697-701. [DOI: 10.1039/b800014j] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
de Melo-Junior MR, Alves LC, dos Santos FB, Beltrão EIC, de Carvalho LB. Polysiloxane–polyvinyl alcohol discs as support for antibody immobilization: Ultra-structural and physical–chemical characterization. REACT FUNCT POLYM 2008. [DOI: 10.1016/j.reactfunctpolym.2007.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Sandwich ELISA Microarrays: Generating Reliable and Reproducible Assays for High-Throughput Screens. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-1-59745-463-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
42
|
|
43
|
Seurynck-Servoss SL, White AM, Baird CL, Rodland KD, Zangar RC. Evaluation of surface chemistries for antibody microarrays. Anal Biochem 2007; 371:105-15. [PMID: 17718996 PMCID: PMC2067252 DOI: 10.1016/j.ab.2007.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 06/28/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Antibody microarrays are an emerging technology that promises to be a powerful tool for the detection of disease biomarkers. The current technology for protein microarrays has been derived primarily from DNA microarrays and is not fully characterized for use with proteins. For example, there are a myriad of surface chemistries that are commercially available for antibody microarrays, but there are no rigorous studies that compare these different surfaces. Therefore, we have used a sandwich enzyme-linked immunosorbent assay (ELISA) microarray platform to analyze 17 different commercially available slide types. Full standard curves were generated for 23 different assays. We found that this approach provides a rigorous and quantitative system for comparing the different slide types based on spot size and morphology, slide noise, spot background, lower limit of detection, and reproducibility. These studies demonstrate that the properties of the slide surface affect the activity of immobilized antibodies and the quality of data produced. Although many slide types produce useful data, glass slides coated with aldehyde silane, poly-l-lysine, or aminosilane (with or without activation with a crosslinker) consistently produce superior results in the sandwich ELISA microarray analyses we performed.
Collapse
Affiliation(s)
| | - Amanda M. White
- Statistical and Mathematical Sciences, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Cheryl L. Baird
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Richard C. Zangar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| |
Collapse
|
44
|
Dexlin L, Ingvarsson J, Frendéus B, Borrebaeck CAK, Wingren C. Design of recombinant antibody microarrays for cell surface membrane proteomics. J Proteome Res 2007; 7:319-27. [PMID: 18047267 DOI: 10.1021/pr070257x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Generating proteomic maps of membrane proteins, common targets for therapeutic interventions and disease diagnostics, has turned out to be a major challenge. Antibody-based microarrays are among the novel rapidly evolving proteomic technologies that may enable global proteome analysis to be performed. Here, we have designed the first generation of a scaleable human recombinant scFv antibody microarray technology platform for cell surface membrane proteomics as well as glycomics targeting intact cells. The results showed that rapid and multiplexed profiling of the cell surface proteome (and glycome) could be performed in a highly specific and sensitive manner and that differential expression patterns due to external stimuli could be monitored.
Collapse
Affiliation(s)
- Linda Dexlin
- Deptartment of Immunotechnology, BMC D13, Lund University, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
45
|
Xie C, Nguyen N, Zhu Y, Li YQ. Detection of the Recombinant Proteins in Single Transgenic Microbial Cell Using Laser Tweezers and Raman Spectroscopy. Anal Chem 2007; 79:9269-75. [DOI: 10.1021/ac0710329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changan Xie
- Department of Physics and Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Nhu Nguyen
- Department of Physics and Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Yong Zhu
- Department of Physics and Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Yong-qing Li
- Department of Physics and Department of Biology, East Carolina University, Greenville, North Carolina 27858
| |
Collapse
|
46
|
Wingren C, Ingvarsson J, Dexlin L, Szul D, Borrebaeck CAK. Design of recombinant antibody microarrays for complex proteome analysis: choice of sample labeling-tag and solid support. Proteomics 2007; 7:3055-65. [PMID: 17787036 DOI: 10.1002/pmic.200700025] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Antibody-based microarray is a novel technology with great potential within high-throughput proteomics. The process of designing high-performing antibody (protein) microarrays has, however, turned out to be a challenging process. In this study, we have developed further our human recombinant single-chain variable-fragment (scFv) antibody microarray methodology by addressing two crucial technological issues, choice of sample labeling-tag and solid support. We examined the performance of a range of dyes in a one- or two-color approach on a selection of solid supports providing different surface and coupling chemistries, and surface structures. The set-ups were evaluated in terms of sensitivity, specificity, and selectivity. The results showed that a one-color approach, based on NHS-biotin (or ULS-biotin) labeling, on black polymer Maxisorb slides (or Nexterion slide H) was the superior approach for targeting low-abundant (pg/mL) analytes in nonfractionated, complex proteomes, such as human serum or crude cell supernatants. Notably, microarrays displaying adequate spot morphologies, high S/Ns, minimized nonspecific binding, and most importantly a high selectivity, specificity, and sensitivity (>or=fM range) were obtained. Taken together, we have designed the first generation of a high-performing recombinant scFv antibody microarray technology platform on black polymer Maxisorb slides for sensitive profiling of low-abundant analytes in nonfractionated biotinylated complex proteomes.
Collapse
Affiliation(s)
- Christer Wingren
- Department of Immunotechnology, BMC D13, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Wingren C, Borrebaeck CAK. Progress in miniaturization of protein arrays--a step closer to high-density nanoarrays. Drug Discov Today 2007; 12:813-9. [PMID: 17933681 DOI: 10.1016/j.drudis.2007.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/03/2007] [Accepted: 08/06/2007] [Indexed: 01/22/2023]
Abstract
Protein microarrays is a technology with great promise for high-throughput proteomics. Designing high-performance protein microarrays for global proteome analysis has, however, turned out to be challenging. To this end, major efforts are under way to design novel array formats capable of harboring the tremendous range of probes required to target complex proteomes composed of more than 10000 analytes. By adopting nanotechnology, the first generation of miniaturized nanoarrays has recently emerged, which opens up new avenues for global proteome analysis and disease proteomics. This review describes the progress and key issues in designing miniaturized protein arrays.
Collapse
Affiliation(s)
- Christer Wingren
- Department of Immunotechnology, Lund University, BMC D13, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
48
|
Ingvarsson J, Larsson A, Sjöholm AG, Truedsson L, Jansson B, Borrebaeck CAK, Wingren C. Design of Recombinant Antibody Microarrays for Serum Protein Profiling: Targeting of Complement Proteins. J Proteome Res 2007; 6:3527-36. [PMID: 17696517 DOI: 10.1021/pr070204f] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibody-based microarrays is a novel technology with great promise for high-throughput proteomics. The process of designing high-performing arrays has, however, turned out to be challenging. Here, we have designed the next generation of a human recombinant scFv antibody microarray platform for protein expression profiling of nonfractionated biotinylated human plasma and serum proteomes. The setup, based on black polymer Maxisorb slides interfaced with a fluorescent-based read-out system, was found to provide specific, sensitive (subpicomolar (pM) range) and reproducible means for protein profiling. Further, a chip-to-chip normalization protocol critical for comparing data generated on different chips was devised. Finally, the microarray data were found to correlate well with clinical laboratory data obtained using conventional methods, as demonstrated for a set of medium abundant (micromolar (microM) to nanomolar (nM) range) protein analytes in serum and plasma samples derived from healthy and complement-deficient individuals.
Collapse
Affiliation(s)
- Johan Ingvarsson
- Department of Immunotechnology, BMC D13, Lund University, SE-221 84 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
49
|
Radko SP, Rakhmetova SY, Bodoev NV, Archakov AI. Aptamers as affinity reagents for clinical proteomics. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2007. [DOI: 10.1134/s1990750807030043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Schneider EM, Weiss M, Du W, Leder G, Buttenschön K, Liener UC, Brückner UB. MAPkinase gene expression, as determined by microarray analysis, distinguishes uncomplicated from complicated reconstitution after major surgical trauma. Ann N Y Acad Sci 2007; 1090:429-44. [PMID: 17384287 DOI: 10.1196/annals.1378.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microarray expression analysis was performed in patients with major surgical trauma to identify signaling pathways which may be indicative for complicated versus uneventful reconstitution post trauma. In addition to a generalized upregulation of nonspecific stress response genes in all patients, a remarkable number of differences in gene expression patterns were found in individual patients. Some of the differing genes were associated with uncomplicated convalescence such as upregulation of both the ERK5 pathway (MAPK7 [mitogen-activated protein kinase-7]) and transcription factors which stimulate hematopoiesis and tissue reconstitution (MEF2, BMP-2, TNFRSF11A [RANK], and RUNX-1). Chemokine genes active in stem cell recruitment from the bone marrow as well as dendritic cell and natural killer (NK) cell maturation (SCYA14 [HCC-1]), and activators of the lymphoid compartment (TNFRSF7 [CD27], CD3zeta and perforin [PRF1]) were increased. In contrast, all these transcripts were downregulated in complicated reconstitution and later development of septic shock. Moreover, p38 kinase (MAPK14), S100 molecules, and members of the lipoxygenase pathway were associated with a more eventful outcome. Microarray expression studies are a promising tool for screening and then selecting differentially regulated genes in favorable as compared to complicated reconstitution post trauma.
Collapse
Affiliation(s)
- E Marion Schneider
- Section of Experimental Anesthesiology, Department of Clinical Anesthesiology, University Clinic Ulm, Steinhoevelstrasse 9, 89075 Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|