1
|
Fu H, Chen Z, Teng W, Du Z, Zhang Y, Ye X, Yu Z, Zhang Y, Pi X. Effects of fructooligosaccharides and Saccharomyces boulardii on the compositional structure and metabolism of gut microbiota in students. Microbiol Res 2024; 285:127741. [PMID: 38761487 DOI: 10.1016/j.micres.2024.127741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
Fructooligosaccharides (FOS) are a common prebiotic widely used in functional foods. Meanwhile, Saccharomyces boulardii is a fungal probiotic frequenly used in the clinical treatment of diarrhea. Compared with single use, the combination of prebiotics and probiotics as symbiotics may be more effective in regulating gut microbiota as recently reported in the literature. The present study aimed to investigate the effects of FOS, S. boulardii and their combination on the structure and metabolism of the gut microbiota in healthy primary and secondary school students using an in vitro fermentation model. The results indicated that S. boulardii alone could not effectively regulate the community structure and metabolism of the microbiota. However, both FOS and the combination of FOS and S. boulardii could effectively regulate the microbiota, significantly inhibiting the growth of Escherichia-Shigella and Bacteroides, and controlling the production of the gases including H2S and NH3. In addition, both FOS and the combination could significantly promote the growth of Bifidobacteria and Lactobacillus, lower environmental pH, and enhance several physiological functions related to synthesis and metabolism. Nevertheless, the combination had more unique benefits as it promoted the growth of Lactobacillus, significantly increased CO2 production and enhanced the functional pathways of carbon metabolism and pyruvic acid metabolism. These findings provide guidance for clinical application and a theoretical basis for the development of synbiotic preparations.
Collapse
Affiliation(s)
- Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhixian Chen
- National Key Laboratory of Agricultural Microbiology, Angel Yeast Co., Ltd., Yichang 443003, PR China; The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., Yichang 443003, PR China; Yi Chang Engineering and Technology Research Center of Nutrition and Health Food, Angel Yeast Co., Ltd., Yichang 443003, PR China
| | - Weilin Teng
- Department of infectious Disease Control and Prevention, HangZhou Center for Disease Control and Prevention, Hangzhou 310006, PR China
| | - Zhi Du
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, PR China
| | - Yan Zhang
- National Key Laboratory of Agricultural Microbiology, Angel Yeast Co., Ltd., Yichang 443003, PR China; The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., Yichang 443003, PR China; Yi Chang Engineering and Technology Research Center of Nutrition and Health Food, Angel Yeast Co., Ltd., Yichang 443003, PR China
| | - Xiaoli Ye
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, PR China
| | - Zaichun Yu
- College of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yinjun Zhang
- College of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
2
|
Sicinska E, Sudhakara Rao Kola V, Kerfoot JA, Taddei ML, Al-Ibraheemi A, Hsieh YH, Church AJ, Landesman-Bollag E, Landesman Y, Hemming ML. ASPSCR1::TFE3 Drives Alveolar Soft Part Sarcoma by Inducing Targetable Transcriptional Programs. Cancer Res 2024; 84:2247-2264. [PMID: 38657118 PMCID: PMC11250573 DOI: 10.1158/0008-5472.can-23-2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Alveolar soft part sarcoma (ASPS) is a rare mesenchymal malignancy driven by the ASPSCR1::TFE3 fusion. A better understanding of the mechanisms by which this oncogenic transcriptional regulator drives cancer growth is needed to help identify potential therapeutic targets. In this study, we characterized the transcriptional and chromatin landscapes of ASPS tumors and preclinical models, identifying the essential role of ASPSCR1::TFE3 in tumor cell viability by regulating core transcriptional programs involved in cell proliferation, angiogenesis, and mitochondrial biology. ASPSCR1::TFE3 directly interacted with key epigenetic regulators at enhancers and promoters to support ASPS-associated transcription. Among the effector programs driven by ASPSCR1::TFE3, cell proliferation was driven by high levels of cyclin D1 expression. Disruption of cyclin D1/CDK4 signaling led to a loss of ASPS proliferative capacity, and combined inhibition of CDK4/6 and angiogenesis halted tumor growth in xenografts. These results define the ASPS oncogenic program, reveal mechanisms by which ASPSCR1::TFE3 controls tumor biology, and identify a strategy for therapeutically targeting tumor cell-intrinsic vulnerabilities. Significance: The ASPSCR1::TFE3 fusion propels the growth of alveolar soft part sarcoma by activating transcriptional programs that regulate proliferation, angiogenesis, mitochondrial biogenesis, and differentiation and can be therapeutically targeted to improve treatment.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Sarcoma, Alveolar Soft Part/genetics
- Sarcoma, Alveolar Soft Part/pathology
- Sarcoma, Alveolar Soft Part/metabolism
- Humans
- Animals
- Mice
- Cell Proliferation/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Gene Expression Regulation, Neoplastic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Female
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/metabolism
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Vijaya Sudhakara Rao Kola
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joseph A. Kerfoot
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine L. Taddei
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Hsuan Hsieh
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Alanna J. Church
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esther Landesman-Bollag
- Department of Medicine, Section of Hematology and Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Yosef Landesman
- Cure Alveolar Soft Part Sarcoma International, Brookline, Massachusetts, USA
| | - Matthew L. Hemming
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Kucinski JP, Calderon D, Kendall GC. Biological and therapeutic insights from animal modeling of fusion-driven pediatric soft tissue sarcomas. Dis Model Mech 2024; 17:dmm050704. [PMID: 38916046 PMCID: PMC11225592 DOI: 10.1242/dmm.050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Survival for children with cancer has primarily improved over the past decades due to refinements in surgery, radiation and chemotherapy. Although these general therapies are sometimes curative, the cancer often recurs, resulting in poor outcomes for patients. Fusion-driven pediatric soft tissue sarcomas are genetically defined by chromosomal translocations that create a chimeric oncogene. This distinctive, almost 'monogenic', genetic feature supports the generation of animal models to study the respective diseases in vivo. This Review focuses on a subset of fusion-driven pediatric soft tissue sarcomas that have transgenic animal tumor models, which includes fusion-positive and infantile rhabdomyosarcoma, synovial sarcoma, undifferentiated small round cell sarcoma, alveolar soft part sarcoma and clear cell sarcoma. Studies using the animal models of these sarcomas have highlighted that pediatric cancers require a specific cellular state or developmental stage to drive tumorigenesis, as the fusion oncogenes cause different outcomes depending on their lineage and timing of expression. Therefore, understanding these context-specific activities could identify targetable activities and mechanisms critical for tumorigenesis. Broadly, these cancers show dependencies on chromatin regulators to support oncogenic gene expression and co-opting of developmental pathways. Comparative analyses across lineages and tumor models will further provide biological and therapeutic insights to improve outcomes for these children.
Collapse
Affiliation(s)
- Jack P. Kucinski
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Delia Calderon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Genevieve C. Kendall
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| |
Collapse
|
4
|
Li DX, Wu RC, Wang J, Yu QX, Tuo ZT, Ye LX, Feng DC, Deng S. An endothelial-related prognostic index for bladder cancer patients. Discov Oncol 2024; 15:128. [PMID: 38662077 PMCID: PMC11045713 DOI: 10.1007/s12672-024-00992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/22/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Within the tumor microenvironment, endothelial cells hold substantial sway over bladder cancer (BC) prognosis. Herein, we aim to elucidate the impact of endothelial cells on BC patient outcomes by employing an integration of single-cell and bulk RNA sequencing data. METHODS All data utilized in this study were procured from online databases. R version 3.6.3 and relevant packages were harnessed for the development and validation of an endothelial-associated prognostic index (EPI). RESULTS EPI was formulated, incorporating six genes (CYTL1, FAM43A, GSN, HSPG2, RBP7, and SLC2A3). EPI demonstrated significant prognostic value in both The Cancer Genome Atlas (TCGA) and externally validated dataset. Functional results revealed a profound association between EPI and endothelial cell functionality, as well as immune-related processes. Our findings suggest that patients with low-risk EPI scores are more likely to respond positively to immunotherapy, as indicated by immune checkpoint activity, immune infiltration, tumor mutational burden, stemness index, TIDE, and IMvigor210 analyses. Conversely, individuals with high-risk EPI scores exhibited heightened sensitivity to cisplatin, docetaxel, and gemcitabine treatment regimens. CONCLUSION We have effectively discerned pivotal genes from the endothelial cell perspective and constructed an EPI for BC patients, thereby offering promising prospects for precision medicine.
Collapse
Affiliation(s)
- Deng-Xiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rui-Cheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Xin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Zhou-Ting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Lu-Xia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Shi Deng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Taylor AS, Mannan R, Pantanowitz L, Chinnaiyan AM, Dhanasekaran SM, Hrycaj S, Cao X, Chan MP, Lucas D, Wang XM, Mehra R. Evaluation of TRIM63 RNA in situ hybridization (RNA-ISH) as a potential biomarker for alveolar soft-part sarcoma (ASPS). Med Oncol 2024; 41:76. [PMID: 38393424 PMCID: PMC10891236 DOI: 10.1007/s12032-024-02305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Alveolar soft-part sarcoma (ASPS) is a rare soft tissue tumor with a broad morphologic differential diagnosis. While histology and immunohistochemistry can be suggestive, diagnosis often requires exclusion of other entities followed by confirmatory molecular analysis for its characteristic ASPSCR1-TFE3 fusion. Current stain-based biomarkers (such as immunohistochemistry for cathepsin K and TFE3) show relatively high sensitivity but may lack specificity, often showing staining in multiple other entities under diagnostic consideration. Given the discovery of RNA in situ hybridization (RNA-ISH) for TRIM63 as a sensitive and specific marker of MiTF-family aberration renal cell carcinomas, we sought to evaluate its utility in the workup of ASPS. TRIM63 RNA-ISH demonstrated high levels (H-score greater than 200) of expression in 19/20 (95%) cases of ASPS (average H-score 330) and was weak or negative in cases of paraganglioma, clear cell sarcoma, rhabdomyosarcoma, malignant epithelioid hemangioendothelioma, as well as hepatocellular and adrenal cortical carcinomas. Staining was also identified in tumors with known subsets characterized by TFE3 alterations such as perivascular epithelioid cell neoplasm (PEComa, average H-score 228), while tumors known to exhibit overexpression of TFE3 protein without cytogenetic alterations, such as melanoma and granular cell tumor, generally showed less TRIM63 ISH staining (average H-scores 147 and 96, respectively). Quantitative assessment of TRIM63 staining by RNA-ISH is potentially a helpful biomarker for tumors with molecular TFE3 alterations such as ASPS.
Collapse
Affiliation(s)
- Alexander S Taylor
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Liron Pantanowitz
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, Ann Arbor, MI, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Steven Hrycaj
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
| | - Xuhong Cao
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - May P Chan
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
| | - David Lucas
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA
| | - Xiao-Ming Wang
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA.
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, 48109, USA.
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Prakasam G, Mishra A, Christie A, Miyata J, Carrillo D, Tcheuyap VT, Ye H, Do QN, Wang Y, Reig Torras O, Butti R, Zhong H, Gagan J, Jones KB, Carroll TJ, Modrusan Z, Durinck S, Requena-Komuro MC, Williams NS, Pedrosa I, Wang T, Rakheja D, Kapur P, Brugarolas J. Comparative genomics incorporating translocation renal cell carcinoma mouse model reveals molecular mechanisms of tumorigenesis. J Clin Invest 2024; 134:e170559. [PMID: 38386415 PMCID: PMC10977987 DOI: 10.1172/jci170559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.
Collapse
Affiliation(s)
- Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Peter O’ Donnell Jr. School of Public Health
| | - Jeffrey Miyata
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Deyssy Carrillo
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Vanina T. Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Hui Ye
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | | | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Oscar Reig Torras
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Medical Oncology and Translational Genomics and Targeted Therapies in Solid Tumors, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Hua Zhong
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey Gagan
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin B. Jones
- Department of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas J. Carroll
- Department of Molecular Biology and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing and
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Mai-Carmen Requena-Komuro
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | | | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Radiology, and
- Advanced Imaging Research Center, and
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Peter O’ Donnell Jr. School of Public Health
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dinesh Rakheja
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| |
Collapse
|
7
|
Pozner A, Li L, Verma SP, Wang S, Barrott JJ, Nelson ML, Yu JSE, Negri GL, Colborne S, Hughes CS, Zhu JF, Lambert SL, Carroll LS, Smith-Fry K, Stewart MG, Kannan S, Jensen B, John CM, Sikdar S, Liu H, Dang NH, Bourdage J, Li J, Vahrenkamp JM, Mortenson KL, Groundland JS, Wustrack R, Senger DL, Zemp FJ, Mahoney DJ, Gertz J, Zhang X, Lazar AJ, Hirst M, Morin GB, Nielsen TO, Shen PS, Jones KB. ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97. Nat Commun 2024; 15:1165. [PMID: 38326311 PMCID: PMC10850509 DOI: 10.1038/s41467-024-45280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Amir Pozner
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Li Li
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shiv Prakash Verma
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shuxin Wang
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jared J Barrott
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Mary L Nelson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jamie S E Yu
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | - Ju-Fen Zhu
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sydney L Lambert
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lara S Carroll
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kyllie Smith-Fry
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael G Stewart
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sarmishta Kannan
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bodrie Jensen
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cini M John
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Saif Sikdar
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Bourdage
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jinxiu Li
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Katelyn L Mortenson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John S Groundland
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Rosanna Wustrack
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Donna L Senger
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, McGill University and Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Franz J Zemp
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Douglas J Mahoney
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Xiaoyang Zhang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alexander J Lazar
- Departments of Anatomic Pathology, Translational Molecular Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Peter S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Fujiwara T, Kunisada T, Nakata E, Nishida K, Yanai H, Nakamura T, Tanaka K, Ozaki T. Advances in treatment of alveolar soft part sarcoma: an updated review. Jpn J Clin Oncol 2023; 53:1009-1018. [PMID: 37626447 PMCID: PMC10632598 DOI: 10.1093/jjco/hyad102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Alveolar soft part sarcoma is a rare neoplasm of uncertain histogenesis that belongs to a newly defined category of ultra-rare sarcomas. The neoplasm is characterized by a specific chromosomal translocation, der (17) t(X; 17)(p11.2;q25), that results in ASPSCR1-TFE3 gene fusion. The natural history of alveolar soft part sarcoma describes indolent behaviour with slow progression in deep soft tissues of the extremities, trunk and head/neck in adolescents and young adults. A high rate of detection of distant metastasis at presentation has been reported, and the most common metastatic sites in decreasing order of frequency are the lung, bone and brain. Complete surgical resection remains the standard treatment strategy, whereas radiotherapy is indicated for patients with inadequate surgical margins or unresectable tumours. Although alveolar soft part sarcoma is refractory to conventional doxorubicin-based chemotherapy, monotherapy or combination therapy using tyrosine kinase inhibitors and immune checkpoint inhibitors have provided antitumor activity and emerged as new treatment strategies. This article provides an overview of the current understanding of this ultra-rare sarcoma and recent advancements in treatments according to the clinical stage of alveolar soft part sarcoma.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Nishida
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University, Tsu, Japan
| | - Kazuhiro Tanaka
- Department of Advanced Medical Sciences, Oita University, Yufu, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Spinnato P, Papalexis N, Colangeli M, Miceli M, Crombé A, Parmeggiani A, Palmerini E, Righi A, Bianchi G. Imaging Features of Alveolar Soft Part Sarcoma: Single Institution Experience and Literature Review. Clin Pract 2023; 13:1369-1382. [PMID: 37987424 PMCID: PMC10660714 DOI: 10.3390/clinpract13060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Alveolar soft part sarcoma (ASPS) is an extremely rare and aggressive soft-tissue sarcoma (STS) subtype with poor prognosis and limited response to radiation therapy and chemotherapy. Prompt recognition and referral to sarcoma centers for appropriate management are crucial for patients' survival. The purpose of this study was to report ASPS pre-treatment imaging features and to examine the existing literature on this topic. Twelve patients (7 women, 5 men-mean age 27.1 ± 10.7 years) were included from our single-center experience. Ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) available were reviewed according to an analysis grid incorporating features from the latest research on STS. Clinical, histological, and outcome data were collected. MRI was available in 10 patients (83.3%), US in 7 patients (58.3%), and CT in 3 patients (25%). Mean longest tumor diameter was 7.6 ± 2.9 cm, and all tumors were deeply seated. Large peritumoral feeding vessels were systematically found and identified on ultrasonography (7/7), MRI (10/10), and CT (3/3). US revealed a well-defined heterogeneous hypoechoic pattern, with abundant flow signals in all patients (7/7). In all patients, MRI showed mildly high signal intensity (SI) on T1-WI and high SI on T2-WI and peritumoral edema. Moreover, flow-voids (due to arteriosus high-flow) into the peritumoral/intratumoral feeding vessels were detected in the MRI fluid-sensitive sequences of all patients. At baseline, whole-body contrast-enhanced CT revealed metastases in 8/12 (66.7%) patients. A pre-treatment longest diameter > 5 cm was significantly associated with distant metastases at diagnosis (p = 0.01). A maximum diameter > 5 cm represents a risk of metastatic disease at diagnosis (odds ratio = 45.0000 (95% CI: 1.4908-1358.3585), p = 0.0285). In the comprehensive literature review, we found 14 articles (case series or original research) focusing on ASPS imaging, with a total of 151 patients included. Merging our experience with the data from the existing literature, we conclude that the hallmark of ASPS imaging at presentation are the following characteristics: deep location, a slight hyperintense MRI SI on T1-WI and a hyperintense SI on T2-WI, numerous MRI flow voids, high internal vascularization, and large peritumoral feeding vessels.
Collapse
Affiliation(s)
- Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Nicolas Papalexis
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marco Colangeli
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Amandine Crombé
- Department of Musculoskeletal Imaging, Pellegrin University Hospital, University of Bordeaux, 33000 Bordeaux, France
| | - Anna Parmeggiani
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Bianchi
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
10
|
Roche ME, Ko YH, Domingo-Vidal M, Lin Z, Whitaker-Menezes D, Birbe RC, Tuluc M, Győrffy B, Caro J, Philp NJ, Bartrons R, Martinez-Outschoorn U. TP53 Induced Glycolysis and Apoptosis Regulator and Monocarboxylate Transporter 4 drive metabolic reprogramming with c-MYC and NFkB activation in breast cancer. Int J Cancer 2023; 153:1671-1683. [PMID: 37497753 PMCID: PMC11532994 DOI: 10.1002/ijc.34660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer is composed of metabolically coupled cellular compartments with upregulation of TP53 Induced Glycolysis and Apoptosis Regulator (TIGAR) in carcinoma cells and loss of caveolin 1 (CAV1) with upregulation of monocarboxylate transporter 4 (MCT4) in fibroblasts. The mechanisms that drive metabolic coupling are poorly characterized. The effects of TIGAR on fibroblast CAV1 and MCT4 expression and breast cancer aggressiveness was studied using coculture and conditioned media systems and in-vivo. Also, the role of cytokines in promoting tumor metabolic coupling via MCT4 on cancer aggressiveness was studied. TIGAR downregulation in breast carcinoma cells reduces tumor growth. TIGAR overexpression in carcinoma cells drives MCT4 expression and NFkB activation in fibroblasts. IL6 and TGFB drive TIGAR upregulation in carcinoma cells, reduce CAV1 and increase MCT4 expression in fibroblasts. Tumor growth is abrogated in the presence of MCT4 knockout fibroblasts and environment. We discovered coregulation of c-MYC and TIGAR in carcinoma cells driven by lactate. Metabolic coupling primes the tumor microenvironment allowing for production, uptake and utilization of lactate. In sum, aggressive breast cancer is dependent on metabolic coupling.
Collapse
Affiliation(s)
- Megan E. Roche
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marina Domingo-Vidal
- Immunology, Microenvironment & Metastasis Program, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Zhao Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ruth C. Birbe
- Department of Pathology, Cooper University Hospital, Camden, New Jersey, USA
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
- Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Jaime Caro
- Department of Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ramon Bartrons
- Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Pozner A, Verma SP, Li L, Wang S, Barrott JJ, Nelson ML, Yu JSE, Negri GL, Colborne S, Hughes CS, Zhu JF, Lambert SL, Carroll LS, Smith-Fry K, Stewart MG, Kannan S, Jensen B, Mortenson KL, John C, Sikdar S, Liu H, Dang NH, Bourdage J, Li J, Vahrenkamp JM, Groundland JS, Wustrack R, Senger DL, Zemp FJ, Mahoney DJ, Gertz J, Zhang X, Lazar AJ, Hirst M, Morin GB, Nielsen TO, Shen PS, Jones KB. ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560242. [PMID: 37873234 PMCID: PMC10592841 DOI: 10.1101/2023.09.29.560242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
Collapse
|
12
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
13
|
Tanaka M, Chuaychob S, Homme M, Yamazaki Y, Lyu R, Yamashita K, Ae K, Matsumoto S, Kumegawa K, Maruyama R, Qu W, Miyagi Y, Yokokawa R, Nakamura T. ASPSCR1::TFE3 orchestrates the angiogenic program of alveolar soft part sarcoma. Nat Commun 2023; 14:1957. [PMID: 37029109 PMCID: PMC10082046 DOI: 10.1038/s41467-023-37049-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2023] [Indexed: 04/09/2023] Open
Abstract
Alveolar soft part sarcoma (ASPS) is a soft part malignancy affecting adolescents and young adults. ASPS is characterized by a highly integrated vascular network, and its high metastatic potential indicates the importance of ASPS's prominent angiogenic activity. Here, we find that the expression of ASPSCR1::TFE3, the fusion transcription factor causatively associated with ASPS, is dispensable for in vitro tumor maintenance; however, it is required for in vivo tumor development via angiogenesis. ASPSCR1::TFE3 is frequently associated with super-enhancers (SEs) upon its DNA binding, and the loss of its expression induces SE-distribution dynamic modification related to genes belonging to the angiogenesis pathway. Using epigenomic CRISPR/dCas9 screening, we identify Pdgfb, Rab27a, Sytl2, and Vwf as critical targets associated with reduced enhancer activities due to the ASPSCR1::TFE3 loss. Upregulation of Rab27a and Sytl2 promotes angiogenic factor-trafficking to facilitate ASPS vascular network construction. ASPSCR1::TFE3 thus orchestrates higher ordered angiogenesis via modulating the SE activity.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Surachada Chuaychob
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mizuki Homme
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Cell Biology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ruyin Lyu
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kyoko Yamashita
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keisuke Ae
- Department of Orthopedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Matsumoto
- Department of Orthopedic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Wei Qu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
14
|
Li X, Chen Y, Gong S, Chen H, Liu H, Li X, Hao J. Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 2023; 9:93. [PMID: 36906611 PMCID: PMC10008649 DOI: 10.1038/s41420-023-01395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
Collapse
Affiliation(s)
- Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
15
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
16
|
Xu JX, Qin SL, Wei HW, Chen YY, Peng YC, Qi LN. Down-regulation of ALDOB during metabolic reprogramming mediates malignant behavior in hepatocellular carcinoma and insensitivity to postoperative adjuvant transarterial chemoembolization. Clin Sci (Lond) 2023; 137:303-316. [PMID: 36749124 DOI: 10.1042/cs20220661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Postoperative transarterial chemoembolization (PA-TACE) is an effective adjuvant therapy for preventing early postoperative recurrence of hepatocellular carcinoma (HCC); however, many patients are insensitive to it. Therefore, the present study aimed to explore the in-depth reasons for PA-TACE resistance and provide a reliable basis for selecting patients who will benefit the most from PA-TACE. METHODS The unique gene expression profiles of primary tumors from PA-TACE-sensitive or -insensitive patients were analyzed using microarray data. Combined differential expression analysis, gene set enrichment analysis (GSEA), and weighted correlation network analysis (WGCNA) were used to screen for potential drivers of PA-TACE insensitivity. The expression of ALDOB was silenced or overexpressed in hepatoma cell lines, and changes in glycolytic activity, cycle, apoptosis, and malignant biological phenotypes were observed under normoxia and hypoxia. Finally, an animal model was constructed to verify the effects of ALDOB dysregulation on the tumorigenic ability of HCC cells in vivo. RESULTS The inhibition of ALDOB promoted the up-regulation of Ki67 expression, and glycolytic activity was significantly enhanced. Moreover, the proliferation, invasion, and migration capabilities were increased in HCC cells and even worse in hypoxia. This advantage of malignant behavior was also validated using in vivo models. CONCLUSION Down-regulation of ALDOB may underlie the metabolic reprogramming observed in HCC by promoting the malignant behavior of HCC cells. Hypoxia and ALDOB down-regulation acted additively, which was closely related to PA-TACE insensitivity. The use of ALDOB and Ki67 as a combined marker has the potential to identify the 'PA-TACE beneficiary population'.
Collapse
Affiliation(s)
- Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, Guangxi Province, China
| | - Shui-Lin Qin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, Guangxi Province, China
| | - Hao-Wen Wei
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, Guangxi Province, China
| | - Yuan-Yuan Chen
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, Chongqing, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning 530021, Guangxi Province, China
| |
Collapse
|
17
|
Wu Y, Ma W, Liu W, Zhang S. Lactate: a pearl dropped in the ocean-an overlooked signal molecule in physiology and pathology. Cell Biol Int 2023; 47:295-307. [PMID: 36511218 DOI: 10.1002/cbin.11975] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Lactate, once recognized as a wasty product from anaerobic glycolysis, is proved to be a pivotal signal molecule. Lactate accumulation occurs in diverse physiological and pathological settings due to the imbalance between lactate production and clearance. Under the condition with drastic changes in local microenvironment, such as tumorigenesis, inflammation, and microbial infection, the glycolysis turns to be active in surrounding cells leading to increased lactate release. Meanwhile, lactate can be utilized by these cells as an energy substrate and acts as a signal molecule to regulate cell functions through receptor-dependent or independent pathways. In this review, we tended to tease out the contribution of lactate in tumor progression and immunomodulation. And we also discussed the accessory role of lactate, beyond as the energy source only, in the growth of invading pathogens.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wanqi Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
18
|
Landuzzi L, Ruzzi F, Lollini PL, Scotlandi K. Synovial Sarcoma Preclinical Modeling: Integrating Transgenic Mouse Models and Patient-Derived Models for Translational Research. Cancers (Basel) 2023; 15:cancers15030588. [PMID: 36765545 PMCID: PMC9913760 DOI: 10.3390/cancers15030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Synovial sarcomas (SyS) are rare malignant tumors predominantly affecting children, adolescents, and young adults. The genetic hallmark of SyS is the t(X;18) translocation encoding the SS18-SSX fusion gene. The fusion protein interacts with both the BAF enhancer and polycomb repressor complexes, and either activates or represses target gene transcription, resulting in genome-wide epigenetic perturbations and altered gene expression. Several experimental in in vivo models, including conditional transgenic mouse models expressing the SS18-SSX fusion protein and spontaneously developing SyS, are available. In addition, patient-derived xenografts have been estab-lished in immunodeficient mice, faithfully reproducing the complex clinical heterogeneity. This review focuses on the main molecular features of SyS and the related preclinical in vivo and in vitro models. We will analyze the different conditional SyS mouse models that, after combination with some of the few other recurrent alterations, such as gains in BCL2, Wnt-β-catenin signaling, FGFR family, or loss of PTEN and SMARCB1, have provided additional insight into the mechanisms of synovial sarcomagenesis. The recent advancements in the understanding of SyS biology and improvements in preclinical modeling pave the way to the development of new epigenetic drugs and immunotherapeutic approaches conducive to new treatment options.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (L.L.); (P.-L.L.); Tel.: +39-051-2094796 (L.L.); +39-051-2094786 (P.-L.L.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.L.); (P.-L.L.); Tel.: +39-051-2094796 (L.L.); +39-051-2094786 (P.-L.L.)
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
19
|
Esperança-Martins M, F.Duarte I, Rodrigues M, Soares do Brito J, López-Presa D, Costa L, Fernandes I, Dias S. On the Relevance of Soft Tissue Sarcomas Metabolic Landscape Mapping. Int J Mol Sci 2022; 23:11430. [PMID: 36232732 PMCID: PMC9570318 DOI: 10.3390/ijms231911430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Soft tissue sarcomas (STS) prognosis is disappointing, with current treatment strategies being based on a "fit for all" principle and not taking distinct sarcoma subtypes specificities and genetic/metabolic differences into consideration. The paucity of precision therapies in STS reflects the shortage of studies that seek to decipher the sarcomagenesis mechanisms. There is an urge to improve STS diagnosis precision, refine STS classification criteria, and increase the capability of identifying STS prognostic biomarkers. Single-omics and multi-omics studies may play a key role on decodifying sarcomagenesis. Metabolomics provides a singular insight, either as a single-omics approach or as part of a multi-omics strategy, into the metabolic adaptations that support sarcomagenesis. Although STS metabolome is scarcely characterized, untargeted and targeted metabolomics approaches employing different data acquisition methods such as mass spectrometry (MS), MS imaging, and nuclear magnetic resonance (NMR) spectroscopy provided important information, warranting further studies. New chromatographic, MS, NMR-based, and flow cytometry-based methods will offer opportunities to therapeutically target metabolic pathways and to monitorize the response to such metabolic targeting therapies. Here we provide a comprehensive review of STS omics applications, comprising a detailed analysis of studies focused on the metabolic landscape of these tumors.
Collapse
Affiliation(s)
- Miguel Esperança-Martins
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Iola F.Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Mara Rodrigues
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joaquim Soares do Brito
- Orthopedics Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Dolores López-Presa
- Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| | - Isabel Fernandes
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| | - Sérgio Dias
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| |
Collapse
|
20
|
Jin L, Guo Y, Chen J, Wen Z, Jiang Y, Qian J. Lactate receptor HCAR1 regulates cell growth, metastasis and maintenance of cancer‑specific energy metabolism in breast cancer cells. Mol Med Rep 2022; 26:268. [PMID: 35775372 PMCID: PMC9260879 DOI: 10.3892/mmr.2022.12784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/30/2022] [Indexed: 11/06/2022] Open
Abstract
Under aerobic conditions, the preferential use of anaerobic glycolysis by tumour cells leads to a high level of lactate accumulation in tumour microenvironment. Lactate acts not only as a cellular energy source but also as a signalling molecule that regulates cancer cell growth, metastasis and metabolism. It has been reported that a G‑protein‑coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) is highly expressed in numerous types of cancer, but the detailed mechanism remains unclear. In the present study, it was reported that HCAR1 is highly expressed in breast cancer cells. Genetic deletion of HCAR1 in MCF7 cells leads to reduced cell proliferation and migration. Moreover, it was observed that knockout (KO) of HCAR1 attenuated the expression and activity of phosphofructokinase and hexokinase, key rate‑limiting enzymes in glycolysis. Using an extracellular flux analyzer, it was showed that KO of HCAR1 promoted a metabolic shift towards a decreased glycolysis state, as evidenced by a decreased extracellular acidification rate and increased oxygen consumption rate in MCF7 cells. Taken together, our results suggested that lactate acts through HCAR1 as a metabolic regulator in breast cancer cells that may be therapeutically exploited.
Collapse
Affiliation(s)
- Lili Jin
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou Hospital Affiliated with Zhejiang University, Huzhou, Zhejiang 313000, P.R. China
| | - Yanan Guo
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Jiawen Chen
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Zhenzhen Wen
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Yibin Jiang
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Jing Qian
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
21
|
Domingo-Vidal M, Whitaker-Menezes D, Mollaee M, Lin Z, Tuluc M, Philp N, Johnson JM, Zhan T, Curry J, Martinez-Outschoorn U. Monocarboxylate Transporter 4 in Cancer-Associated Fibroblasts Is a Driver of Aggressiveness in Aerodigestive Tract Cancers. Front Oncol 2022; 12:906494. [PMID: 35814364 PMCID: PMC9259095 DOI: 10.3389/fonc.2022.906494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mehri Mollaee
- Lewis Katz School of Medicine, Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Zhao Lin
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Philp
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M. Johnson
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Sidney Kimmel Cancer Center, Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ubaldo Martinez-Outschoorn,
| |
Collapse
|
22
|
Effects of Low-Intensity and Long-Term Aerobic Exercise on the Psoas Muscle of mdx Mice: An Experimental Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23094483. [PMID: 35562874 PMCID: PMC9105402 DOI: 10.3390/ijms23094483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disease characterized by the absence of the protein dystrophin, which causes a loss of sarcolemma integrity, determining recurrent muscle injuries, decrease in muscle function, and progressive degeneration. Currently, there is a need for therapeutic treatments to improve the quality of life of DMD patients. Here, we investigated the effects of a low-intensity aerobic training (37 sessions) on satellite cells, peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α protein (PGC-1α), and different types of fibers of the psoas muscle from mdx mice (DMD experimental model). Wildtype and mdx mice were randomly divided into sedentary and trained groups (n = 24). Trained animals were subjected to 37 sessions of low-intensity running on a motorized treadmill. Subsequently, the psoas muscle was excised and analyzed by immunofluorescence for dystrophin, satellite cells, myosin heavy chain (MHC), and PGC-1α content. The minimal Feret’s diameters of the fibers were measured, and light microscopy was applied to observe general morphological features of the muscles. The training (37 sessions) improved morphological features in muscles from mdx mice and caused an increase in the number of quiescent/activated satellite cells. It also increased the content of PGC-1α in the mdx group. We concluded that low-intensity aerobic exercise (37 sessions) was able to reverse deleterious changes determined by DMD.
Collapse
|
23
|
Notch-mediated lactate metabolism regulates MDSC development through the Hes1/MCT2/c-Jun axis. Cell Rep 2022; 38:110451. [PMID: 35263597 DOI: 10.1016/j.celrep.2022.110451] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) play critical roles in tumorigenesis. However, the mechanisms underlying MDSC and TAM development and function remain unclear. In this study, we find that myeloid-specific activation of Notch/RBP-J signaling downregulates lactate transporter MCT2 transcription via its downstream molecule Hes1, leading to reduced intracellular lactate levels, blunted granulocytic MDSC (G-MDSC) differentiation, and enhanced TAM maturation. We identify c-Jun as a novel intracellular sensor of lactate in myeloid cells using liquid-chromatography-mass spectrometry (LC-MS) followed by CRISPR-Cas9-mediated gene disruption. Meanwhile, lactate interacts with c-Jun to protect from FBW7 ubiquitin-ligase-mediated degradation. Activation of Notch signaling and blockade of lactate import repress tumor progression by remodeling myeloid development. Consistently, the relationship between the Notch-MCT2/lactate-c-Jun axis in myeloid cells and tumorigenesis is also confirmed in clinical lung cancer biopsies. Taken together, our current study shows that lactate metabolism regulated by activated Notch signaling might participate in MDSC differentiation and TAM maturation.
Collapse
|
24
|
Zhao LP, Zheng RR, Kong RJ, Huang CY, Rao XN, Yang N, Chen AL, Yu XY, Cheng H, Li SY. Self-Delivery Ternary Bioregulators for Photodynamic Amplified Immunotherapy by Tumor Microenvironment Reprogramming. ACS NANO 2022; 16:1182-1197. [PMID: 35023720 DOI: 10.1021/acsnano.1c08978] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abnormal metabolism of cancer cells results in complex tumor microenvironments (TME), which play a dominant role in tumor metastasis. Herein, self-delivery ternary bioregulators (designated as TerBio) are constructed for photodynamic amplified immunotherapy against colorectal cancer by TME reprogramming. Specifically, carrier-free TerBio are prepared by the self-assembly of chlorine e6, SB505124 (SB), and lonidamine (Lon), which exhibit improved tumor accumulation, tumor penetration, and cellular uptake behaviors. Interestingly, TerBio-mediated photodynamic therapy (PDT) could not only inhibit the primary tumor growth but also induce immunogenic cell death of tumors to activate the cascade immune response. Furthermore, TerBio are capable of TME reprograming by SB-triggered transforming growth factor (TGF)-β blockage and Lon-induced lactic acid efflux inhibition. As a consequence, TerBio significantly suppresses distant and metastatic tumor growth by PDT-amplified immunotherapy. This study might advance the development of self-delivery nanomedicine against malignant tumor growth and metastasis.
Collapse
Affiliation(s)
- Lin-Ping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rong-Rong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ren-Jiang Kong
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Chu-Yu Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Xiao-Na Rao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ni Yang
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510080, P.R. China
| | - A-Li Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510080, P.R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
25
|
Integrated exome and RNA sequencing of TFE3-translocation renal cell carcinoma. Nat Commun 2021; 12:5262. [PMID: 34489456 PMCID: PMC8421377 DOI: 10.1038/s41467-021-25618-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/21/2021] [Indexed: 02/05/2023] Open
Abstract
TFE3-translocation renal cell carcinoma (TFE3-tRCC) is a rare and heterogeneous subtype of kidney cancer with no standard treatment for advanced disease. We describe comprehensive molecular characteristics of 63 untreated primary TFE3-tRCCs based on whole-exome and RNA sequencing. TFE3-tRCC is highly heterogeneous, both clinicopathologically and genotypically. ASPSCR1-TFE3 fusion and several somatic copy number alterations, including the loss of 22q, are associated with aggressive features and poor outcomes. Apart from tumors with MED15-TFE3 fusion, most TFE3-tRCCs exhibit low PD-L1 expression and low T-cell infiltration. Unsupervised transcriptomic analysis reveals five molecular clusters with distinct angiogenesis, stroma, proliferation and KRAS down signatures, which show association with fusion patterns and prognosis. In line with the aggressive nature, the high angiogenesis/stroma/proliferation cluster exclusively consists of tumors with ASPSCR1-TFE3 fusion. Here, we describe the genomic and transcriptomic features of TFE3-tRCC and provide insights into precision medicine for this disease. TFE3-translocation renal cell carcinoma (TFE3-tRCC) is a rare subtype of kidney cancer with no standard treatment options for the advanced disease. Here, the authors perform genomic and transcriptomic profiling of 63 untreated primary TFE3-tRCC tumours and reveal potential therapeutic targets.
Collapse
|
26
|
Panza E, Ozenberger BB, Straessler KM, Barrott JJ, Li L, Wang Y, Xie M, Boulet A, Titen SW, Mason CC, Lazar AJ, Ding L, Capecchi MR, Jones KB. The clear cell sarcoma functional genomic landscape. J Clin Invest 2021; 131:e146301. [PMID: 34156976 DOI: 10.1172/jci146301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Clear cell sarcoma (CCS) is a deadly malignancy affecting adolescents and young adults. It is characterized by reciprocal translocations resulting in expression of the chimeric EWSR1-ATF1 or EWSR1-CREB1 fusion proteins, driving sarcomagenesis. Besides these characteristics, CCS has remained genomically uncharacterized. Copy number analysis of human CCSs showed frequent amplifications of the MITF locus and chromosomes 7 and 8. Few alterations were shared with Ewing sarcoma or desmoplastic, small round cell tumors, which are other EWSR1-rearranged tumors. Exome sequencing in mouse tumors generated by expression of EWSR1-ATF1 from the Rosa26 locus demonstrated no other repeated pathogenic variants. Additionally, we generated a new CCS mouse by Cre-loxP-induced chromosomal translocation between Ewsr1 and Atf1, resulting in copy number loss of chromosome 6 and chromosome 15 instability, including amplification of a portion syntenic to human chromosome 8, surrounding Myc. Additional experiments in the Rosa26 conditional model demonstrated that Mitf or Myc can contribute to sarcomagenesis. Copy number observations in human tumors and genetic experiments in mice rendered, for the first time to our knowledge, a functional landscape of the CCS genome. These data advance efforts to understand the biology of CCS using innovative models that will eventually allow us to validate preclinical therapies necessary to achieve longer and better survival for young patients with this disease.
Collapse
Affiliation(s)
- Emanuele Panza
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Krystal M Straessler
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jared J Barrott
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Li Li
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yanliang Wang
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mingchao Xie
- Departments of Medicine and Genetics, McDonnell Genome Institute, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anne Boulet
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Simon Wa Titen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Clinton C Mason
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Ding
- Departments of Medicine and Genetics, McDonnell Genome Institute, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
27
|
Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021; 14:114. [PMID: 34294128 PMCID: PMC8296645 DOI: 10.1186/s13045-021-01125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.
Collapse
Affiliation(s)
- Richard Miallot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| | - Franck Galland
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Virginie Millet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Université Claude Bernard, Lyon, France
| | - Philippe Naquet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
28
|
Tanaka M, Nakamura T. Modeling fusion gene-associated sarcoma: Advantages for understanding sarcoma biology and pathology. Pathol Int 2021; 71:643-654. [PMID: 34265156 DOI: 10.1111/pin.13142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Disease-specific gene fusions are reportedly major driver mutations in approximately 30% of bone and soft tissue sarcomas. Most fusion genes encode transcription factors or co-factors that regulate downstream target genes, altering cell growth, lineage commitment, and differentiation. Given the limitations of investigating their functions in vitro, the generation of mouse models expressing fusion genes in the appropriate cellular lineages is pivotal. Therefore, we generated a series of mouse models by introducing fusion genes into embryonic mesenchymal progenitors. This review describes mouse models of Ewing, synovial, alveolar soft part, and CIC-rearranged sarcomas. Furthermore, we describe the similarities between these models and their human counterparts. These models provide remarkable advantages to identify cells-of-origin, specific collaborators of fusion genes, angiogenesis key factors, or diagnostic biomarkers. Finally, we discuss the relationship between fusion proteins and the epigenetic background as well as the possible role of the super-enhancers.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
29
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
30
|
Preclinical In Vivo Modeling of Pediatric Sarcoma-Promises and Limitations. J Clin Med 2021; 10:jcm10081578. [PMID: 33918045 PMCID: PMC8069549 DOI: 10.3390/jcm10081578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.
Collapse
|
31
|
Seavey CN, Pobbati AV, Hallett A, Ma S, Reynolds JP, Kanai R, Lamar JM, Rubin BP. WWTR1(TAZ)- CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev 2021; 35:512-527. [PMID: 33766982 PMCID: PMC8015722 DOI: 10.1101/gad.348220.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Epithelioid hemangioendothelioma (EHE) is a genetically homogenous vascular sarcoma that is a paradigm for TAZ dysregulation in cancer. EHE harbors a WWTR1(TAZ)-CAMTA1 gene fusion in >90% of cases, 45% of which have no other genetic alterations. In this study, we used a first of its kind approach to target the Wwtr1-Camta1 gene fusion to the Wwtr1 locus, to develop a conditional EHE mouse model whereby Wwtr1-Camta1 is controlled by the endogenous transcriptional regulators upon Cre activation. These mice develop EHE tumors that are indistinguishable from human EHE clinically, histologically, immunohistochemically, and genetically. Overall, these results demonstrate unequivocally that TAZ-CAMTA1 is sufficient to drive EHE formation with exquisite specificity, as no other tumor types were observed. Furthermore, we fully credential this unique EHE mouse model as a valid preclinical model for understanding the role of TAZ dysregulation in cancer formation and for testing therapies directed at TAZ-CAMTA1, TAZ, and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Caleb N Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, PRISM Program, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Andrea Hallett
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Jordan P Reynolds
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Ryan Kanai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
32
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
33
|
Klemen ND, Kelly CM, Bartlett EK. The emerging role of immunotherapy for the treatment of sarcoma. J Surg Oncol 2021; 123:730-738. [PMID: 33259653 PMCID: PMC9212861 DOI: 10.1002/jso.26306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023]
Abstract
Clinicians caring for patients with sarcoma founded the field of cancer immunotherapy. Despite this, contemporary success with immunotherapy for sarcoma has been limited. Here, we review immunotherapy for sarcoma including Coley's toxins, interleukin-2, adoptive cell transfer, and checkpoint blockade. We detail recent and ongoing efforts to combine checkpoint blockade with other immune modulators, surgery, or radiation. These results, along with ongoing investigations, have identified immunotherapeutic approaches as a promising avenue for progress in advanced sarcomas.
Collapse
Affiliation(s)
- Nicholas D. Klemen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ciara M. Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Edmund K. Bartlett
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
34
|
Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB. Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol 2021; 599:863-888. [PMID: 32358865 PMCID: PMC8439166 DOI: 10.1113/jp278930] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial structures were probably observed microscopically in the 1840s, but the idea of oxidative phosphorylation (OXPHOS) within mitochondria did not appear until the 1930s. The foundation for research into energetics arose from Meyerhof's experiments on oxidation of lactate in isolated muscles recovering from electrical contractions in an O2 atmosphere. Today, we know that mitochondria are actually reticula and that the energy released from electron pairs being passed along the electron transport chain from NADH to O2 generates a membrane potential and pH gradient of protons that can enter the molecular machine of ATP synthase to resynthesize ATP. Lactate stands at the crossroads of glycolytic and oxidative energy metabolism. Based on reported research and our own modelling in silico, we contend that lactate is not directly oxidized in the mitochondrial matrix. Instead, the interim glycolytic products (pyruvate and NADH) are held in cytosolic equilibrium with the products of the lactate dehydrogenase (LDH) reaction and the intermediates of the malate-aspartate and glycerol 3-phosphate shuttles. This equilibrium supplies the glycolytic products to the mitochondrial matrix for OXPHOS. LDH in the mitochondrial matrix is not compatible with the cytoplasmic/matrix redox gradient; its presence would drain matrix reducing power and substantially dissipate the proton motive force. OXPHOS requires O2 as the final electron acceptor, but O2 supply is sufficient in most situations, including exercise and often acute illness. Recent studies suggest that atmospheric normoxia may constitute a cellular hyperoxia in mitochondrial disease. As research proceeds appropriate oxygenation levels should be carefully considered.
Collapse
Affiliation(s)
- Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel A. Kane
- Department of Human Kinetics, St. Francis Xavier University, NS B2G 2W5, Antigonish, Canada
| | | | - Matthew L. Goodwin
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wayne T. Willis
- College of Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724-5099, USA
| | - L. Bruce Gladden
- School of Kinesiology, Auburn University, Auburn, AL 36849-5323, USA
| |
Collapse
|
35
|
Li K, Lin C, He Y, Lu L, Xu K, Tao B, Xia Z, Zeng R, Mao Y, Luo Z, Cai K. Engineering of Cascade-Responsive Nanoplatform to Inhibit Lactate Efflux for Enhanced Tumor Chemo-Immunotherapy. ACS NANO 2020; 14:14164-14180. [PMID: 32975406 DOI: 10.1021/acsnano.0c07071] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As an increased product of high-rate aerobic glycolysis in tumors, lactate could regulate the immunosuppressive tumor microenvironment (TME). A PEG-CDM surface modified, GSH-dependent responsive hollow mesoporous organosilica nanoplatform loaded with hydroxycamptothecin (HCPT) and siMCT-4 was administrated for synergistic tumor chemo-immunotherapy. The nanoplatform cascaded responded to the weak acid TME and the high level of GSH in tumor cells. HCPT and siMCT-4 were continuously released from the nanoplatform for chemotherapy and inhibiting intracellular lactate efflux. The increased intracellular lactate and HCPT effectively induced tumor cell apoptosis. Moreover, the decreased extracellular lactate polarized tumor-associated macrophages (TAMs) phenotype from M2 type to M1 type and restored CD8+ T cell activity in vivo. The results demonstrated that the nanoplatform effectively removed the immunosuppressive TME, inhibited tumor growth, and suppressed lung metastasis of B16F10 cells and 4T1 cells via the combination of inhibiting lactate efflux and chemotherapy. Accordingly, it suggested a strategy to transform immunosuppressive tumors into "hot" tumors and inhibit the tumor growth with high efficiency in vivo.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rui Zeng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong Luo
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
36
|
Goodwin ML, Gladden LB, Nijsten MWN. Lactate-Protected Hypoglycemia (LPH). Front Neurosci 2020; 14:920. [PMID: 33013305 PMCID: PMC7497796 DOI: 10.3389/fnins.2020.00920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Here, we provide an overview of the concept of a lactate-protected hypoglycemia (“LPH”), originally proposed as lowering glucose while simultaneously increasing lactate concentration as a method by which tumors might be targeted. Central to this hypothesis is that lactate can act as a critical salvage fuel for the central nervous system, allowing for wide perturbations in whole body and central nervous system glucose concentrations. Further, many tumors exhibit “the Warburg” effect, consuming glucose and producing and exporting lactate despite adequate oxygenation. While some recent data have provided evidence for a “reverse-Warburg,” where some tumors may preferentially consume lactate, many of these experimental methods rely on a significant elevation in lactate in the tumor microenvironment. To date it remains unclear how various tumors behave in vivo, and how they might respond to perturbations in lactate and glucose concentrations or transport inhibition. By exploiting and targeting lactate transport and metabolism in tumors (with a combination of changes in lactate and glucose concentrations, transport inhibitors, etc.), we can begin developing novel methods for targeting otherwise difficult to treat pathologies in the brain and spinal cord. Here we discuss evidence both experimental and observational, and provide direction for next steps in developing therapies based on these concepts.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - L Bruce Gladden
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Maarten W N Nijsten
- Critical Care Department, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Mendes C, Serpa J. Revisiting lactate dynamics in cancer—a metabolic expertise or an alternative attempt to survive? J Mol Med (Berl) 2020; 98:1397-1414. [DOI: 10.1007/s00109-020-01965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
|
38
|
Real-World Outcomes of Pazopanib Treatment in Korean Patients with Advanced Soft Tissue Sarcoma: A Multicenter Retrospective Cohort Study. Target Oncol 2020; 15:485-493. [PMID: 32607656 DOI: 10.1007/s11523-020-00731-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pazopanib is the only tyrosine kinase inhibitor approved for the treatment of patients with advanced soft tissue sarcoma (STS) who have received prior chemotherapy, but there have been limited real-world data on pazopanib for the treatment of advanced STS. OBJECTIVE We aimed to evaluate clinical outcomes of pazopanib in patients with multiple histologic STS types in real-world settings. PATIENTS AND METHODS We retrospectively analyzed clinical data of Korean patients with advanced STS treated with pazopanib between 2008 and 2019. Outcomes of interest included treatment response, survival according to histologic subtypes, and adverse events. RESULTS The analysis included 347 STS patients. The disease control rate for all pazopanib-treated patients was 54.8% (95% confidence interval (CI) 49.5-60.0); 54 patients (15.6%) achieved a partial response and 136 (39.2%) had stable disease. Patients with alveolar soft-part sarcoma (ASPS; 90%), solitary fibrous tumor (SFT; 88.2%), synovial sarcoma (66.7%), leiomyosarcoma (61.1%), and undifferentiated pleomorphic sarcoma (59.6%) showed higher disease control rates than those with other STS subtypes. Overall, median progression-free survival (PFS) and overall survival (OS) were 5.3 months (95% CI 4.5-6.0) and 12 months (95% CI 10-14), respectively. Noticeable survival outcomes occurred in patients with ASPS and SFT, with a median PFS of 24.5 (95% CI 2.5-30.0) and 13.0 (95% CI 3.0-21.3) months, respectively. The median OS of patients with ASPS and SFT was 48 (95% CI 17-52) and 32 (95% CI 19-66) months, respectively. Adverse drug reactions occurred in 170 patients (49.0%) but were not life-threatening. CONCLUSIONS This real-world data analysis showed acceptable efficacy and tolerability of pazopanib in patients pretreated with cytotoxic chemotherapy for advanced STS, with favorable treatment outcomes for ASPS and SFT.
Collapse
|
39
|
Stockwin LH. Alveolar soft-part sarcoma (ASPS) resembles a mesenchymal stromal progenitor: evidence from meta-analysis of transcriptomic data. PeerJ 2020; 8:e9394. [PMID: 32596059 PMCID: PMC7307565 DOI: 10.7717/peerj.9394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Alveolar soft-part sarcoma (ASPS) is an extremely rare malignancy characterized by the unbalanced translocation der(17)t(X;17)(p11;q25). This translocation generates a fusion protein, ASPL-TFE3, that drives pathogenesis through aberrant transcriptional activity. Although considerable progress has been made in identifying ASPS therapeutic vulnerabilities (e.g., MET inhibitors), basic research efforts are hampered by the lack of appropriate in vitro reagents with which to study the disease. In this report, previously unmined microarray data for the ASPS cell line, ASPS-1, was analyzed relative to the NCI sarcoma cell line panel. These data were combined with meta-analysis of pre-existing ASPS patient microarray and RNA-seq data to derive a platform-independent ASPS transcriptome. Results demonstrated that ASPS-1, in the context of the NCI sarcoma cell panel, had some similarities to normal mesenchymal cells and connective tissue sarcomas. The cell line was characterized by high relative expression of transcripts such as CRYAB, MT1G, GCSAML, and SV2B. Notably, ASPS-1 lacked mRNA expression of myogenesis-related factors MYF5, MYF6, MYOD1, MYOG, PAX3, and PAX7. Furthermore, ASPS-1 had a predicted mRNA surfaceome resembling an undifferentiated mesenchymal stromal cell through expression of GPNMB, CD9 (TSPAN29), CD26 (DPP4), CD49C (ITGA3), CD54 (ICAM1), CD63 (TSPAN30), CD68 (SCARD1), CD130 (IL6ST), CD146 (MCAM), CD147 (BSG), CD151 (SFA-1), CD166 (ALCAM), CD222 (IGF2R), CD230 (PRP), CD236 (GPC), CD243 (ABCB1), and CD325 (CDHN). Subsequent re-analysis of ASPS patient data generated a consensus expression profile with considerable overlap between studies. In common with ASPS-1, elevated expression was noted for CTSK, DPP4, GPNMB, INHBE, LOXL4, PSG9, SLC20A1, STS, SULT1C2, SV2B, and UPP1. Transcripts over-expressed only in ASPS patient samples included ABCB5, CYP17A1, HIF1A, MDK, P4HB, PRL, and PSAP. These observations are consistent with that expected for a mesenchymal progenitor cell with adipogenic, osteogenic, or chondrogenic potential. In summary, the consensus data generated in this study highlight the unique and highly conserved nature of the ASPS transcriptome. Although the ability of the ASPL-TFE3 fusion to perturb mRNA expression must be acknowledged, the prevailing ASPS transcriptome resembles that of a mesenchymal stromal progenitor.
Collapse
|
40
|
Panagopoulos I, Gorunova L, Lund-Iversen M, Bassarova A, Heim S. Fusion of the Genes PHF1 and TFE3 in Malignant Chondroid Syringoma. Cancer Genomics Proteomics 2020; 16:345-351. [PMID: 31467228 DOI: 10.21873/cgp.20139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/AIM Malignant chondroid syringoma is a rare tumor of unknown pathogenesis. MATERIALS AND METHODS Genetic analyses were performed on a malignant chondroid syringoma. RESULTS G-banding analysis of short-term cultured tumor cells yielded the karyotype 46,Y,t(X;6)(p11;p21)[15]/46,XY[2]. RNA sequencing detected an in-frame fusion of PHF1 from 6p21 with TFE3 from Xp11, verified by RT-PCR and Sanger sequencing. Genomic PCR showed that the PHF1-TFE3 junction was identical to the fusion found by RNA sequencing and RT-PCR. CONCLUSION Malignant chondroid syringoma is genetically related to tumors with PHF1 rearrangements such as low-grade endometrial sarcoma and ossifying fibromyxoid tumor, but also with tumors having TFE3 rearrangements such as renal cell carcinoma, alveolar soft part sarcoma, PEComa, and epithelioid hemangioendothelioma. Further investigations on malignant chondroid syringomas are needed in order to determine whether genetic heterogeneity exists among them and the clinical impact of the PHF1-TFE3 fusion.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Assia Bassarova
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Wilding CP, Elms ML, Judson I, Tan AC, Jones RL, Huang PH. The landscape of tyrosine kinase inhibitors in sarcomas: looking beyond pazopanib. Expert Rev Anticancer Ther 2019; 19:971-991. [PMID: 31665941 PMCID: PMC6882314 DOI: 10.1080/14737140.2019.1686979] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Introduction: Tyrosine kinases are key mediators of intracellular signaling cascades and aberrations in these proteins have been implicated in driving oncogenesis through the dysregulation of fundamental cellular processes including proliferation, migration, and apoptosis. As such, targeting these proteins with small molecule tyrosine kinase inhibitors (TKI) has led to significant advances in the treatment of a number of cancer types.Areas covered: Soft tissue sarcomas (STS) are a heterogeneous and challenging group of rare cancers to treat, but the approval of the TKI pazopanib for the treatment of advanced STS demonstrates that this class of drugs may have broad utility against a range of different sarcoma histological subtypes. Since the approval of pazopanib, a number of other TKIs have entered clinical trials to evaluate whether their activity in STS matches the promising results seen in other solid tumors. In this article, we review the emerging role of TKIs in the evolving landscape of sarcoma treatment.Expert opinion: As our biological understanding of response and resistance of STS to TKIs advances, we anticipate that patient management will move away from a 'one size fits all' paradigm toward personalized, multi-line, and patient-specific treatment regimens where patients are treated according to the underlying biology and genetics of their specific disease.
Collapse
Affiliation(s)
| | - Mark L Elms
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Ian Judson
- Department of Medical Oncology, Sarcoma Unit, The Royal Marsden Hospital, London, UK
| | - Aik-Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Robin L Jones
- Department of Medical Oncology, Sarcoma Unit, The Royal Marsden Hospital, London, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
42
|
Judson I, Morden JP, Kilburn L, Leahy M, Benson C, Bhadri V, Campbell-Hewson Q, Cubedo R, Dangoor A, Fox L, Hennig I, Jarman K, Joubert W, Kernaghan S, López Pousa A, McNeil C, Seddon B, Snowdon C, Tattersall M, Toms C, Martinez Trufero J, Bliss JM. Cediranib in patients with alveolar soft-part sarcoma (CASPS): a double-blind, placebo-controlled, randomised, phase 2 trial. Lancet Oncol 2019; 20:1023-1034. [PMID: 31160249 PMCID: PMC6602919 DOI: 10.1016/s1470-2045(19)30215-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Background Alveolar soft-part sarcoma (ASPS) is a rare soft-tissue sarcoma that is unresponsive to chemotherapy. Cediranib, a tyrosine-kinase inhibitor, has shown substantial activity in ASPS in non-randomised studies. The Cediranib in Alveolar Soft Part Sarcoma (CASPS) study was designed to discriminate the effect of cediranib from the intrinsically indolent nature of ASPS. Methods In this double-blind, placebo-controlled, randomised, phase 2 trial, we recruited participants from 12 hospitals in the UK (n=7), Spain (n=3), and Australia (n=2). Patients were eligible if they were aged 16 years or older; metastatic ASPS that had progressed in the previous 6 months; had an ECOG performance status of 0–1; life expectancy of more than 12 weeks; and adequate bone marrow, hepatic, and renal function. Participants had to have no anti-cancer treatment within 4 weeks before trial entry, with exception of palliative radiotherapy. Participants were randomly assigned (2:1), with allocation by use of computer-generated random permuted blocks of six, to either cediranib (30 mg orally, once daily) or matching placebo tablets for 24 weeks. Treatment was supplied in number-coded bottles, masking participants and clinicians to assignment. Participants were unblinded at week 24 or sooner if they had progression defined by Response Evaluation Criteria in Solid Tumors (version 1.1); those on placebo crossed over to cediranib and all participants continued on treatment until progression or death. The primary endpoint was percentage change in sum of target marker lesion diameters between baseline and week 24 or progression if sooner, assessed in the evaluable population (all randomly assigned participants who had a scan at week 24 [or sooner if they progressed] with target marker lesions measured). Safety was assessed in all participants who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT01337401; the European Clinical Trials database, number EudraCT2010-021163-33; and the ISRCTN registry, number ISRCTN63733470 recruitment is complete and follow-up is ongoing. Findings Between July 15, 2011, and July 29, 2016, of 48 participants recruited, all were randomly assigned to cediranib (n=32) or placebo (n=16). 23 (48%) were female and the median age was 31 years (IQR 27–45). Median follow-up was 34·3 months (IQR 23·7–55·6) at the time of data cutoff for these analyses (April 11, 2018). Four participants in the cediranib group were not evaluable for the primary endpoint (one did not start treatment, and three did not have their scan at 24 weeks). Median percentage change in sum of target marker lesion diameters for the evaluable population was −8·3% (IQR −26·5 to 5·9) with cediranib versus 13·4% (IQR 1·1 to 21·3) with placebo (one-sided p=0·0010). The most common grade 3 adverse events on (blinded) cediranib were hypertension (six [19%] of 31) and diarrhoea (two [6%]). 15 serious adverse reactions in 12 patients were reported; 12 of these reactions occurred on open-label cediranib, and the most common symptoms were dehydration (n=2), vomiting (n=2), and proteinuria (n=2). One probable treatment-related death (intracranial haemorrhage) occurred 41 days after starting open-label cediranib in a patient who was assigned to placebo in the masked phase. Interpretation Given the high incidence of metastatic disease and poor long-term prognosis of ASPS, together with the lack of efficacy of conventional chemotherapy, our finding of significant clinical activity with cediranib in this disease is an important step towards the goal of long-term disease control for these young patients. Future clinical trials in ASPS are also likely to involve immune checkpoint inhibitors. Funding Cancer Research UK and AstraZeneca.
Collapse
Affiliation(s)
- Ian Judson
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - James P Morden
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Lucy Kilburn
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Adam Dangoor
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Lisa Fox
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Ivo Hennig
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Katy Jarman
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | - Sarah Kernaghan
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | | | - Beatrice Seddon
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire Snowdon
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | - Christy Toms
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | | | - Judith M Bliss
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| |
Collapse
|
43
|
Linehan WM, Schmidt LS, Crooks DR, Wei D, Srinivasan R, Lang M, Ricketts CJ. The Metabolic Basis of Kidney Cancer. Cancer Discov 2019; 9:1006-1021. [PMID: 31088840 DOI: 10.1158/2159-8290.cd-18-1354] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/19/2019] [Accepted: 03/22/2019] [Indexed: 01/27/2023]
Abstract
Kidney cancer is not a single disease but represents several distinct types of cancer that have defining histologies and genetic alterations and that follow different clinical courses and have different responses to therapy. Mutation of genes associated with kidney cancer, such as VHL, FLCN, TFE3, FH, or SDHB, dysregulates the tumor's responses to changes in oxygen, iron, nutrient, or energy levels. The identification of these varying genetic bases of kidney cancer has increased our understanding of the biology of this cancer, allowing the development of targeted therapies and the appreciation that it is a cancer driven by metabolic alterations. SIGNIFICANCE: Kidney cancer is a complex disease composed of different types of cancer that present with different histologies, clinical courses, genetic changes, and responses to therapy. This review describes the known genetic changes within kidney cancer, how they alter tumor metabolism, and how these metabolic changes can be therapeutically targeted.
Collapse
Affiliation(s)
- W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Basic Science Program, Frederick Laboratory for Cancer Research, Frederick, Maryland
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
44
|
Goodwin ML, Pennington Z, Westbroek EM, Cottrill E, Ahmed AK, Sciubba DM. Lactate and cancer: a "lactatic" perspective on spinal tumor metabolism (part 1). ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:220. [PMID: 31297385 DOI: 10.21037/atm.2019.02.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Spine tumors are among the most difficult tumors to treat given their proximity to the spinal cord. Despite advances in adjuvant therapies, surgery remains a critical component of treatment, both in primary tumors and metastatic disease. Given the significant morbidity of these surgeries and with other current adjuvant therapies (e.g., radiation, chemotherapy), interest has grown in other methods of targeting tumors of the spine. Recent efforts have highlighted the tumor microenvironment, and specifically lactate, as central to tumorigenesis. Once erroneously considered a waste product that indicated hypoxia/hypoperfusion, lactate is now known to be at the center of whole-body metabolism, shuttling between tissues and being used as a fuel. Diffusion-driven transporters and the near-equilibrium enzyme lactate dehydrogenase (LDH) allow rapid mobilization of large stores of muscle glycogen in the form of lactate. In times of stress, catecholamines can bind muscle cell receptors and trigger the breakdown of glycogen to lactate, which can then diffuse out into circulation and be used as a fuel where needed. Hypoxia, in contrast, is rarely the reason for an elevated arterial [lactate]. Tumors were originally described in the 1920's as being "glucose-avid" and "lactate-producing" even in normoxia (the "Warburg effect"). We now know that a broad range of metabolic behaviors likely exist, including cancer cells that consume lactate as a fuel, others that may produce it, and still others that may change their behavior based on the local microenvironment. In this review we will examine the relationship between lactate and tumor metabolism with a brief look at spine-specific tumors. Lactate is a valuable fuel and potent signaling molecule that has now been implicated in multiple steps in tumorigenesis [e.g., driving vascular endothelial growth factor (VEGF) expression in normoxia]. Future work should utilize translational animal models to target tumors by altering the local tumor microenvironment, of which lactate is a critical part.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erick M Westbroek
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
45
|
Schöffski P, Wozniak A, Kasper B, Aamdal S, Leahy MG, Rutkowski P, Bauer S, Gelderblom H, Italiano A, Lindner LH, Hennig I, Strauss S, Zakotnik B, Anthoney A, Albiges L, Blay JY, Reichardt P, Sufliarsky J, van der Graaf WTA, Debiec-Rychter M, Sciot R, Van Cann T, Marréaud S, Raveloarivahy T, Collette S, Stacchiotti S. Activity and safety of crizotinib in patients with alveolar soft part sarcoma with rearrangement of TFE3: European Organization for Research and Treatment of Cancer (EORTC) phase II trial 90101 'CREATE'. Ann Oncol 2019; 29:758-765. [PMID: 29216400 DOI: 10.1093/annonc/mdx774] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Alveolar soft part sarcoma (ASPS) is an orphan malignancy associated with a rearrangement of transcription factor E3 (TFE3), leading to abnormal MET gene expression. We prospectively assessed the efficacy and safety of the MET tyrosine kinase inhibitor crizotinib in patients with advanced or metastatic ASPS. Patients and methods Eligible patients with reference pathology-confirmed ASPS received oral crizotinib 250 mg bd. By assessing the presence or absence of a TFE3 rearrangement, patients were attributed to MET+ and MET- sub-cohorts. The primary end point was the objective response rate (ORR) according to local investigator. Secondary end points included duration of response, disease control rate (DCR), progression-free survival (PFS), progression-free rate, overall survival (OS) and safety. Results Among 53 consenting patients, all had a centrally confirmed ASPS and 48 were treated. A total of 45 were eligible, treated and assessable. Among 40 MET+ patients, 1 achieved a confirmed partial response (PR) that lasted 215 days and 35 had stable disease (SD) as best response (ORR: 2.5%, 95% CI 0.6% to 80.6%). Further efficacy end points in MET+ cases were DCR: 90.0% (95% CI 76.3% to 97.2%), 1-year PFS rate: 37.5% (95% CI 22.9% to 52.1%) and 1-year OS rate: 97.4% (95% CI 82.8% to 99.6%). Among 4 MET- patients, 1 achieved a PR that lasted 801 days and 3 had SD (ORR: 25.0%, 95% CI 0.6% to 80.6%) for a DCR of 100% (95% CI 39.8% to 100.0%). The 1-year PFS rate in MET- cases was 50% (95% CI 5.8% to 84.5%) and the 1-year OS rate was 75% (95% CI 12.8% to 96.1%). One patient with unknown MET status due to technical failure achieved SD but stopped treatment due to progression after 17 cycles. The most common crizotinib-related adverse events were nausea [34/48 (70.8%)], vomiting [22/48 (45.8%)], blurred vision [22/48 (45.8%)], diarrhoea (20/48 (41.7%)] and fatigue [19/48 (39.6%)]. Conclusion According to European Organization for Research and Treatment of Cancer (EORTC) efficacy criteria for soft tissue sarcoma, our study demonstrated that crizotinib has activity in TFE3 rearranged ASPS MET+ patients. Clinical trial number EORTC 90101, NCT01524926.
Collapse
Affiliation(s)
- P Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - A Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - B Kasper
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, Mannheim, Germany
| | - S Aamdal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - M G Leahy
- The Christie NHS Foundation Trust, Manchester, UK
| | - P Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - S Bauer
- Department of Internal Medicine, West German Cancer Center, University Hospital, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Italiano
- Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | - L H Lindner
- Medical Clinic III, University Hospital of Munich, Munich, Germany
| | - I Hennig
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - S Strauss
- Department of Oncology, University College Hospital, London, UK
| | - B Zakotnik
- Department of Medical Oncology, The Institute of Oncology, Ljubljana, Slovenia
| | - A Anthoney
- Institute of Oncology, Leeds Teaching Hospitals National Health Service Trust, St. James's University Hospital, Leeds, UK
| | - L Albiges
- Department of Medical Oncology, Gustave Roussy, Villejuif
| | - J-Y Blay
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France; Université Claude Bernard Lyon I, Lyon, France
| | - P Reichardt
- Department of Interdisciplinary Oncology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | | | - W T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Debiec-Rychter
- Department of Human Genetics, KU Leuven, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - R Sciot
- University Hospitals Leuven, Leuven, Belgium; Department of Pathology, KU Leuven; Leuven, Belgium
| | - T Van Cann
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - S Marréaud
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - T Raveloarivahy
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - S Collette
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - S Stacchiotti
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale Tumori, Milano, Italy
| |
Collapse
|
46
|
Perera RM, Di Malta C, Ballabio A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:203-222. [PMID: 31650096 PMCID: PMC6812561 DOI: 10.1146/annurev-cancerbio-030518-055835] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells have an increased demand for energy sources to support accelerated rates of growth. When nutrients become limiting, cancer cells may switch to nonconventional energy sources that are mobilized through nutrient scavenging pathways involving autophagy and the lysosome. Thus, several cancers are highly reliant on constitutive activation of these pathways to degrade and recycle cellular materials. Here, we focus on the MiT/TFE family of transcription factors, which control transcriptional programs for autophagy and lysosome biogenesis and have emerged as regulators of energy metabolism in cancer. These new findings complement earlier reports that chromosomal translocations and amplifications involving the MiT/TFE genes contribute to the etiology and pathophysiology of renal cell carcinoma, melanoma, and sarcoma, suggesting pleiotropic roles for these factors in a wider array of cancers. Understanding the interplay between the oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on fundamental mechanisms of cellular homeostasis and point to new strategies for cancer treatment.
Collapse
Affiliation(s)
- Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
- Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
47
|
Paoluzzi L, Maki RG. Diagnosis, Prognosis, and Treatment of Alveolar Soft-Part Sarcoma. JAMA Oncol 2019; 5:254-260. [DOI: 10.1001/jamaoncol.2018.4490] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luca Paoluzzi
- Department of Medicine, New York University Langone Medical Center, New York
| | - Robert G. Maki
- Northwell Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, Cold Spring Harbor Laboratory, Long Island, New York
| |
Collapse
|
48
|
Damayanti NP, Budka JA, Khella HWZ, Ferris MW, Ku SY, Kauffman E, Wood AC, Ahmed K, Chintala VN, Adelaiye-Ogala R, Elbanna M, Orillion A, Chintala S, Kao C, Linehan WM, Yousef GM, Hollenhorst PC, Pili R. Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma. Clin Cancer Res 2018; 24:5977-5989. [PMID: 30061365 PMCID: PMC6279468 DOI: 10.1158/1078-0432.ccr-18-0269] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
PURPOSE Translocation renal cell carcinoma (tRCC) represents a rare subtype of kidney cancer associated with various TFE3, TFEB, or MITF gene fusions that are not responsive to standard treatments for RCC. Therefore, the identification of new therapeutic targets represents an unmet need for this disease. EXPERIMENTAL DESIGN We have established and characterized a tRCC patient-derived xenograft, RP-R07, as a novel preclinical model for drug development by using next-generation sequencing and bioinformatics analysis. We then assessed the therapeutic potential of inhibiting the identified pathway using in vitro and in vivo models. RESULTS The presence of a SFPQ-TFE3 fusion [t(X;1) (p11.2; p34)] with chromosomal break-points was identified by RNA-seq and validated by RT-PCR. TFE3 chromatin immunoprecipitation followed by deep sequencing analysis indicated a strong enrichment for the PI3K/AKT/mTOR pathway. Consistently, miRNA microarray analysis also identified PI3K/AKT/mTOR as a highly enriched pathway in RP-R07. Upregulation of PI3/AKT/mTOR pathway in additional TFE3-tRCC models was confirmed by significantly higher expression of phospho-S6 (P < 0.0001) and phospho-4EBP1 (P < 0.0001) in established tRCC cell lines compared with clear cell RCC cells. Simultaneous vertical targeting of both PI3K/AKT and mTOR axis provided a greater antiproliferative effect both in vitro (P < 0.0001) and in vivo (P < 0.01) compared with single-node inhibition. Knockdown of TFE3 in RP-R07 resulted in decreased expression of IRS-1 and inhibited cell proliferation. CONCLUSIONS These results identify TFE3/IRS-1/PI3K/AKT/mTOR as a potential dysregulated pathway in TFE3-tRCC, and suggest a therapeutic potential of vertical inhibition of this axis by using a dual PI3K/mTOR inhibitor for patients with TFE3-tRCC.
Collapse
Affiliation(s)
- Nur P Damayanti
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Justin A Budka
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Heba W Z Khella
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Mary W Ferris
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Sheng Yu Ku
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - Eric Kauffman
- Department of Urology and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | - Anthony C Wood
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Khunsha Ahmed
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Venkata Nithinsai Chintala
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Remi Adelaiye-Ogala
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - May Elbanna
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Ashley Orillion
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Sreenivasulu Chintala
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Chinghai Kao
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | | | - George M Yousef
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Roberto Pili
- Genitourinary Program, Division of Hematology & Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana.
| |
Collapse
|
49
|
Luo G, Liu N. An integrative theory for cancer (Review). Int J Mol Med 2018; 43:647-656. [PMID: 30483756 PMCID: PMC6317675 DOI: 10.3892/ijmm.2018.4004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
In the integrative theory, chronic irritations induce tumors with genetic alterations and rapid proliferative ability. Tumor cells reprogram the metabolism and employ aerobic glycolysis to sustain rapid growth. The host provides both the nutrients and exhaust system to support tumor growth via the tumor microenvironment. Under certain conditions, such as aging, diabetes, obesity and a high‑fat diet, the exhaust system is impaired, triggering a metabolic imbalance between the tumor and host. This is similar to a problematic car with an advanced motor with an out‑of‑date exhaust system. The metabolic imbalance causes a metabolic catastrophe, making tumor cells reside in a dismal environment and forcing them to invade, metastasize and undergo necrosis. Tumor necrosis, particularly in metastases, leads to non‑specific systemic inflammation, which is the major cause of cancer‑related mortality. On the whole, the integrative theory views cancer in an integrative manner and proposes that both genetic alterations and tumor‑host interaction as regards metabolism and immunology determine the destiny of the tumor and host. Although cancer is a genetic disease, tumor biology is basically the nature of the host.
Collapse
Affiliation(s)
- Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Na Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| |
Collapse
|
50
|
Lee TY, Martinez-Outschoorn UE, Schilder RJ, Kim CH, Richard SD, Rosenblum NG, Johnson JM. Metformin as a Therapeutic Target in Endometrial Cancers. Front Oncol 2018; 8:341. [PMID: 30211120 PMCID: PMC6121131 DOI: 10.3389/fonc.2018.00341] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in developed countries. Its increasing incidence is thought to be related in part to the rise of metabolic syndrome, which has been shown to be a risk factor for the development of hyperestrogenic and hyperinsulinemic states. This has consequently lead to an increase in other hormone-responsive cancers as well e.g., breast and ovarian cancer. The correlation between obesity, hyperglycemia, and endometrial cancer has highlighted the important role of metabolism in cancer establishment and persistence. Tumor-mediated reprogramming of the microenvironment and macroenvironment can range from induction of cytokines and growth factors to stimulation of surrounding stromal cells to produce energy-rich catabolites, fueling the growth, and survival of cancer cells. Such mechanisms raise the prospect of the metabolic microenvironment itself as a viable target for treatment of malignancies. Metformin is a biguanide drug that is a first-line treatment for type 2 diabetes that has beneficial effects on various markers of the metabolic syndrome. Many studies suggest that metformin shows potential as an adjuvant treatment for uterine and other cancers. Here, we review the evidence for metformin as a treatment for cancers of the endometrium. We discuss the available clinical data and the molecular mechanisms by which it may exert its effects, with a focus on how it may alter the tumor microenvironment. The pleiotropic effects of metformin on cellular energy production and usage as well as intercellular and hormone-based interactions make it a promising candidate for reprogramming of the cancer ecosystem. This, along with other treatments aimed at targeting tumor metabolic pathways, may lead to novel treatment strategies for endometrial cancer.
Collapse
Affiliation(s)
- Teresa Y Lee
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Russell J Schilder
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christine H Kim
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott D Richard
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Norman G Rosenblum
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|