1
|
Lin HY, Jeon AJ, Chen K, Lee CJM, Wu L, Chong SL, Anene-Nzelu CG, Foo RSY, Chow PKH. The epigenetic basis of hepatocellular carcinoma - mechanisms and potential directions for biomarkers and therapeutics. Br J Cancer 2025; 132:869-887. [PMID: 40057667 DOI: 10.1038/s41416-025-02969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 05/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth leading cancer worldwide and has complex pathogenesis due to its heterogeneity, along with poor prognoses. Diagnosis is often late as current screening methods have limited sensitivity for early HCC. Moreover, current treatment regimens for intermediate-to-advanced HCC have high resistance rates, no robust predictive biomarkers, and limited survival benefits. A deeper understanding of the molecular biology of HCC may enhance tumor characterization and targeting of key carcinogenic signatures. The epigenetic landscape of HCC includes complex hallmarks of 1) global DNA hypomethylation of oncogenes and hypermethylation of tumor suppressors; 2) histone modifications, altering chromatin accessibility to upregulate oncogene expression, and/or suppress tumor suppressor gene expression; 3) genome-wide rearrangement of chromatin loops facilitating distal enhancer-promoter oncogenic interactions; and 4) RNA regulation via translational repression by microRNAs (miRNAs) and RNA modifications. Additionally, it is useful to consider etiology-specific epigenetic aberrancies, especially in viral hepatitis and metabolic dysfunction-associated steatotic liver disease (MASLD), which are the main risk factors of HCC. This article comprehensively explores the epigenetic signatures in HCC, highlighting their potential as biomarkers and therapeutic targets. Additionally, we examine how etiology-specific epigenetic patterns and the integration of epigenetic therapies with immunotherapy could advance personalized HCC treatment strategies.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ah-Jung Jeon
- Department of Research and Development, Mirxes, Singapore, Singapore
| | - Kaina Chen
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chang Jie Mick Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
| | - Lingyan Wu
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | - Shay-Lee Chong
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Roger Sik-Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore.
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Du X, Shen F, Yu C, Wang Y, Yu J, Yao L, Liu N, Zhuang S. SMYD3 as an Epigenetic Regulator of Renal Tubular Cell Survival and Regeneration Following Acute Kidney Injury in Mice. FASEB J 2025; 39:e70533. [PMID: 40317558 DOI: 10.1096/fj.202500089r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 05/07/2025]
Abstract
The protein SET and MYND-Domain Containing 3 (SMYD3) is a methyltransferase that modifies various non-histone and histone proteins, linking it to tumorigenesis and cyst formation. However, its role in acute kidney injury (AKI) remains unclear. This study investigates the role and mechanism of AKI using a murine model of ischemia-reperfusion (IR)-induced AKI. After IR injury, SMYD3 and H3K4me3 levels increased in the kidneys, correlating with renal dysfunction, tubular cell injury, and apoptosis. Administration of BCI-121, a selective SMYD3 inhibitor, exacerbated IR-induced tubular cell injury and apoptosis, leading to more severe renal dysfunction and pathological changes. Pharmacological inhibition of SMYD3 also impaired the dedifferentiation and proliferation of renal tubular cells, key regenerative processes in injured kidneys, as evidenced by decreased expression of vimentin, snail, proliferating cell nuclear antigen (PCNA), cyclin D1, and retinoblastoma protein (RB). Additionally, SMYD3 inhibition reduced phosphorylation of the epithelial growth factor receptor (EGFR) and AKT, as well as EGFR expression in damaged kidneys. Finally, both BCI-121 and SMYD3 siRNA reduced EGF-induced expression of vimentin, snail, cyclin D1, PCNA, and EGFR, along with phosphorylation of RB and AKT in cultured renal tubular cells. Chip assay indicated that SMYD3 and H3K4me3 are enriched at the promoter of EGFR and SMYD3 inhibition blocked this response. These data suggest that SMYD3 plays an important role as an epigenetic regulator of renal tubular cell survival and regenerative pathways following kidney injury. Targeting SMYD3 or its epigenetic effects could offer therapeutic potential for enhancing kidney regeneration in AKI and related renal diseases.
Collapse
Affiliation(s)
- Xinyu Du
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianjun Yu
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liyuan Yao
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
FitzGerald EA, Rachman MM, Cederfelt D, Myers NEM, Kovryzchenko D, Zhang H, Barril X, Koehler K, Danielson UH. Integrated computational and biosensor-based strategies for the discovery of allosteric SMYD3 ligands using diperodon as a starting point. Bioorg Med Chem 2025; 121:118134. [PMID: 40024141 DOI: 10.1016/j.bmc.2025.118134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
SMYD3 (SET- and MYND-domain containing protein 3) is an epigenetic enzyme with lysine methyl transferase activity and multiple protein binding partners. It is implicated in cancer development and active site inhibitors with antitumor activity have been developed. We have previously discovered that diperodon is an allosteric SMYD3 ligand and are interested in developing ligands that can interfere with non-catalytic functions of SMYD3, while avoiding conceivable draw-backs of targeting a conserved site in an enzyme with several close family members. Herein, the features of the diperodon site were explored via computational modelling and served as a basis for identifying analogues in commercial compound space, thus avoiding the need for in-house compound synthesis. Time-resolved grating coupled interferometry (GCI) biosensor analysis confirmed that two out of 21 acquired analogues interacted with SMYD3, with similar affinities as diperodon (KD ∼ 180 and 210 vs. ∼200 µM). As a second approach, fragmentation of diperodon followed by growing of fragments identified an additional 11 compounds in commercial compound space. GCI analysis confirmed that N-phenylformamide and three compounds evolved from this fragment interacted with SMYD3. These four ligands varied structurally from diperodon and had higher affinities (KD = 0.4-130 µM) and superior ligand efficiencies. However, all ligands interacted with rapid kinetics and weak affinities, indicating that the site had poor ligandability, possibly a result of its extremely flexible structure. Difficulties in protein production and the overall flexible structure of SMYD3, prevented NMR experiments and X-ray crystallography. Nevertheless, the combination of computational ligand design supported by biosensor-based analyses resulted in new allosteric ligands with minimal resources in a short time.
Collapse
Affiliation(s)
- Edward A FitzGerald
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden; Beactica Therapeutics, Virdings allé 2, Uppsala, Sweden
| | - Moira M Rachman
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | | | - Nadine E M Myers
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden; Beactica Therapeutics, Virdings allé 2, Uppsala, Sweden
| | | | - He Zhang
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Xavier Barril
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | | | - U Helena Danielson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Murali M, Saeed A, Kim S, Burkitt K, Cheng H, Moshiri A, Akhtar J, Tsai D, Luff M, Karim B, Saloura V. SMYD3 drives cell cycle and epithelial-mesenchymal transition pathways through dual gene transcriptional repression and activation in HPV-negative head and neck cancer. Sci Rep 2025; 15:984. [PMID: 39762343 PMCID: PMC11704228 DOI: 10.1038/s41598-024-83396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type in the world and is associated with an overall poor prognosis. The protein methyltransferase SET and MYND domain-containing 3 (SMYD3), which trimethylates H3K4, activates gene transcription and enhances several oncogenic pathways, including epithelial-mesenchymal transition and cell cycle related pathways, in various cancer types. It was also recently shown that SMYD3 is overexpressed in HPV-negative HNSCC, and represses the expression of type I IFN response genes, contributing to resistance to anti-PD-1 checkpoint blockade in this disease. In this study, we show that SMYD3 depletion using siRNA interference or CRISPR decreases cellular proliferation and clonal capacity, induces cell cycle arrest and decreases the invasive potential of HPV-negative HNSCC cell lines. Accordingly, xenografts of SMYD3 knockout tumors derived from a human HPV-negative HNSCC cell line grew significantly slower compared to control tumors in mice. Genome-wide mapping for SMYD3 and H3K4me3 in HPV-negative HNSCC cells using cleavage under targets and release using nuclease (CUT&RUN) assays identified direct downstream gene targets regulated by SMYD3, including cell cycle- and EMT-promoting genes. This study provides insights into the epigenetic role of SMYD3 as an oncogene in HPV-negative HNSCC and supports SMYD3 as a rational therapeutic target in HPV-negative HNSCC.
Collapse
Affiliation(s)
- Madhavi Murali
- Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA
| | - Abbas Saeed
- Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA
| | - Hui Cheng
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Arfa Moshiri
- Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA
| | - Jawad Akhtar
- Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA
| | - Daniel Tsai
- Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA
| | - Marie Luff
- Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, National Institutes of Health, Frederick, MD, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Zaher HS, Mosammaparast N. RNA Damage Responses in Cellular Homeostasis, Genome Stability, and Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:433-457. [PMID: 39476409 DOI: 10.1146/annurev-pathmechdis-111523-023516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
All cells are exposed to chemicals that can damage their nucleic acids. Cells must protect these polymers because they code for key factors or complexes essential for life. Much of the work on nucleic acid damage has naturally focused on DNA, partly due to the connection between mutagenesis and human disease, especially cancer. Recent work has shed light on the importance of RNA damage, which triggers a host of conserved RNA quality control mechanisms. Because many RNA species are transient, and because of their ability to be retranscribed, RNA damage has largely been ignored. Yet, because of the connection between damaged RNA and DNA during transcription, and the association between essential complexes that process or decode RNAs, notably spliceosomes and ribosomes, the appropriate handling of damaged RNAs is critical for maintaining cellular homeostasis. This notion is bolstered by disease states, including neurodevelopmental and neurodegenerative diseases, that may arise upon loss or misregulation of RNA quality control mechanisms.
Collapse
Affiliation(s)
- Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
6
|
Abdel-Razek MAM, Abdelwahab MF, Mohamad SA, Abou-Zied HA, R. Abdelmohsen U, Hamed ANE. Cytotoxic Potential and Metabolomic Profiling of Solanum lycopersicum Roots Extract and Their Nanocrystals: An In Silico Approach. Integr Cancer Ther 2025; 24:15347354251335599. [PMID: 40346830 PMCID: PMC12065981 DOI: 10.1177/15347354251335599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/02/2025] [Indexed: 05/12/2025] Open
Abstract
Solanum lycopersicum L. Moench (Tomato) is a rich source of bioactive compounds. This study investigated the anticancer potential of S. lycopersicum roots methanol extract (TMESLR) and their nanocrystals (TMESLR-NCs) against breast (MCF-7), hepatocellular (HepG2), and colon (Caco-2) cancer cell lines, for the first time. TMESLR exhibited significant cytotoxicity against all 3 cell lines, with the nanocrystals demonstrating enhanced activity, Caco-2, MCF-7, and HepG2 cells with IC50 values of 9.69 ± 0.6, 12.52 ± 0.58, and 14.34 ± 0.62 µg/mL, respectively. Whereas, the prepared TMESLR-NCs displayed significantly the highest cytostatic potential against Caco-2 with IC50 value of 5.733 ± 0.29 µg/mL. Metabolomic profiling revealed 17 secondary metabolites, including flavonoids, phenolic acids, and terpenoids. In silico analyses, including PPI network construction, GO enrichment, and KEGG pathway analysis, highlighted the involvement of apoptotic pathways, p53 signaling, and TNF signaling in the anticancer effects of TMESLR. Molecular docking studies identified chlorogenic acid and inosine as potential inhibitors of Histone Deacetylase 2 (HDAC2). Inosine (6) displayed a superior docking score of -7.86 kcal/mol, interacting with critical residues GLY154, ASP269, and HIS146. On the other hand, chlorogenic acid (12) achieved a docking score of -7.32 kcal/mol, forming stable interactions with TYR308, PHE210, and LEU276 residues. These findings suggest that TMESLR and TMESLR-NCs possess promising anticancer activity and warrant further investigation as potential therapeutic agents.
Collapse
Affiliation(s)
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia National University, New Minia, Egypt
| | - Soad A. Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Hesham A. Abou-Zied
- Department of Medicinal Chemistry, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Usama R. Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
- Deraya Center for Scientific Research, Deraya University, Universities Zone, New Minia, Egypt
| | - Ashraf N. E. Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia National University, New Minia, Egypt
| |
Collapse
|
7
|
Feng Q, Yu L, Li L, Zhang Q. Covalent inhibitors meet epigenetics: New opportunities. Eur J Med Chem 2024; 280:116951. [PMID: 39406112 DOI: 10.1016/j.ejmech.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 11/25/2024]
Abstract
Epigenetic intervention has become an important therapeutic strategy for a variety of diseases, such as cancer. Although a small number of epigenetic drugs have been marketed, most of these inhibitors are limited by their poor efficacy, dose-dependent toxicity, poor selectivity, and drug resistance. The development of covalent inhibitors has progressed from questioning to resurgence. Its slow dissociation is expected to inject new vitality into epigenetic drugs. In this review, more than 40 covalent inhibitors of 29 epigenetic targets were collated, focusing on their design strategies, reaction mechanisms, covalent warheads and targeted amino acids, and covalent verification methods. Furthermore, this review presented new opportunities based on the current development of covalent inhibitors targeting epigenetic regulators. It is believed that epigenetic covalent inhibitors will lead to more breakthroughs.
Collapse
Affiliation(s)
- Qiang Feng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, And Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Lu Li
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, And Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China; Department of Pharmacy, West China Second University Hospital, Sichuan University, Children's Medicine Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
8
|
Sanese P, Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Grossi V, Simone C. Methyltransferases in cancer drug resistance: Unlocking the potential of targeting SMYD3 to sensitize cancer cells. Biochim Biophys Acta Rev Cancer 2024; 1879:189203. [PMID: 39461625 DOI: 10.1016/j.bbcan.2024.189203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Drug resistance is a significant challenge in oncology and is driven by various mechanisms, among which a crucial role is played by enhanced DNA repair. Thus, targeting DNA damage response (DDR) factors with specific inhibitors is emerging as a promising therapeutic strategy. An important process involved in the modulation of DNA repair pathways, and hence in drug resistance, is post-translational modification (PTM). PTMs such as methylation affect protein function and are critical in cancer biology. Methylation is catalyzed by specific enzymes called protein methyltransferases. In recent years, the SET domain-containing N-lysine methyltransferase SMYD3 has emerged as a significant oncogenic driver. It is overexpressed in several tumor types and plays a signal-dependent role in promoting gastrointestinal cancer formation and development. Recent evidence indicates that SMYD3 is involved in the maintenance of cancer genome integrity and contributes to drug resistance in response to genotoxic stress by regulating DDR mechanisms. Several potential SMYD3 interactors implicated in DNA repair, especially in the homologous recombination and non-homologous end-joining pathways, have been identified by in silico analyses and confirmed by experimental validation, showing that SMYD3 promotes DDR protein interactions and enzymatic activity, thereby sustaining cancer cell survival. Targeting SMYD3, in combination with standard or targeted therapy, shows promise in overcoming drug resistance in colorectal, gastric, pancreatic, breast, endometrial, and lung cancer models, supporting the integration of SMYD3 inhibition into cancer treatment regimens. In this review, we describe the role played by SMYD3 in drug resistance and analyze its potential as a molecular target to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy; Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari 70124, Italy.
| |
Collapse
|
9
|
Ding Q, Cai J, Jin L, Hu W, Song W, Rose P, Tang Z, Zhan Y, Bao L, Lei W, Zhu YZ. A novel small molecule ZYZ384 targeting SMYD3 for hepatocellular carcinoma via reducing H3K4 trimethylation of the Rac1 promoter. MedComm (Beijing) 2024; 5:e711. [PMID: 39286779 PMCID: PMC11401973 DOI: 10.1002/mco2.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 09/19/2024] Open
Abstract
SMYD3 (SET and MYND domain-containing 3) is a histone lysine methyltransferase highly expressed in different types of cancer(s) and is a promising epigenetic target for developing novel antitumor therapeutics. No selective inhibitors for this protein have been developed for cancer treatment. Therefore, the current study describes developing and characterizing a novel small molecule ZYZ384 screened and synthesized based on SMYD3 structure. Virtual screening was initially used to identify a lead compound and followed up by modification to get the novel molecules. Several technologies were used to facilitate compound screening about these novel molecules' binding affinities and inhibition activities with SMYD3 protein; the antitumor activity has been assessed in vitro using various cancer cell lines. In addition, a tumor-bearing nude mice model was established, and the activity of the selected molecule was determined in vivo. Both RNA-seq and chip-seq were performed to explore the antitumor mechanism. This work identified a novel small molecule ZYZ384 targeting SMYD3 with antitumor activity and impaired hepatocellular carcinoma tumor growth by reducing H3K4 trimethylation of the Rac1 promoter triggering the tumor cell cycle arrest through the AKT pathway.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
- Affiliated Hospital of Guangdong Medical University Zhanjiang China
- Joint Laboratory of TCM Innovation (Transformation) of Guizhou and Macau Guizhou University of Traditional Chinese Medicine Guiyang China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Wu Song
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Peter Rose
- School of Biosciences University of Nottingham Loughborough UK
| | - Zhiyuan Tang
- Department of Pharmacy Affiliated Hospital of Nantong University & Medical School of Nantong University Nantong China
| | - Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital Navy Military Medical University Shanghai China
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital Navy Military Medical University Shanghai China
| | - Wei Lei
- Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy Fudan University Shanghai China
| |
Collapse
|
10
|
Tsai DE, Lovanov A, Abdelmaksoud A, Akhtar J, Dar MS, Luff M, McKinnon K, Kim S, Robbins Y, Huynh A, Murali M, Bernard B, Sinkoe A, Luo X, B K, Allen CT, Saloura V. Smyd3-mediated immuno-modulation in HPV-negative head and neck squamous cell carcinoma mouse models. iScience 2024; 27:110854. [PMID: 39310755 PMCID: PMC11416682 DOI: 10.1016/j.isci.2024.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
SET and MYND-domain containing protein 3 (SMYD3) mediates epigenetic repression of type I IFN response genes in human papillomavirus (HPV)-negative HNSCC cells, and Smyd3 depletion using anti-sense oligonucleotides (ASOs) increases the sensitivity of syngeneic mouse oral carcinoma (MOC1) models to anti-PD-1 therapy. In this study, we utilized single-cell RNA-seq of MOC1 tumors treated with Smyd3 ASOs and found enrichment of type I IFN response pathways in cancer cells, a shift of CD8+ T-cells toward an activated/memory phenotype, and a shift of neutrophils toward an anti-tumorigenic phenotype. Mechanisms of resistance to the Smyd3 ASO and anti-PD-1 combination were derived from cancer cells, macrophages, and CD8+ T-cells, including neutrophil enrichment through the upregulation of Cxcl2, repression of Cxcl9, and defective antigen presentation. This study sheds light on the immunomodulatory functions of Smyd3 in vivo and provides insight into actionable mechanisms of resistance to improve the efficacy of Smyd3 ASOs and anti-PD-1 combination.
Collapse
Affiliation(s)
- Daniel E. Tsai
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alexei Lovanov
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 20892, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 20892, USA
| | - Jawad Akhtar
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mohd Saleem Dar
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marie Luff
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Katherine McKinnon
- Center for Cancer Research Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD 20852, USA
| | - Yvette Robbins
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Angel Huynh
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Madhavi Murali
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Benjamin Bernard
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andrew Sinkoe
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Karim B
- Molecular Histopathology Laboratory, National Institutes of Health, Frederick, MD 21702, USA
| | - Clint T. Allen
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Galanopoulou O, Tachmatzidi EC, Deligianni E, Botskaris D, Nikolaou KC, Gargani S, Dalezios Y, Chalepakis G, Talianidis I. Endonucleosis mediates internalization of cytoplasm into the nucleus. Nat Commun 2024; 15:5843. [PMID: 38992049 PMCID: PMC11239883 DOI: 10.1038/s41467-024-50259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Setd8 regulates transcription elongation, mitotic DNA condensation, DNA damage response and replication licensing. Here we show that, in mitogen-stimulated liver-specific Setd8-KO mice, most of the hepatocytes are eliminated by necrosis but a significant number of them survive via entering a stage exhibiting several senescence-related features. Setd8-deficient hepatocytes had enlarged nuclei, chromosomal hyperploidy and nuclear engulfments progressing to the formation of intranuclear vesicles surrounded by nuclear lamina. These vesicles contain glycogen, cytoplasmic proteins and even entire organelles. We term this process "endonucleosis". Intranuclear vesicles are absent in hepatocytes of Setd8/Atg5 knockout mice, suggesting that the process requires the function of the canonical autophagy machinery. Endonucleosis and hyperploidization are temporary, early events in the surviving Setd8-deficient cells. Larger vesicles break down into microvesicles over time and are eventually eliminated. The results reveal sequential events in cells with extensive DNA damage, which function as part of survival mechanisms to prevent necrotic death.
Collapse
Affiliation(s)
- Ourania Galanopoulou
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Dept. of Biology University of Crete, Heraklion, Crete, Greece
| | - Evangelia C Tachmatzidi
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Dept. of Biology University of Crete, Heraklion, Crete, Greece
| | - Elena Deligianni
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dimitris Botskaris
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Dept. of Biology University of Crete, Heraklion, Crete, Greece
| | | | - Sofia Gargani
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Yannis Dalezios
- School of Medicine University of Crete, Heraklion, Crete, Greece
| | | | - Iannis Talianidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
12
|
Wang ZH, Wang J, Liu F, Sun S, Zheng Q, Hu X, Yin Z, Xie C, Wang H, Wang T, Zhang S, Wang YP. THAP3 recruits SMYD3 to OXPHOS genes and epigenetically promotes mitochondrial respiration in hepatocellular carcinoma. FEBS Lett 2024; 598:1513-1531. [PMID: 38664231 DOI: 10.1002/1873-3468.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria harbor the oxidative phosphorylation (OXPHOS) system to sustain cellular respiration. However, the transcriptional regulation of OXPHOS remains largely unexplored. Through the cancer genome atlas (TCGA) transcriptome analysis, transcription factor THAP domain-containing 3 (THAP3) was found to be strongly associated with OXPHOS gene expression. Mechanistically, THAP3 recruited the histone methyltransferase SET and MYND domain-containing protein 3 (SMYD3) to upregulate H3K4me3 and promote OXPHOS gene expression. The levels of THAP3 and SMYD3 were altered by metabolic cues. They collaboratively supported liver cancer cell proliferation and colony formation. In clinical human liver cancer, both of them were overexpressed. THAP3 positively correlated with OXPHOS gene expression. Together, THAP3 cooperates with SMYD3 to epigenetically upregulate cellular respiration and liver cancer cell proliferation.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Sijun Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaotian Hu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zihan Yin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, China
| | - Shengjie Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yi-Ping Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
13
|
Sanese P, De Marco K, Lepore Signorile M, La Rocca F, Forte G, Latrofa M, Fasano C, Disciglio V, Di Nicola E, Pantaleo A, Bianco G, Spilotro V, Ferroni C, Tubertini M, Labarile N, De Marinis L, Armentano R, Gigante G, Lantone V, Lantone G, Naldi M, Bartolini M, Varchi G, Del Rio A, Grossi V, Simone C. The novel SMYD3 inhibitor EM127 impairs DNA repair response to chemotherapy-induced DNA damage and reverses cancer chemoresistance. J Exp Clin Cancer Res 2024; 43:151. [PMID: 38812026 PMCID: PMC11137994 DOI: 10.1186/s13046-024-03078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Francesca La Rocca
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giusy Bianco
- Animal Facility, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vito Spilotro
- Animal Facility, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
| | - Matilde Tubertini
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
- Department of Chemical and Environmental Sciences, University of Insubria, Como, 22100, Italy
| | - Nicoletta Labarile
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Lucia De Marinis
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Raffaele Armentano
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Gianluigi Gigante
- General Surgery Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valerio Lantone
- General Surgery Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
- General Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari, 70124, Italy
| | | | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, 40126, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, 40126, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
- Innovamol Consulting Srl, Modena, 41126, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari, 70124, Italy.
| |
Collapse
|
14
|
Agborbesong E, Zhou JX, Zhang H, Li LX, Harris PC, Calvet JP, Li X. SMYD3 Controls Ciliogenesis by Regulating Distinct Centrosomal Proteins and Intraflagellar Transport Trafficking. Int J Mol Sci 2024; 25:6040. [PMID: 38892227 PMCID: PMC11172885 DOI: 10.3390/ijms25116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongbing Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C. Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Sajic T, Ferreira Gomes CK, Gasser M, Caputo T, Bararpour N, Landaluce-Iturriria E, Augsburger M, Walter N, Hainard A, Lopez-Mejia IC, Fracasso T, Thomas A, Gilardi F. SMYD3: a new regulator of adipocyte precursor proliferation at the early steps of differentiation. Int J Obes (Lond) 2024; 48:557-566. [PMID: 38148333 PMCID: PMC10978492 DOI: 10.1038/s41366-023-01450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND In obesity, adipose tissue undergoes a remodeling process characterized by increased adipocyte size (hypertrophia) and number (hyperplasia). The ability to tip the balance toward the hyperplastic growth, with recruitment of new fat cells through adipogenesis, seems to be critical for a healthy adipose tissue expansion, as opposed to a hypertrophic growth that is accompanied by the development of inflammation and metabolic dysfunction. However, the molecular mechanisms underlying the fine-tuned regulation of adipose tissue expansion are far from being understood. METHODS We analyzed by mass spectrometry-based proteomics visceral white adipose tissue (vWAT) samples collected from C57BL6 mice fed with a HFD for 8 weeks. A subset of these mice, called low inflammation (Low-INFL), showed reduced adipose tissue inflammation, as opposed to those developing the expected inflammatory response (Hi-INFL). We identified the discriminants between Low-INFL and Hi-INFL vWAT samples and explored their function in Adipose-Derived human Mesenchymal Stem Cells (AD-hMSCs) differentiated to adipocytes. RESULTS vWAT proteomics allowed us to quantify 6051 proteins. Among the candidates that most differentiate Low-INFL from Hi-INFL vWAT, we found proteins involved in adipocyte function, including adiponectin and hormone sensitive lipase, suggesting that adipocyte differentiation is enhanced in Low-INFL, as compared to Hi-INFL. The chromatin modifier SET and MYND Domain Containing 3 (SMYD3), whose function in adipose tissue was so far unknown, was another top-scored hit. SMYD3 expression was significantly higher in Low-INFL vWAT, as confirmed by western blot analysis. Using AD-hMSCs in culture, we found that SMYD3 mRNA and protein levels decrease rapidly during the adipocyte differentiation. Moreover, SMYD3 knock-down before adipocyte differentiation resulted in reduced H3K4me3 and decreased cell proliferation, thus limiting the number of cells available for adipogenesis. CONCLUSIONS Our study describes an important role of SMYD3 as a newly discovered regulator of adipocyte precursor proliferation during the early steps of adipogenesis.
Collapse
Affiliation(s)
- Tatjana Sajic
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Marie Gasser
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nasim Bararpour
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Marc Augsburger
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Nadia Walter
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Hainard
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Tony Fracasso
- Unit of Forensic Medicine, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland.
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Qu Z, Sun Y, Zhou X, Yan X, Xu T. Smyd3 negatively regulates the anti-viral pathway by promoting TAK1 degradation in teleost fish. J Virol 2023; 97:e0130623. [PMID: 37943055 PMCID: PMC10688333 DOI: 10.1128/jvi.01306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE In this study, we have found that the existence of Smyd3 promoted the replication of SCRV. Additionally, we report that Smyd3 negatively regulates the NF-κB and IRF3 signaling pathway by facilitating the degradation of TAK1 in fish. Our findings suggest that Smyd3 interacts with TAK1. Further investigations have revealed that Smyd3 specifically mediates K48-linked ubiquitination of TAK1 and enhances TAK1 degradation, resulting in a significant inhibition of the NF-κB and IRF3 signaling pathway. These results not only contribute to the advancement of fish anti-viral immunity but also provide new evidence for understanding the mechanism of TAK1 in mammals.
Collapse
Affiliation(s)
- Zhili Qu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuqin Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuefeng Zhou
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Ikram S, Rege A, Negesse MY, Casanova AG, Reynoird N, Green EM. The SMYD3-MAP3K2 signaling axis promotes tumor aggressiveness and metastasis in prostate cancer. SCIENCE ADVANCES 2023; 9:eadi5921. [PMID: 37976356 PMCID: PMC10656069 DOI: 10.1126/sciadv.adi5921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Aberrant activation of Ras/Raf/mitogen-activated protein kinase (MAPK) signaling is frequently linked to metastatic prostate cancer (PCa); therefore, the characterization of modulators of this pathway is critical for defining therapeutic vulnerabilities for metastatic PCa. The lysine methyltransferase SET and MYND domain 3 (SMYD3) methylates MAPK kinase kinase 2 (MAP3K2) in some cancers, causing enhanced activation of MAPK signaling. In PCa, SMYD3 is frequently overexpressed and associated with disease severity; however, its molecular function in promoting tumorigenesis has not been defined. We demonstrate that SMYD3 critically regulates tumor-associated phenotypes via its methyltransferase activity in PCa cells and mouse xenograft models. SMYD3-dependent methylation of MAP3K2 promotes epithelial-mesenchymal transition associated behaviors by altering the abundance of the intermediate filament vimentin. Furthermore, activation of the SMYD3-MAP3K2 signaling axis supports a positive feedback loop continually promoting high levels of SMYD3. Our data provide insight into signaling pathways involved in metastatic PCa and enhance understanding of mechanistic functions for SMYD3 to reveal potential therapeutic opportunities for PCa.
Collapse
Affiliation(s)
- Sabeen Ikram
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Apurv Rege
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Maraki Y. Negesse
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Alexandre G. Casanova
- Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France
| | - Nicolas Reynoird
- Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France
| | - Erin M. Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Fasano C, Lepore Signorile M, Di Nicola E, Pantaleo A, Forte G, De Marco K, Sanese P, Disciglio V, Grossi V, Simone C. The chromatin remodeling factors EP300 and TRRAP are novel SMYD3 interactors involved in the emerging 'nonmutational epigenetic reprogramming' cancer hallmark. Comput Struct Biotechnol J 2023; 21:5240-5248. [PMID: 37954147 PMCID: PMC10632561 DOI: 10.1016/j.csbj.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
SMDY3 is a histone-lysine N-methyltransferase involved in several oncogenic processes and is believed to play a major role in various cancer hallmarks. Recently, we identified ATM, BRCA2, CHK2, MTOR, BLM, MET, AMPK, and p130 as direct SMYD3 interactors by taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes to systematically search the human proteome. Here, we used this innovative approach to identify further SMYD3-interacting proteins involved in crucial cancer pathways and found that the chromatin remodeling factors EP300 and TRRAP interact directly with SMYD3, thus linking SMYD3 to the emerging 'nonmutational epigenetic reprogramming' cancer hallmark. Of note, we validated these interactions in gastrointestinal cancer cell lines, including HCT-116 cells, which harbor a C-terminal truncating mutation in EP300, suggesting that EP300 binds to SMYD3 via its N-terminal region. While additional studies are required to ascertain the functional mechanisms underlying these interactions and their significance, the identification of two novel SMYD3 interactors involved in epigenetic cancer hallmark pathways adds important pieces to the puzzle of how SMYD3 exerts its oncogenic role.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology - IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
19
|
Nigam N, Bernard B, Sevilla S, Kim S, Dar MS, Tsai D, Robbins Y, Burkitt K, Sievers C, Allen CT, Bennett RL, Tettey TT, Carter B, Rinaldi L, Lingen MW, Sater H, Edmondson EF, Moshiri A, Saeed A, Cheng H, Luo X, Brennan K, Koparde V, Chen C, Das S, Andresson T, Abdelmaksoud A, Murali M, Sakata S, Takeuchi K, Chari R, Nakamura Y, Uppaluri R, Sunwoo JB, Van Waes C, Licht JD, Hager GL, Saloura V. SMYD3 represses tumor-intrinsic interferon response in HPV-negative squamous cell carcinoma of the head and neck. Cell Rep 2023; 42:112823. [PMID: 37463106 PMCID: PMC10407766 DOI: 10.1016/j.celrep.2023.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Cancers often display immune escape, but the mechanisms are incompletely understood. Herein, we identify SMYD3 as a mediator of immune escape in human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC), an aggressive disease with poor response to immunotherapy with pembrolizumab. SMYD3 depletion induces upregulation of multiple type I interferon (IFN) response and antigen presentation machinery genes in HNSCC cells. Mechanistically, SMYD3 binds to and regulates the transcription of UHRF1, encoding for a reader of H3K9me3, which binds to H3K9me3-enriched promoters of key immune-related genes, recruits DNMT1, and silences their expression. SMYD3 further maintains the repression of immune-related genes through intragenic deposition of H4K20me3. In vivo, Smyd3 depletion induces influx of CD8+ T cells and increases sensitivity to anti-programmed death 1 (PD-1) therapy. SMYD3 overexpression is associated with decreased CD8 T cell infiltration and poor response to neoadjuvant pembrolizumab. These data support combining SMYD3 depletion strategies with checkpoint blockade to overcome anti-PD-1 resistance in HPV-negative HNSCC.
Collapse
Affiliation(s)
- Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Samantha Sevilla
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mohd Saleem Dar
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Daniel Tsai
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Cem Sievers
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | | | - Theophilus T Tettey
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Carter
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mark W Lingen
- University of Chicago, Department of Pathology, Chicago, IL 60637, USA
| | - Houssein Sater
- GU Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Arfa Moshiri
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Abbas Saeed
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Kevin Brennan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Chen Chen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | | | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carter Van Waes
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Wang S, You X, Liu X, Fengwei Zhang, Zhou H, Shang X, Cai L. SMYD3 induces sorafenib resistance by activating SMAD2/3-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. iScience 2023; 26:106994. [PMID: 37534166 PMCID: PMC10391607 DOI: 10.1016/j.isci.2023.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/19/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
Drug resistance prominently hampers the effects of systemic therapy of sorafenib to hepatocellular carcinoma (HCC). Epigenetics have critical regulatory roles in drug resistance. However, the contributions of histone methylatransferase SET and MYND domain containing 3 (SMYD3) to sorafenib resistance in HCC remain largely unknown. Here, using our established sorafenib-resistant HCC cell and xenograft models, we found SMYD3 was markedly elevated in sorafenib-resistant tumors and cells. Functionally, loss- and gain-of-function studies showed that SMYD3 promoted the migration, invasion, metastasis and stemness of sorafenib-resistant HCC cells. Mechanistically, SMYD3 is required for SMAD2/3-mediated epithelial-mesenchymal transition (EMT) in sorafenib-resistant HCC cells by interacting with SMAD2/3 and epigenetically promoting the expression of SOX4, ZEB1, SNAIL1 and MMP9 genes. In summary, our data demonstrate that targeting SMYD3 is an effective approach to overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Shanshan Wang
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Xin You
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilong Jiang, China
| | - Xiaoshu Liu
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Fengwei Zhang
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Hongjuan Zhou
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Xuechai Shang
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Long Cai
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
21
|
Zeng Y, Ma G, Cai F, Wang P, Liang H, Zhang R, Deng J, Liu Y. SMYD3 drives the proliferation in gastric cancer cells via reducing EMP1 expression in an H4K20me3-dependent manner. Cell Death Dis 2023; 14:386. [PMID: 37386026 PMCID: PMC10310787 DOI: 10.1038/s41419-023-05907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Protein lysine methyltransferase SET and MYND domain-containing 3 (SMYD3) is aberrantly expressed in various cancer settings. The mechanisms that SMYD3 activates the expression of critical pro-tumoral genes in an H3K4me3-dependent manner have been well described in previous reports. Besides H3K4me3, H4K20me3 is another catalytic product of SMYD3, however it is a transcriptionally repressive hallmark. Since it is not clear that how SMYD3-elicited transcriptionally repressive program functions in cancer, we used gastric cancer (GC) as a model to investigate the roles of SMYD3-H4K20me3. Herein, online bioinformatics tools, quantitative PCR, western blotting and immunohistochemistry assays demonstrated that SMYD3 expression was markedly increased in GC tissues from our institutional and The Cancer Genome Atlas (TCGA) cohort. Additionally, aberrantly increased SMYD3 expression was closely associated with aggressive clinical characteristics and poor prognosis. Depletion of endogenous SMYD3 expression using shRNAs significantly attenuates the proliferation in GC cells and Akt signaling pathway in vitro and in vivo. Mechanistically, chromatin immunoprecipitation (ChIP) assay showed that SMYD3 epigenetically repressed the expression of epithelial membrane protein 1 (EMP1) in an H4K20me3-dependent manner. Gain-of-function and rescue experiments validated that EMP1 inhibited the propagation of GC cells and reduced p-Akt (S473) level. Based on these data, pharmaceutical inhibition of SMYD3 activity using the small inhibitor BCI-121 deactivated Akt signaling pathway in GC cells and further impaired the cellular viability in vitro and in vivo. Together, these results demonstrate that SMYD3 promotes the proliferation in GC cells and may be a valid target for therapeutic intervention of patients with GC.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350000, Fujian, PR China
| | - Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Fenglin Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Pengliang Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| | - Yong Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| |
Collapse
|
22
|
Yang Z, Liu F, Li Z, Liu N, Yao X, Zhou Y, Zhang L, Jiang P, Liu H, Kong L, Lang C, Xu X, Jia J, Nakajima T, Gu W, Zheng L, Zhang Z. Histone lysine methyltransferase SMYD3 promotes oral squamous cell carcinoma tumorigenesis via H3K4me3-mediated HMGA2 transcription. Clin Epigenetics 2023; 15:92. [PMID: 37237385 DOI: 10.1186/s13148-023-01506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Epigenetic dysregulation is essential to the tumorigenesis of oral squamous cell carcinoma (OSCC). SET and MYND domain-containing protein 3 (SMYD3), a histone lysine methyltransferase, is implicated in gene transcription regulation and tumor development. However, the roles of SMYD3 in OSCC initiation are not fully understood. The present study investigated the biological functions and mechanisms involved in the SMYD3-mediated tumorigenesis of OSCC utilizing bioinformatic approaches and validation assays with the aim of informing the development of targeted therapies for OSCC. RESULTS 429 chromatin regulators were screened by a machine learning approach and aberrant expression of SMYD3 was found to be closely associated with OSCC formation and poor prognosis. Data profiling of single-cell and tissue demonstrated that upregulated SMYD3 significantly correlated with aggressive clinicopathological features of OSCC. Alterations in copy number and DNA methylation patterns may contribute to SMYD3 overexpression. Functional experimental results suggested that SMYD3 enhanced cancer cell stemness and proliferation in vitro and tumor growth in vivo. SMYD3 was observed to bind to the High Mobility Group AT-Hook 2 (HMGA2) promoter and elevated tri-methylation of histone H3 lysine 4 at the corresponding site was responsible for transactivating HMGA2. SMYD3 also was positively linked to HMGA2 expression in OSCC samples. Furthermore, treatment with the SMYD3 chemical inhibitor BCI-121 exerted anti-tumor effects. CONCLUSIONS Histone methyltransferase activity and transcription-potentiating function of SMYD3 were found to be essential for tumorigenesis and the SMYD3-HMGA2 is a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zongcheng Yang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Fen Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, People's Republic of China
| | - Zongkai Li
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Nianping Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xinfeng Yao
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yu Zhou
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Liyu Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Pan Jiang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Honghong Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Lingming Kong
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chuandong Lang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Zhihong Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
23
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
24
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023; 28:molecules28042000. [PMID: 36838987 PMCID: PMC9967872 DOI: 10.3390/molecules28042000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
Affiliation(s)
- Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Lydia Huesgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA
- Correspondence: (M.A.B.); (D.C.C.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Correspondence: (M.A.B.); (D.C.C.)
| |
Collapse
|
25
|
SMYD Family Members Serve as Potential Prognostic Markers and Correlate with Immune Infiltrates in Gastric Cancer. JOURNAL OF ONCOLOGY 2023; 2023:6032864. [PMID: 36816359 PMCID: PMC9929213 DOI: 10.1155/2023/6032864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/10/2023]
Abstract
Background The SMYD family comprises a group of genes encoding lysine methyltransferases, which are closely related to tumorigenesis. However, a systematic understanding of their role in gastric cancer (GC) is lacking. Methods Using databases and tools such as the Cancer Genome Atlas, Human Protein Atlas, Kaplan-Meier Plotter, Gene Expression Profiling Interactive Analysis, and Metascape, we comprehensively analyzed differences in SMYD expression and its prognostic value as well as the association of SMYDs with immune cell infiltration, tumor mutational burden (TMB), and microsatellite instability (MSI). We conducted functional enrichment analysis and explored a competing endogenous RNA mechanism regulating SMYD mRNA and protein levels in patients with GC. Results In GC, the expression of SMYD2/3/4/5 mRNA was significantly upregulated, as opposed to that of SMYD1 mRNA, which was significantly downregulated. The protein levels of SMYDs were consistent with mRNA levels. SMYD1/2/4/5 was negatively correlated with overall survival; SMYD1/2/3/5 was negatively correlated with progression-free survival. Our SMYD-based signature and nomogram model may be useful for inferring the prognosis of GC. All SMYDs were closely associated with the infiltration of six immune cell types: uncharacterized, CD8+ T, CD4+ T, macrophage, endothelial, and B cells. TMB was significantly negatively correlated with SMYD1 expression, while a significant positive correlation was observed with SMYD2/5. Furthermore, MSI was significantly positively correlated with SMYD2/5 expression. Long non-coding RNAs, such as chr22-38_28785274-29006793.1, XLOC_002309, and CTD-2008N3.1, were suggested to regulate SMYD expression by sponging multiple microRNAs. Conclusion SMYDs are differentially expressed in GC and are thus potential prognostic markers. SMYD expression is closely related to immune infiltration, TMB, and MSI, all of which are closely related to the response to targeted immune therapy.
Collapse
|
26
|
Yang Y, Qiu R, Zhao S, Shen L, Tang B, Weng Q, Xu Z, Zheng L, Chen W, Shu G, Wang Y, Zhao Z, Chen M, Ji J. SMYD3 associates with the NuRD (MTA1/2) complex to regulate transcription and promote proliferation and invasiveness in hepatocellular carcinoma cells. BMC Biol 2022; 20:294. [PMID: 36575438 PMCID: PMC9795622 DOI: 10.1186/s12915-022-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND SMYD3, a member of the SET and MYND domain-containing (SMYD) family, is a histone methyltransferase (HMT) and transcription factor that plays an important role in transcriptional regulation in human carcinogenesis. RESULTS Using affinity purification and mass spectrometry assays to identify SMYD3-associated proteins in hepatocellular carcinoma (HCC) cells, we found several previously undiscovered SMYD3-interacting proteins, including the NuRD (MTA1/2) complex, the METTL family, and the CRL4B complex. Transcriptomic analysis of the consequences of knocking down SMYD3, MTA1, or MTA2 in HCC cells showed that SMYD3/NuRD complex targets a cohort of genes, some of which are critically involved in cell growth and migration. qChIP analyses showed that SMYD3 knockdown led to a significant reduction in the binding of MTA1 or MTA2 to the promoters of IGFBP4 and led to a significant decrease in H4K20me3 and a marked increase in H4Ac at the IGFBP4 promoter. In addition, we demonstrated that SMYD3 promotes cell proliferation, invasion, and tumorigenesis in vivo and in vitro and found that its expression is markedly upregulated in human liver cancer. Knockdown of MTA1 or MTA2 had the same effect as knockdown of SMYD3 on proliferation and invasion of hepatocellular carcinoma cells. Catalytic mutant SMYD3 could not rescue the phenotypic effects caused by knockdown of SMYD3. Inhibitors of SMYD3 effectively inhibited the proliferation and invasiveness of HCC cells. CONCLUSIONS These findings revealed that SMYD3 could transcriptionally repress a cohort of target genes expression by associating with the NuRD (MTA1/2) complex, thereby promoting the proliferation and invasiveness of HCC cells. Our results support the case for pursuing SMYD3 as a practical prognostic marker or therapeutic target against HCC.
Collapse
Affiliation(s)
- Yang Yang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Rongfang Qiu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Siyu Zhao
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Lin Shen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Bufu Tang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Qiaoyou Weng
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Ziwei Xu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Liyun Zheng
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Weiqian Chen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Gaofeng Shu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Yajie Wang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Zhongwei Zhao
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Minjiang Chen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Jiansong Ji
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| |
Collapse
|
27
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Methyltransferase SMYD3 impairs hypoxia tolerance by augmenting hypoxia signaling independent of its enzymatic activity. J Biol Chem 2022; 298:102633. [PMID: 36273580 PMCID: PMC9692045 DOI: 10.1016/j.jbc.2022.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-inducible factor (HIF)1α, a main transcriptional regulator of the cellular response to hypoxia, also plays important roles in oxygen homeostasis of aerobic organisms, which is regulated by multiple mechanisms. However, the full cellular response to hypoxia has not been elucidated. In this study, we found that expression of SMYD3, a methyltransferase, augments hypoxia signaling independent of its enzymatic activity. We demonstrated SMYD3 binds to and stabilizes HIF1α via co-immunoprecipitation and Western blot assays, leading to the enhancement of HIF1α transcriptional activity under hypoxia conditions. In addition, the stabilization of HIF1α by SMYD3 is independent of HIF1α hydroxylation by prolyl hydroxylases and the intactness of the von Hippel-Lindau ubiquitin ligase complex. Furthermore, we showed SMYD3 induces reactive oxygen species accumulation and promotes hypoxia-induced cell apoptosis. Consistent with these results, we found smyd3-null zebrafish exhibit higher hypoxia tolerance compared to their wildtype siblings. Together, these findings define a novel role of SMYD3 in affecting hypoxia signaling and demonstrate that SMYD3-mediated HIF1α stabilization augments hypoxia signaling, leading to the impairment of hypoxia tolerance.
Collapse
|
29
|
Tian Z, Xu C, Yang P, Lin Z, Wu W, Zhang W, Ding J, Ding R, Zhang X, Dou K. Molecular pathogenesis: Connections between viral hepatitis-induced and non-alcoholic steatohepatitis-induced hepatocellular carcinoma. Front Immunol 2022; 13:984728. [PMID: 36189208 PMCID: PMC9520190 DOI: 10.3389/fimmu.2022.984728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma(HCC) is the sixth most common cancer in the world and is usually caused by viral hepatitis (HBV and HCV), alcoholic, and non-alcoholic fatty liver disease(NAFLD). Viral hepatitis accounts for 80% of HCC cases worldwide. In addition, With the increasing incidence of metabolic diseases, NAFLD is now the most common liver disease and a major risk factor for HCC in most developed countries. This review mainly described the specificity and similarity between the pathogenesis of viral hepatitis(HBV and HCV)-induced HCC and NAFLD-induced HCC. In general, viral hepatitis promotes HCC development mainly through specific encoded viral proteins. HBV can also exert its tumor-promoting mechanism by integrating into the host chromosome, while HCV cannot. Viral hepatitis-related HCC and NASH-related HCC differ in terms of genetic factors, and epigenetic modifications (DNA methylation, histone modifications, and microRNA effects). In addition, both of them can lead to HCC progression through abnormal lipid metabolism, persistent inflammatory response, immune and intestinal microbiome dysregulation.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenlong Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| |
Collapse
|
30
|
SMYD3 promotes aerobic glycolysis in diffuse large B-cell lymphoma via H3K4me3-mediated PKM2 transcription. Cell Death Dis 2022; 13:763. [PMID: 36057625 PMCID: PMC9440895 DOI: 10.1038/s41419-022-05208-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Genetic abnormalities in histone methyltransferases (HMTs) frequently occur in diffuse large B-cell lymphoma (DLBCL) and are related to its progression. SET and MYND domain containing 3 (SMYD3) is an HMT that is upregulated in various tumors and promotes their malignancy. However, to the best of our knowledge, the function of SMYD3 in DLBCL has not been investigated thus far. In the present study, 22 HMT genes related to cancer development were first selected according to current literature, and it was found that high SMYD3 expression was significantly associated with poor progression-free survival in patients with DLBCL. SMYD3 protein levels were upregulated and positively associated with poor prognosis and poor responsiveness to chemotherapy in patients with DLBCL. Functional examinations demonstrated that SMYD3 increased cell proliferation and the flux of aerobic glycolysis in DLBCL cells in vitro and in vivo and decreased cell sensitivity to doxorubicin in vitro. Moreover, SMYD3 could directly bind to specific sequences of Pyruvate Kinase M2 (PKM2) and promote DLBCL cell proliferation and aerobic glycolysis via H3K4me3-mediated PKM2 transcription. Clinically, SMYD3 expression positively correlated with that of PKM2, and high SMYD3 was significantly associated with high maximum standardized uptake value (SUVmax) detected by [(18)F]-fluorodeoxyglucose ((18)F-FDG) PET/computed tomography (PET/CT) in DLBCL samples. Concomitant expression of SMYD3 and PKM2 positively correlated with poor progression-free and overall survival in patients with DLBCL and may serve as novel biomarkers in DLBCL.
Collapse
|
31
|
Wang X, Liu D, Yang J. Clinicopathological and Prognostic Significance of SMYD3 in Human Cancers: A Systematic Review and Meta-analysis. Genet Test Mol Biomarkers 2022; 26:331-339. [PMID: 35763383 DOI: 10.1089/gtmb.2021.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Dysregulation of the SET and MYND domain-containing protein 3 (SMYD3) has been found in multiple cancers. This meta-analysis aimed to elucidate the association between SMYD3 expression and clinical outcomes in cancer. Methods: A systematic search of Web of Science, Embase, PubMed, Cochrane Library, and CNKI was conducted. The relationship between SMYD3 expression and cancer patients' overall survival (OS) was evaluated using pooled hazard ratios (HRs) and their corresponding confidence intervals (95% CIs). The association between SMYD3 expression and clinicopathological features was assessed using odds ratios (ORs) with 95% CIs, including tumor size, lymph node metastasis (LNM), distance metastasis, and TNM stage. Results: In total, 715 cancer patients with hepatocellular carcinoma, nonsmall cell lung carcinoma, esophageal squamous cell carcinoma, glioma, colorectal cancer, and/or bladder cancer from seven studies were included in our meta-analysis. SMYD3 overexpression was significantly associated with poor OS (HR = 1.81, 95% CI: 1.38-2.37, p < 0.01) with no heterogeneity (I2 = 0.0%, p = 0.929) in various cancers. Subgroup analysis showed that the prognostic value of SMYD3 across multiple tumors was constant as the tumor type, sample size, and methods of data extraction changed. Increased SMYD3 expression was positively associated with LNM (OR = 1.88, 95% CI = 1.33-2.66, p < 0.001), tumor size (OR = 1.68, 95% CI: 1.09-2.60, p = 0.019), and advanced TNM stage (OR = 1.84, 95% CI: 1.25-2.69, p = 0.002). Conclusions: Upregulation of SMYD3 was significantly associated with poor prognosis in various cancers, suggesting that SMYD3 may be a useful prognostic biomarker.
Collapse
Affiliation(s)
- Xuan Wang
- The Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Oncology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, China
| | - Debao Liu
- Department of Oncology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
32
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Sanese P, Grossi V, Simone C. Identifying novel SMYD3 interactors on the trail of cancer hallmarks. Comput Struct Biotechnol J 2022; 20:1860-1875. [PMID: 35495117 PMCID: PMC9039736 DOI: 10.1016/j.csbj.2022.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
SMYD3 overexpression in several human cancers highlights its crucial role in carcinogenesis. Nonetheless, SMYD3 specific activity in cancer development and progression is currently under debate. Taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes, we recently identified BRCA2, ATM, and CHK2 as direct SMYD3 interactors. To gain insight into novel SMYD3 cancer-related roles, here we performed a comprehensive in silico analysis to cluster all potential SMYD3-interacting proteins identified by screening the human proteome for the previously tested tripeptides, based on their involvement in cancer hallmarks. Remarkably, we identified mTOR, BLM, MET, AMPK, and p130 as new SMYD3 interactors implicated in cancer processes. Further studies are needed to characterize the functional mechanisms underlying these interactions. Still, these findings could be useful to devise novel therapeutic strategies based on the combined inhibition of SMYD3 and its newly identified molecular partners. Of note, our in silico methodology may be useful to search for unidentified interactors of other proteins of interest.
Collapse
Key Words
- AMPK, 5′AMP-activated protein kinase
- BLM, Bloom syndrome protein
- CRC, colorectal cancer
- EMT, epithelial-mesenchymal transition
- GC, gastric cancer
- Gastrointestinal cancer cell lines
- H3K4, histone H3 lysine 4
- H4K5, histone H4 lysine 5
- HCC, hepatocellular carcinoma
- HGF, hepatocyte growth factor
- Hallmarks of cancer
- In silico tripeptide screening
- PC, pancreatic cancer
- PPIs, protein–protein interactions
- RB, retinoblastoma protein
- SMYD3
- SMYD3 interactome
- SMYD3i, SMYD3 inhibitor
- UCEC, uterine corpus endometrial carcinoma
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Katia De Marco
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
33
|
Asuthkar S, Venkataraman S, Avilala J, Shishido K, Vibhakar R, Veo B, Purvis IJ, Guda MR, Velpula KK. SMYD3 Promotes Cell Cycle Progression by Inducing Cyclin D3 Transcription and Stabilizing the Cyclin D1 Protein in Medulloblastoma. Cancers (Basel) 2022; 14:cancers14071673. [PMID: 35406445 PMCID: PMC8997160 DOI: 10.3390/cancers14071673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Medulloblastoma is the most common malignant pediatric brain tumor and is classified into four molecular subgroups: Wnt, Shh, Group 3, and Group 4. Of these subgroups, patients with Myc+ Group 3 MB have the worst prognosis. Using an RNAi functional genomic screen, we identified the lysine methyltransferase SMYD3 as a crucial epigenetic regulator responsible for promoting Group 3 MB cell growth. We demonstrated that SMYD3 drives MB cell cycle progression by inducing cyclin D3 transcription and preventing cyclin D1 ubiquitination. Using in vitro and ex vivo studies, we showed that SMYD3 suppression by shRNA and BCI-121 significantly impaired proliferation, resulting in the downregulation of cyclin D3, cyclin D1, and pRBSer795. Moreover, we are the first to show that SMYD3 methylates the cyclin D1 protein, indicating that the SMYD3 stabilizes cyclin D1 through post-translational modification. Collectively, our studies position SMYD3 as a promising treatment option for Group 3 Myc+ MB patients. Abstract Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Maximum safe resection, postoperative craniospinal irradiation, and chemotherapy are the standard of care for MB patients. MB is classified into four subgroups: Shh, Wnt, Group 3, and Group 4. Of these subgroups, patients with Myc+ Group 3 MB have the worst prognosis, necessitating alternative therapies. There is increasing interest in targeting epigenetic modifiers for treating pediatric cancers, including MB. Using an RNAi functional genomic screen, we identified the lysine methyltransferase SMYD3, as a crucial epigenetic regulator that drives the growth of Group 3 Myc+ MB cells. We demonstrated that SMYD3 directly binds to the cyclin D3 promoter to activate its transcription. Further, SMYD3 depletion significantly reduced MB cell proliferation and led to the downregulation of cyclin D3, cyclin D1, pRBSer795, with concomitant upregulations in RB in vitro. Similar results were obtained following pharmacological inhibition of SMYD3 using BCI-121 ex vivo. SMYD3 knockdown also promoted cyclin D1 ubiquitination, indicating that SMYD3 plays a vital role in stabilizing the cyclin D1 protein. Collectively, our studies demonstrate that SMYD3 drives cell cycle progression in Group 3 Myc+ MB cells and that targeting SMYD3 has the potential to improve clinical outcomes for high-risk patients.
Collapse
Affiliation(s)
- Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
- Correspondence:
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.V.); (R.V.); (B.V.)
| | - Janardhan Avilala
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
| | - Katherine Shishido
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.V.); (R.V.); (B.V.)
| | - Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.V.); (R.V.); (B.V.)
| | - Ian J. Purvis
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
| | - Maheedhara R. Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
| | - Kiran K. Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| |
Collapse
|
34
|
SMYD5 acts as a potential biomarker for hepatocellular carcinoma. Exp Cell Res 2022; 414:113076. [PMID: 35218722 DOI: 10.1016/j.yexcr.2022.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022]
Abstract
Determining the prognosis of patients remains a challenge due to the phenotypic and molecular diversities of hepatocellular carcinomas (HCC). We aimed to evaluate the role of SMYD5 in HCC. Wilcoxon signed-rank test and logistic regression analyzed the relationship between clinical pathologic features and SMYD5. We found that increased expression of SMYD5 in HCC was closely associated with high histologic grade, stage, T stage and nodal stage. Kaplan-Meier method, Cox regression, univariate analysis and multivariate analysis detected overall survival of TCGA-HCC patients. It turned out that high expression of SMYD5 predicted a worse prognosis in HCC. Gene Set Enrichment Analysis (GSEA) was applied via TCGA data set, which indicated that complement and coagulation cascades, fatty acid metabolism, primary bile acid biosynthesis, drug metabolism cytochrome P450, PPAR signaling pathway and retinol metabolism were differentially enriched in SMYD5 high expression phenotype. Interestingly, we proved that SMYD5 upregulation in HCC cells was induced by promoter hypo-methylation. Moreover, functional experiments demonstrated that SMYD5 silencing abrogated cell proliferation, migration and invasion and enhanced paclitaxel sensitivity in HCC. All findings implied that SMYD5 might be an underlying biomarker for prognosis and treatment of HCC.
Collapse
|
35
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
36
|
Zhong S, Jeong JH, Huang C, Chen X, Dickinson SI, Dhillon J, Yang L, Luo JL. Targeting INMT and interrupting its methylation pathway for the treatment of castration resistant prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:307. [PMID: 34587977 PMCID: PMC8482636 DOI: 10.1186/s13046-021-02109-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023]
Abstract
Background Castration-resistant prostate cancer (CRPC) is associated with a very poor prognosis, and the treatment of which remains a serious clinical challenge. Methods RNA-seq, qPCR, western blot and immunohistochemistry were employed to identify and confirm the high expression of indolethylamine N-methyltransferase (INMT) in CRPC and the clinical relevance. Chip assay was used to identify Histone-Lysine N-Methyltransferase (SMYD3) as a major epigenetic regulator of INMT. LC-MS/MS were used to identify new substrates of INMT methylation in CRPC tissues. Gene knockdown/overexpression, MTT and mouse cancer models were used to examine the role of INMT as well as the anticancer efficacy of INMT inhibitor N,N-dimethyltryptamine (DMT), the SMYD3 inhibitor BCl-12, the selenium compounds methaneseleninic acid (MSA) and Se-(Methyl)selenocysteine hydrochloride (MSC), and the newly identified endogenous INMT substrate Bis(7)-tacrine. Results We found that the expression of INMT was highly increased in CRPC and was correlated with poor prognosis of clinical prostate cancer (PCa). INMT promoted PCa castration resistance via detoxification of anticancer metabolites. Knockdown of INMT or treatment with INMT inhibitor N,N-dimethyltryptamine (DMT) significantly suppressed CRPC development. Histone-Lysine N-Methyltransferase SMYD3 was a major epigenetic regulator of INMT expression, treatment with SMYD3 inhibitor BCl-121 suppressed INMT expression and inhibits CRPC development. Importantly, INMT knockdown significantly increased the anticancer effect of the exogenous selenium compounds methaneseleninic acid (MSA) and Se-(Methyl)selenocysteine hydrochloride (MSC) as well as the endogenous metabolite Bis(7)-tacrine. Conclusions Our study suggests that INMT drives PCa castration resistance through detoxification of anticancer metabolites, targeting INMT or its regulator SMYD3 or/and its methylation metabolites represents an effective therapeutic avenue for CRPC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02109-z.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Changhao Huang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Xueyan Chen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | | - Jasreman Dhillon
- Department of Pathology, Moffitt Cancer Center, 2902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Li Yang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
37
|
Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers (Basel) 2021; 13:cancers13174427. [PMID: 34503239 PMCID: PMC8430692 DOI: 10.3390/cancers13174427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The activity of SMYD3 in promoting carcinogenesis is currently under debate. Growing evidence seems to confirm that SMYD3 overexpression correlates with poor prognosis, cancer growth and invasion, especially in gastrointestinal tumors. In this review, we dissect the emerging role played by SMYD3 in the regulation of cell cycle and DNA damage response by promoting homologous recombination (HR) repair and hence cancer cell genomic stability. Considering the crucial role of PARP1 in other DNA repair mechanisms, we also discuss a recently evaluated synthetic lethality approach based on the combined use of SMYD3 and PARP inhibitors. Interestingly, a significant proportion of HR-proficient gastrointestinal tumors expressing high levels of SMYD3 from the PanCanAtlas dataset seem to be eligible for this innovative strategy. This promising approach could be taken advantage of for therapeutic applications of SMYD3 inhibitors in cancer treatment. Abstract The SMYD3 methyltransferase has been found overexpressed in several types of cancers of the gastrointestinal (GI) tract. While high levels of SMYD3 have been positively correlated with cancer progression in cellular and advanced mice models, suggesting it as a potential risk and prognosis factor, its activity seems dispensable for autonomous in vitro cancer cell proliferation. Here, we present an in-depth analysis of SMYD3 functional role in the regulation of GI cancer progression. We first describe the oncogenic activity of SMYD3 as a transcriptional activator of genes involved in tumorigenesis, cancer development and transformation and as a co-regulator of key cancer-related pathways. Then, we dissect its role in orchestrating cell cycle regulation and DNA damage response (DDR) to genotoxic stress by promoting homologous recombination (HR) repair, thereby sustaining cancer cell genomic stability and tumor progression. Based on this evidence and on the involvement of PARP1 in other DDR mechanisms, we also outline a synthetic lethality approach consisting of the combined use of SMYD3 and PARP inhibitors, which recently showed promising therapeutic potential in HR-proficient GI tumors expressing high levels of SMYD3. Overall, these findings identify SMYD3 as a promising target for drug discovery.
Collapse
|
38
|
SMYD3 promotes hepatocellular carcinoma progression by methylating S1PR1 promoters. Cell Death Dis 2021; 12:731. [PMID: 34301921 PMCID: PMC8302584 DOI: 10.1038/s41419-021-04009-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.
Collapse
|
39
|
Liu D, Wang X, Shi E, Wang L, Nie M, Li L, Jiang Q, Kong P, Shi S, Wang C, Yan S, Qin Z, Zhao S. Comprehensive Analysis of the Value of SMYD Family Members in the Prognosis and Immune Infiltration of Malignant Digestive System Tumors. Front Genet 2021; 12:699910. [PMID: 34335697 PMCID: PMC8322783 DOI: 10.3389/fgene.2021.699910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023] Open
Abstract
Background The SET and MYND domain-containing (SMYD) gene family comprises a set of genes encoding lysine methyltransferases. This study aimed to clarify the relationship between the expression levels of SMYD family members and the prognosis and immune infiltration of malignant tumors of the digestive system. Methods The Oncomine, Ualcan, Kaplan–Meier Plotter, cBioPortal, Metascape, and TIMER databases and tools were used to analyze the correlation of SMYD family mRNA expression, clinical stage, TP53 mutation status, prognostic value, gene mutation, and immune infiltration in patients with esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma (STAD). Results In ESCA, the mRNA expression of SMYD2/3/4/5 was significantly correlated with the incidence rate, that of SMYD2/3 with the clinical stage, that of SMYD2/3/4/5 with TP53 mutation status, that of SMYD2/4/5 with overall survival (OS), and that of SMYD1/2/3/4 with relapse-free survival (RFS). In LIHC, the mRNA expression of SMYD1/2/3/4/5 was significantly correlated with the incidence rate, that of SMYD2/4/5 with the clinical stage, that of SMYD3/5 with TP53 mutation status, that of SMYD2/3/4/5 with OS, and that of SMYD3/5 with RFS. In STAD, the mRNA expression of SMYD2/3/4/5 was significantly correlated with the incidence rate, that of SMYD1/4 with the clinical stage, that of SMYD1/2/3/5 with TP53 mutation status, that of SMYD1/3/4 with OS, and that of SMYD1/3 with RFS. Furthermore, the function of SMYD family mutation-related genes in ESCA, LIHC, and STAD patients was mainly related to pathways, such as mitochondrial gene expression, mitochondrial matrix, and mitochondrial translation. The expression of SMYD family genes was significantly correlated with the infiltration of six immune cell types and eight types of immune check sites. Conclusion SMYD family genes are differentially expressed and frequently mutated in malignant tumors of the digestive system (ESCA, LIHC, and gastric cancer). They are potential markers for prognostic prediction and have important significance in immunity and targeted therapy.
Collapse
Affiliation(s)
- Donghui Liu
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xuyao Wang
- Department of Pharmacy, Harbin Second Hospital, Harbin, China
| | - Enhong Shi
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Liru Wang
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Minghao Nie
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Long Li
- Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingxin Jiang
- Department of General Surgery, Harbin 242 Hospital of AVIC, Harbin, China
| | - Pengyu Kong
- Department of Orthopedics, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Shi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sen Yan
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Qin
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Zhao
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
40
|
Mechanism of the Conformational Change of the Protein Methyltransferase SMYD3: A Molecular Dynamics Simulation Study. Int J Mol Sci 2021; 22:ijms22137185. [PMID: 34281237 PMCID: PMC8267938 DOI: 10.3390/ijms22137185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
SMYD3 is a SET-domain-containing methyltransferase that catalyzes the transfer of methyl groups onto lysine residues of substrate proteins. Methylation of MAP3K2 by SMYD3 has been implicated in Ras-driven tumorigenesis, which makes SMYD3 a potential target for cancer therapy. Of all SMYD family proteins, SMYD3 adopt a closed conformation in a crystal structure. Several studies have suggested that the conformational changes between the open and closed forms may regulate the catalytic activity of SMYD3. In this work, we carried out extensive molecular dynamics simulations on a series of complexes with a total of 21 μs sampling to investigate the conformational changes of SMYD3 and unveil the molecular mechanisms. Based on the C-terminal domain movements, the simulated models could be depicted in three different conformational states: the closed, intermediate and open states. Only in the case that both the methyl donor binding pocket and the target lysine-binding channel had bound species did the simulations show SMYD3 maintaining its conformation in the closed state, indicative of a synergetic effect of the cofactors and target lysine on regulating the conformational change of SMYD3. In addition, we performed analyses in terms of structure and energy to shed light on how the two regions might regulate the C-terminal domain movement. This mechanistic study provided insights into the relationship between the conformational change and the methyltransferase activity of SMYD3. The more complete understanding of the conformational dynamics developed here together with further work may lay a foundation for the rational drug design of SMYD3 inhibitors.
Collapse
|
41
|
Gradl S, Steuber H, Weiske J, Szewczyk MM, Schmees N, Siegel S, Stoeckigt D, Christ CD, Li F, Organ S, Abbey M, Kennedy S, Chau I, Trush V, Barsyte-Lovejoy D, Brown PJ, Vedadi M, Arrowsmith C, Husemann M, Badock V, Bauser M, Haegebarth A, Hartung IV, Stresemann C. Discovery of the SMYD3 Inhibitor BAY-6035 Using Thermal Shift Assay (TSA)-Based High-Throughput Screening. SLAS DISCOVERY 2021; 26:947-960. [PMID: 34154424 DOI: 10.1177/24725552211019409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.
Collapse
Affiliation(s)
- Stefan Gradl
- Bayer AG, Global Drug Discovery, Berlin, Germany
| | | | - Joerg Weiske
- Bayer AG, Global Drug Discovery, Berlin, Germany
| | - Magda M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | | | | | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Shawna Organ
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Megha Abbey
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Steven Kennedy
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Viacheslav Trush
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Lv HW, Xing WQ, Ba YF, Li HM, Wang HR, Li Y. SMYD3 confers cisplatin chemoresistance of NSCLC cells in an ANKHD1-dependent manner. Transl Oncol 2021; 14:101075. [PMID: 33773404 PMCID: PMC8027902 DOI: 10.1016/j.tranon.2021.101075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Up-regulated SMYD3 correlates with worse prognosis and controls DDP resistance of NSCLC. ANKHD1 interacts with and is essential for SMYD3-induced DDP resistance. CDK2 is identified to be a downstream effector of SMYD3-ANKHD1 in NSCLC. SMYD3-ANKHD1 critically regulates the growth DDP-resistant NSCLC cells in vivo.
Background Cisplatin (DDP) remains the backbone of chemotherapy for non-small cell lung cancer (NSCLC), yet its clinical efficacy is limited by DDP resistance. We aim to investigate the role of the SET and MYND domain-containing protein 3 (SMYD3) in DDP resistance of NSCLC. Methods Expression pattern of SMYD3 was determined in NSCLC tissues using qRT-PCR, which also validated its correlation with NSCLC clinicopathological stages. Impacts of SMYD3 on DDP resistance were evaluated by knocking down SMYD3 in DDP-resistant cells and overexpressing it in DDP-sensitive cells, and assessed for several phenotypes: IC50 by MTT, long-term proliferation by colony formation, apoptosis and cell-cycle distribution by flow cytometry. The interaction between Ankyrin Repeat and KH Domain Containing 1 (ANKHD1) and SMYD3 was examined by co-immunoprecipitation and immunofluorescence. The transcriptional regulation of SMYD3 on cyclin-dependent kinase 2 (CDK2) promoter regions was confirmed using chromatin-immunoprecipitation. The in vivo experiments using DDP-resistant cells with altered SMYD3 and ANKHD1 expression were further performed to verify the SMYD3/ANKHD1 axis. Results Highly expressed SMYD3 was observed in NSCLC tissues or cells, acted as a sensitive indicator for NSCLC, correlated with higher TNM stages or resistant to DDP treatment, and shorter overall survival. The promotion of SMYD3 on DDP resistance requires co-regulator, ANKHD1. CDK2 was identified as a downstream effector. In vivo, SMYD3 knockdown inhibited the growth of DDP-resistant NSCLC cells, which was abolished by ANKHD1 overexpression. Conclusions SMYD3 confers NSCLC cells chemoresistance to DDP in an ANKHD1-dependent manner, providing novel therapeutic targets to overcome DDP resistance in NSCLC .
Collapse
Affiliation(s)
- Hong-Wei Lv
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Wen-Qun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Yu-Feng Ba
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Hao-Miao Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Hao-Ran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China; Department of Thoracic Surgery, The Cancer Hospital Chinese Academy of Medical Science, Beijing 100021, People's Republic of China.
| |
Collapse
|
43
|
Fittipaldi R, Floris P, Proserpio V, Cotelli F, Beltrame M, Caretti G. The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells 2021; 10:cells10051233. [PMID: 34069776 PMCID: PMC8157265 DOI: 10.3390/cells10051233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
SMYD3 (SET and MYND domain containing protein 3) is a methylase over-expressed in cancer cells and involved in oncogenesis. While several studies uncovered key functions for SMYD3 in cancer models, the SMYD3 role in physiological conditions has not been fully elucidated yet. Here, we dissect the role of SMYD3 at early stages of development, employing mouse embryonic stem cells (ESCs) and zebrafish as model systems. We report that SMYD3 depletion promotes the induction of the mesodermal pattern during in vitro differentiation of ESCs and is linked to an upregulation of cardiovascular lineage markers at later stages. In vivo, smyd3 knockdown in zebrafish favors the upregulation of mesendodermal markers during zebrafish gastrulation. Overall, our study reveals that SMYD3 modulates levels of mesendodermal markers, both in development and in embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Raffaella Fittipaldi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Pamela Floris
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Valentina Proserpio
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Monica Beltrame
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Correspondence: ; Tel.: +39-025-031-5002
| |
Collapse
|
44
|
Talibov VO, Fabini E, FitzGerald EA, Tedesco D, Cederfeldt D, Talu MJ, Rachman MM, Mihalic F, Manoni E, Naldi M, Sanese P, Forte G, Lepore Signorile M, Barril X, Simone C, Bartolini M, Dobritzsch D, Del Rio A, Danielson UH. Discovery of an Allosteric Ligand Binding Site in SMYD3 Lysine Methyltransferase. Chembiochem 2021; 22:1597-1608. [PMID: 33400854 PMCID: PMC8248052 DOI: 10.1002/cbic.202000736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/30/2020] [Indexed: 12/15/2022]
Abstract
SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 μM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 μM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.
Collapse
Affiliation(s)
- Vladimir O. Talibov
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Edoardo Fabini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Edward A. FitzGerald
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
- Beactica Therapeutics ABVirdings allé 2754 50UppsalaSweden
| | - Daniele Tedesco
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Daniela Cederfeldt
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Martin J. Talu
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Moira M. Rachman
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de FarmaciaUniversitat de BarcelonaAv. Joan XXIII 27–3108028BarcelonaSpain
| | - Filip Mihalic
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Elisabetta Manoni
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Marina Naldi
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Centre for Applied Biomedical ResearchAlma Mater Studiorum University of BolognaVia Zamboni, 33Bologna40126Italy
| | - Paola Sanese
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Giovanna Forte
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Xavier Barril
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de FarmaciaUniversitat de BarcelonaAv. Joan XXIII 27–3108028BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)Passeig Lluis Companys 2308010BarcelonaSpain
| | - Cristiano Simone
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO)University of Bari Aldo Moro70124BariItaly
| | - Manuela Bartolini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
| | - Doreen Dobritzsch
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Alberto Del Rio
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
- Innovamol Consulting SrlVia Giardini 470/H41124ModenaItaly
| | - U. Helena Danielson
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
- Science for Life LaboratoryUppsala UniversityUppsala752 37Sweden
| |
Collapse
|
45
|
Targeting Smyd3 by next-generation antisense oligonucleotides suppresses liver tumor growth. iScience 2021; 24:102473. [PMID: 34113819 PMCID: PMC8169948 DOI: 10.1016/j.isci.2021.102473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
The oncogenic function of suppressor of variegation, enhancer of zeste and MYeloid-Nervy-DEAF1-domain family methyltransferase Smyd3 has been implicated in various malignancies, including hepatocellular carcinoma (HCC). Here, we show that targeting Smyd3 by next-generation antisense oligonucleotides (Smyd3-ASO) is an efficient approach to modulate its mRNA levels in vivo and to halt the growth of already initiated liver tumors. Smyd3-ASO treatment dramatically decreased tumor burden in a mouse model of chemically induced HCC and negatively affected the growth rates, migration, oncosphere formation, and xenograft growth capacity of a panel of human hepatic cancer cell lines. Smyd3-ASOs prevented the activation of oncofetal genes and the development of cancer-specific gene expression program. The results point to a mechanism by which Smyd3-ASO treatment blocks cellular de-differentiation, a hallmark feature of HCC development, and, as a result, it inhibits the expansion of hepatic cancer stem cells, a population that has been presumed to resist chemotherapy.
Collapse
|
46
|
Klein MI, Cannataro VL, Townsend JP, Newman S, Stern DF, Zhao H. Identifying modules of cooperating cancer drivers. Mol Syst Biol 2021; 17:e9810. [PMID: 33769711 PMCID: PMC7995435 DOI: 10.15252/msb.20209810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
Identifying cooperating modules of driver alterations can provide insights into cancer etiology and advance the development of effective personalized treatments. We present Cancer Rule Set Optimization (CRSO) for inferring the combinations of alterations that cooperate to drive tumor formation in individual patients. Application to 19 TCGA cancer types revealed a mean of 11 core driver combinations per cancer, comprising 2-6 alterations per combination and accounting for a mean of 70% of samples per cancer type. CRSO is distinct from methods based on statistical co-occurrence, which we demonstrate is a suboptimal criterion for investigating driver cooperation. CRSO identified well-studied driver combinations that were not detected by other approaches and nominated novel combinations that correlate with clinical outcomes in multiple cancer types. Novel synergies were identified in NRAS-mutant melanomas that may be therapeutically relevant. Core driver combinations involving NFE2L2 mutations were identified in four cancer types, supporting the therapeutic potential of NRF2 pathway inhibition. CRSO is available at https://github.com/mikekleinsgit/CRSO/.
Collapse
Affiliation(s)
- Michael I Klein
- Program in Computational Biology and BioinformaticsYale UniversityNew HavenCTUSA
- Bioinformatics R&DSema4StamfordCTUSA
| | - Vincent L Cannataro
- Department of BiologyEmmanuel CollegeBostonMAUSA
- Department of BiostatisticsYale School of Public HealthNew HavenCTUSA
| | - Jeffrey P Townsend
- Program in Computational Biology and BioinformaticsYale UniversityNew HavenCTUSA
- Department of BiostatisticsYale School of Public HealthNew HavenCTUSA
- Yale Cancer CenterYale UniversityNew HavenCTUSA
| | | | - David F Stern
- Yale Cancer CenterYale UniversityNew HavenCTUSA
- Department of PathologyYale School of MedicineNew HavenCTUSA
| | - Hongyu Zhao
- Program in Computational Biology and BioinformaticsYale UniversityNew HavenCTUSA
- Department of BiostatisticsYale School of Public HealthNew HavenCTUSA
- Yale Cancer CenterYale UniversityNew HavenCTUSA
| |
Collapse
|
47
|
Bernard BJ, Nigam N, Burkitt K, Saloura V. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenetics 2021; 13:45. [PMID: 33637115 PMCID: PMC7912509 DOI: 10.1186/s13148-021-01021-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Chromatin modifiers and their implications in oncogenesis have been an exciting area of cancer research. These are enzymes that modify chromatin via post-translational modifications such as methylation, acetylation, sumoylation, phosphorylation, in addition to others. Depending on the modification, chromatin modifiers can either promote or repress transcription. SET and MYN-domain containing 3 (SMYD3) is a chromatin modifier that has been implicated in the development and progression of various cancer types. It was first reported to tri-methylate Histone 3 Lysine 4 (H3K4), a methylation mark known to promote transcription. However, since this discovery, other histone (H4K5 and H4K20, for example) and non-histone (VEGFR, HER2, MAP3K2, ER, and others) substrates of SMYD3 have been described, primarily in the context of cancer. This review aims to provide a background on basic characteristics of SMYD3, such as its protein structure and tissue expression profiles, discuss reported histone and non-histone substrates of SMYD3, and underscore prognostic and functional implications of SMYD3 in cancer. Finally, we briefly discuss ongoing efforts to develop inhibitors of SMYD3 for future therapeutic use. It is our hope that this review will help synthesize existing research on SMYD3 in an effort to propel future discovery.
Collapse
Affiliation(s)
- Benjamin J Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | | | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA.
| |
Collapse
|
48
|
Liu Z, Liu C, Yan K, Liu J, Fang Z, Fan Y. Huaier Extract Inhibits Prostate Cancer Growth via Targeting AR/AR-V7 Pathway. Front Oncol 2021; 11:615568. [PMID: 33708629 PMCID: PMC7940541 DOI: 10.3389/fonc.2021.615568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
The androgen receptor (AR) plays a pivotal role in prostatic carcinogenesis, and it also affects the transition from hormone sensitive prostate cancer (HSPC) to castration-resistant prostate cancer (CRPC). Particularly, the persistent activation of the androgen receptor and the appearance of androgen receptor splicing variant 7 (AR-V7), could partly explain the failure of androgen deprivation therapy (ADT). In the present study, we reported that huaier extract, derived from officinal fungi, has potent antiproliferative effects in both HSPC and CRPC cells. Mechanistically, huaier extract downregulated both full length AR (AR-FL) and AR-V7 mRNA levels via targeting the SET and MYND domain-containing protein 3 (SMYD3) signaling pathway. Huaier extract also enhanced proteasome-mediated protein degradation of AR-FL and AR-V7 by downregulating proteasome-associated deubiquitinase ubiquitin-specific protease 14 (USP14). Furthermore, huaier extract inhibited AR-FL/AR-V7 transcriptional activity and their nuclear translocation. More importantly, our data demonstrated that huaier extract could re-sensitize enzalutamide-resistant prostate cancer cells to enzalutamide treatment in vitro and in vivo models. Our work revealed that huaier extract could be effective for treatment of prostate cancer either as monotherapy or in combination with enzalutamide.
Collapse
Affiliation(s)
- Zhengfang Liu
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Cheng Liu
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Keqiang Yan
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China.,Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, Solna, Sweden
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
49
|
Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2021; 21:655-674. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Gael S Roth
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| |
Collapse
|
50
|
Liu M, Liu Q, Fan S, Su F, Jiang C, Cai G, Wang Y, Liao G, Lei X, Chen W, Bi J, Cheng W, Zhao L, Ruan Y, Li J. LncRNA LTSCCAT promotes tongue squamous cell carcinoma metastasis via targeting the miR-103a-2-5p/SMYD3/TWIST1 axis. Cell Death Dis 2021; 12:144. [PMID: 33542221 PMCID: PMC7862618 DOI: 10.1038/s41419-021-03415-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Abnormal expression of long-noncoding RNA is involved in the tumorigenesis and progression of various cancers, but the potential molecular regulatory mechanisms are unclear. Microbial flora and chronic inflammation, such as periodontitis, which is associated with oral cancer, affect the occurrence and progression of tumors. Accordingly, we stimulated the tongue squamous cell carcinoma (TSCC) cell lines CAL27 and SCC15 with a low concentration of lipopolysaccharide (LPS) from Porphyromonas gingivalis (P.g) for 6 days and then performed LncRNA sequencing on P.g-LPS-treated CAL27 cells and untreated CAL27 cells. LTSCCAT was upregulated in P.g-LPS-treated CAL27 cells compared with untreated CAL27 cells. LTSCCAT induced epithelial–mesenchymal transition and promoted the invasion and metastasis of TSCC in vitro and in vivo. LncRNA LTSCCAT was upregulated in TSCC patients with periodontitis and was correlated with metastasis and poor prognosis. We predicted through an online database and confirmed by dual-luciferase reporter assays that LTSCCAT is a competitive endogenous RNA for the regulation of miR-103a-2-5p. Another dual-luciferase reporter assay confirmed that miR-103a-2-5p has a binding site at the 3′-UTR of the histone methylation transferase SMYD3 and inhibits its translation. Chromatin immunoprecipitation experiments demonstrated that SMYD3 binds directly to the promoter region of TWIST1 and promotes its transcription, which is related to H3K4 trimethylation. The effect of pcDNA/LTSCCAT on expression was attenuated by miR-103a-2-5p mimics. The RF and SVM classifier predicts that LTSCCAT can bind to SMYD3, whereas the RNA immunoprecipitation (RIP) assay confirms that it cannot. In addition, we predicted the combination of LTSCCAT and SMYD3 through software, but the RIP assay confirmed that LTSCCAT could not be combined with SMYD3. For the first time, we showed that periodontitis promotes the invasion and metastasis of TSCC and clarified the molecular mechanism of LTSCCAT to promote invasion and metastasis of TSCC, providing a potential therapeutic target for clinical treatment of TSCC.
Collapse
Affiliation(s)
- Mo Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingwen Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng Su
- Department of Urology, Shunde Hospital, Southern Medical University, Foshan City, Guangdong Province, China
| | - Chun Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Urology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guanming Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Youyuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, China
| | - Xinyuan Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weixiong Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junming Bi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Urology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weiqi Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - LuoDan Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Yi Ruan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China. .,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China. .,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|